Skip to main content

Neuronal Physiology of the Visual Cortex

  • Chapter
Visual Centers in the Brain

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 3 / 3 B))

Abstract

The behaviour of higher mammals and humans in the spatial environment is to a large extent visually guided, and requires form vision and fine discrimination between similar patterns and symbols. This ability seems related to the specificity and complexity of stimuli needed for activation of single neurones of the visual cortex, in contrast to the relatively unselective requirements of retinal and lateral geniculate neurones. The retina and tectum of some lower vertebrates including frogs, pigeons and rabbits, already possess selective cells responding to very specific aspects of stimulation. The class differences are in part connected with the chiasmatic decussation and mechanisms of binocular and stereoptic vision which are prominent in the visual cortex of animals with forward looking rather than laterally placed eyes. They are also associated with the enormously expanded behavioural repertoire of, for instance, primates in comparision to lower vertebrate forms. The complex primate cortex permits a rich interaction and modification of cellular performance according to the momentary needs and disposition of the individual. The opportunities which allow plasticity of performance also unfortunately often lead to response unpredictability, despite careful laboratory controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adorjani, C., Baumgartner, G., v.d. Heydt, R., Keller, H., Lehmann, D.: Plasticity of neuronal functions in the visual system. Brain Res. 31, 366–367 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. Ajmone Marsan, C., Morillo, A.: Cortical control and callosal mechanisms in the visual system of cat. Electroenceph. clin. Neurophysiol. 13, 553–563 (1961).

    Article  Google Scholar 

  3. Akimoto, H., Creutzfeldt, O.: Reaktionen von Neuronen des optischen Cortex nach elektrischer Reizung unspezifischer Thalamuskerne. Arch. Psychiat. Nervenkr. 196, 494–519 (1957/58).

    Article  Google Scholar 

  4. Akimoto, H., Saito, Y., Nakamura, Y.: Effects of arousal stimuli on evoked neuronal activities in cat’s visual cortex. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 363–371. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  5. Albe-Fessard, D., Mallart, A.: Existence de réponses d’origines visuelle et auditive dans le centre médian du thalamus du chat anesthésié au chloralose. C. R. Acad. Sci. (Paris) 251, 1040–1042 (1960).

    CAS  Google Scholar 

  6. Albe-Fessard, D., Rocha-Miranda, C., Oswaldo-Cruz, E.: Activités évoquées dans le noyau caudé du chat en réponse à des types divers différences. II. étude microphysiologique. Electroenceph. clin. Neurophysiol. J. 12, 649–661 (1960).

    Article  CAS  Google Scholar 

  7. Andersen, V.O., Buchmann, B., Lennox-Btjchthal, M.A.: Single cortical units with narrow spectral sensitivity in monkey (Cercocebus torquates atys). Vision Res. 2, 295–307 (1962).

    Article  Google Scholar 

  8. Anderson, K. V., Symmes, D.: The superior colliculus and higher visual functions in the monkey. Brain Res. 13, 37–52 (1969).

    Article  PubMed  CAS  Google Scholar 

  9. Angel, A., Magni, F., Strata, P.: The excitability of optic nerve terminals in the lateral geniculate nucleus after stimulation of visual cortex. Arch. ital. Biol. 105, 104–117 (1967).

    PubMed  CAS  Google Scholar 

  10. Arden, G. B.: Types of response and organization of simple receptive fields in cells of the rabbit’s lateral geniculate body. J. Physiol. (Lond.) 166, 449–467 (1963).

    CAS  Google Scholar 

  11. Arden, G. B., Ikeda, H., Hill, R.M.: Rabbit visual cortex: Reaction of cells to movement and contrast. Nature (Lond.) 214, 909–912 (1967).

    Article  CAS  Google Scholar 

  12. Arden, G. B., Söderberg, U.: The transfer of optic information through the lateral geniculate body of the rabbit. In: Rosenblith, W. A. (Ed.): Sensory Communication Symposium, pp. 521–544. New York: M.I.T. Press 1961.

    Google Scholar 

  13. Arduini, A., Pinneo, L.R.: Properties of the retina in response to steady illumination. Arch. ital. Biol. 100, 425–448 (1962).

    PubMed  CAS  Google Scholar 

  14. Arduini, A., Pinneo, L.R.: The tonic activity of the lateral geniculate nucleus in dark and light adaptation. Arch. ital. Biol. 101, 493–507 (1963).

    PubMed  CAS  Google Scholar 

  15. Baden, J. P., Urbaitis, J.C., Miekle, T.H., Jr.: Effects of serial bilateral neocortical ablations on a visual discrimination by cats. Exp. Neurol. 13, 233–251 (1965).

    Article  PubMed  CAS  Google Scholar 

  16. Bagdonas, A., Polianskii, V.B., Sokolov, E.N.: Participation of visual cortical units of rabbits in the conditioned reflex of time. (Russ.). English abstract. Zh. vyssh. nerv. Deyat. Pavlova 18, 791–798 (1968).

    CAS  Google Scholar 

  17. Baker, F.H., Sanseverino, E.R., Lamarre, Y., Poggio, G.F.: Excitatory responses of geniculate neurones of the cat. J. Neurophysiol. 32, 916–929 (1969).

    PubMed  CAS  Google Scholar 

  18. Barlow, H.B.: Coding of light intensity by the cat retina. In: Reichardt, W. (Ed.): Processing of Optical Data by Organisms and by Machines. Varenna: Academic Press 1969.

    Google Scholar 

  19. Barlow, H.B.: The coding of sensory messages. In: Thorpe, W.H., Zangwil, O.L. (Eds.): Current Problems in Animal Behavior. Cambridge: Cambridge Univ. Press 1961.

    Google Scholar 

  20. Barlow, H.B., Blakemore, C., Pettigrew, I.D.: The neural mechanisms of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    CAS  Google Scholar 

  21. Barlow, H.B., Fitzhugh, R., Kuffler, S.W.: Change of organisation in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338–354 (1957).

    CAS  Google Scholar 

  22. Barlow, H.B., Levick, W.R.: Changes in the maintained discharge with adaptation level in the cat retina. J. Physiol. (Lond.) 202, 699–718 (1969).

    CAS  Google Scholar 

  23. Barlow, H.B., Pettigrew, J.D.: Lack of specificity of neurones in the visual cortex of young kittens. J. Physiol. (Lond.) 218, 98–100P (1971).

    Google Scholar 

  24. Bartley, H.S.: Central mechanisms of vision. In: Field, J., Magoun, H.W., Hall, V.E. (Eds.): Handbook of Physiology, pp. 713–740. Washington, D. C.: Amer. Physiol. Soc. 1959.

    Google Scholar 

  25. Bartley, S.H., Bishop, G.H.: The cortical response to stimulation of the optic nerve in the rabbit. Amer. J. Physiol. 103, 159–172 (1933).

    Google Scholar 

  26. Bartley, S.H., Bishop, G.H.: Factors determining the form of the electrical response from the optic cortex of the rabbit. Amer. J. Physiol. 103, 173–184 (1933).

    Google Scholar 

  27. Bartley, S.H., Newman, E.B.: Studies of the dog’s cortex. Amer. J. Physiol. 99, 1–8 (1931).

    Google Scholar 

  28. Baumgarten, R. von, Jung, R.: Microelectrode studies on the visual cortex. Rev. neurol. 87, 151–155 (1952).

    Google Scholar 

  29. Baumgartner, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach Lichtblitzen. Pflügers Arch. ges. Physiol. 261, 457–469 (1955).

    Article  CAS  Google Scholar 

  30. Baumgartner, G.: Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 296–312. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  31. Baumgartner, G.: Der Informationswert der on-Zentrum und off-Zentrum-Neurone des visuellen Systems beim Hell-Dunkel-Sehen und die informative Bedeutung von Aktivierung und Hemmung. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 377–379. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  32. Baumgartner, G.: Neuronale Mechanismen des Kontrast- und Bewegungssehens. Ber. dtsch. Ophthal. Ges. 66, 111–125 (1964).

    Google Scholar 

  33. Baumgartner, G., Brown, J. L., Schulz, A.: Visual motion detection in the cat. Science 146, 1070–1071 (1964).

    Article  PubMed  CAS  Google Scholar 

  34. Baumgartner, G., Brown, J. L., Schulz, A.: Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 28, 1–18 (1965).

    PubMed  CAS  Google Scholar 

  35. Baumgartner, G., Creutzfeldt, O., Jung, R.: Microphysiology of cortical neurones in acute anoxia and in retinal ischemia. In: Gastaut, H., Meyer, J.S. (Eds.): Cerebral Anoxia and the Electroencephalogram, pp. 5–34. Springfield: Ch. C. Thomas 1961.

    Google Scholar 

  36. Baumgartner, G., Eichin, F., Schulz, A.: Unterschiede neuronaler Aktivierung im zentralen visuellen System bei langdauernder Verdunkelung und Belichtung des Auges. Pflügers Arch. ges. Physiol. 279, R4 (1964).

    Google Scholar 

  37. Baumgartner, G., Hakas, P.: Reaktionen einzelner Opticusneurone und corticaler Nervenzellen der Katze im Hell-Dunkel-Grenzfeld (Simultankontrast). Pflügers Arch. ges. Physiol. 270, 29 (1959).

    Google Scholar 

  38. Baumgartner, G., Hakas, P.: Die Neurophysiologie des simultanen Helligkeitskontrastes. Reziproke Reaktionen antagonistischer Neuronengruppen des visuellen Systems. Pflügers Arch. ges. Physiol. 274, 489–500 (1962).

    Article  CAS  Google Scholar 

  39. Baumgartner, G., Jung, R.: Convergence of specific and unspecific afferent impulses on neurones of the visual cortex. Electroenceph. clin. Neurophysiol. 8, 163–164 (1956).

    Google Scholar 

  40. Baumgartner, G., Schulz, A., Brown, J. L.: Unterschiedliche Reaktionen auf bewegte Reizmuster bei corticalen und Geniculatum-Neuronen. Pflügers Arch. ges. Physiol. 278, 69–70 (1963).

    Article  Google Scholar 

  41. Bear, D.M., Sasaki, H., Ervin, E.R.: Sequential change in receptive fields of striate neurons in dark adapted cats. Exp. Brain Res. 13, 256–272 (1971).

    Article  Google Scholar 

  42. Békésy, G.v.: Mach- and Hering-type lateral inhibition in vision. Vision Res. 8, 1483–1499 (1968).

    Article  Google Scholar 

  43. Bental, E., Dafny, N., Feldman, S.: Convergence of auditory and visual stimuli on single cells in the primary visual cortex of unanesthetized unrestrained cats. Exp. Neurol. 20, 341–351 (1968).

    Article  PubMed  CAS  Google Scholar 

  44. Berlucchi, G.: Anatomical and physiological aspects of visual functions of corpus callosum. Brain Res. 37, 371–392 (1972).

    Article  PubMed  CAS  Google Scholar 

  45. Berlucchi, G., Gazzaniga, M.S., Rizzolatti, G.: Microelectrode analysis of transfer of visual information by the corpus callosum. Arch. ital. Biol. 105, 583–596 (1967).

    PubMed  CAS  Google Scholar 

  46. Berlucchi, G., Rizzolatti, G.: Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159, 308–310 (1968).

    Article  PubMed  CAS  Google Scholar 

  47. Bignall, K.E.M., Imbert, M., Buser, P.: Optic projections to non-visual cortex of the cat. J. Neurophysiol. 29, 396–409 (1966).

    PubMed  CAS  Google Scholar 

  48. Bishop, G. H.: Cyclic changes in excitability of the optic pathway of the rabbit. Amer. J. Physiol. 103, 213–224 (1933).

    Google Scholar 

  49. Bishop, G. H., Clare, M.: Radiation path from geniculate to optic cortex in cat. J. Neurophysiol. 14, 497–505 (1951).

    Google Scholar 

  50. Bishop, P. O., Coombs, J. S., Henry, G. H.: Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones. J. Physiol. (Lond.) 219, 625–659 (1971).

    CAS  Google Scholar 

  51. Bishop, P. O., Coombs, J. S., Henry, G. H.: Interaction effects of visual contours on the discharge frequency of simple striate neurones. J. Physiol. (Lond.) 219, 659–687 (1971).

    CAS  Google Scholar 

  52. Bishop, P. O., Kozak, W., Levick, W.R., Vakkur, G. J.: The determination of the projection of the visual field onto the lateral geniculate nucleus in the cat. J. Physiol. (Lond.) 163, 503–539 (1962).

    CAS  Google Scholar 

  53. Bizzi, E.: Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Electroenceph. clin. Neurophysiol. 26, 630 (1969).

    Article  PubMed  CAS  Google Scholar 

  54. Bizzi, E., Shiller, P. H.: Single unit activity in the frontal eye field of unanesthetized monkeys during eye and head movement. Exp. Brain Res. 10, 151–158 (1970).

    Article  Google Scholar 

  55. Black, P., Meyers, R.E.: Connections of occipital lobe in the monkey. Anat. Rec. 142, 216–217 (1962).

    Google Scholar 

  56. Blakemore, C.: Binocular depth discrimination and the nasotemporal division. J. Physiol. (Lond.) 205, 471–497 (1969).

    CAS  Google Scholar 

  57. Blakemore, C.: Binocular depth perception and the optic chiasm. Vision Res. 10, 43–47 (1970).

    Article  PubMed  CAS  Google Scholar 

  58. Blakemore, C.: The representation of three-dimensional visual space in the cat’s striate cortex. J. Physiol. (Lond.) 209, 155–178 (1970).

    CAS  Google Scholar 

  59. Blakemore, C., Campbell, F. W.: Adaptation to spatial stimuli. J. Physiol. (Lond.) 200, 11–13 (1968).

    Google Scholar 

  60. Blakemore, C., Campbell, F. W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–260 (1969).

    CAS  Google Scholar 

  61. Blakemore, C., Carpenter, R.H.S., Georgeson, M.A.: Lateral inhibition between orientation detectors in the human visual system. Nature (Lond.) 228, 37–39 (1970).

    Article  CAS  Google Scholar 

  62. Blakemore, C., Cooper, G.F.: Development of the brain depends on the visual environment. Nature (Lond.) 228, 477–478 (1970).

    Article  CAS  Google Scholar 

  63. Blakemore, C., Cooper, G.F.: Modification of the visual cortex by experience. Brain Res. 31, 366 (1971).

    Article  PubMed  CAS  Google Scholar 

  64. Blakemore, C., Pettigrew, I.D.: Eye dominance in the visual cortex. Nature (Lond.) 225, 426–429 (1970).

    Article  CAS  Google Scholar 

  65. Blakemore, C., Tobin, E.A.: Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp. Brain Res. 15, 439–440 (1972).

    Article  PubMed  CAS  Google Scholar 

  66. Bough, E.W.: Stereoscopic vision in the macaque monkey: a behavioral demonstration. Nature (Lond.) 225, 42–44 (1970).

    Article  CAS  Google Scholar 

  67. Bremer, F.: Le potential évoqué de l’aire visuelle corticale. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 335–350. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  68. Bremer, F.: Etude electrophysiologique de la convergence binoculaire dans l’aire visuelle corticale du chat. Arch. ital. Biol. 102, 333–371 (1964).

    PubMed  CAS  Google Scholar 

  69. Brodmann, K.: Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J. A. Barth 1909.

    Google Scholar 

  70. Brooks, B.A.: Neurophysiological correlates of brightness discrimination in the squirrel monkey. Exp. Brain Res. 2, 1–17 (1966).

    Article  PubMed  CAS  Google Scholar 

  71. Brooks, B.A., Bohn, H.: Activity in the optic tract and lateral geniculate nucleus of the cat during the first moments of light adaptation in the scotopic region. Ex. Brain Res., 11, 213–228 (1970).

    Article  CAS  Google Scholar 

  72. Brooks, B.A., Huber, C.: Recovery of sensitivity in the optic tract and LGN of the cat during light adaptation. Pflügers Arch. 319, R 159 (1970).

    Google Scholar 

  73. Brooks, B.A., Huber, C.: Evidence for the role of the transient neural “off-response” in perception of light decrement: A psychophysical test derived from neuronal data in the cat. Vision Res. 12, 1291–1297 (1972).

    Article  PubMed  CAS  Google Scholar 

  74. Brooks, B.A., Huber, C.Influence of incremental light duration on the off-response of the dark adapted cat. Vision Res. 11, 1015–1018 (1971).

    Article  PubMed  CAS  Google Scholar 

  75. Brooks, D.C.: Effect of bilateral optic nerve section on visual system monophasic wave activity in the cat. Electronenceph. clin. Neurophysiol. 23, 134–141 (1967).

    Article  CAS  Google Scholar 

  76. Brooks, D.C.: Localization and characteristics of the cortical waves associated with eye movement in the cat. Exp. Neurol. 22, 603–613 (1968).

    Article  PubMed  CAS  Google Scholar 

  77. Brooks, D.C.: Waves associated with eye movement in the awake and sleeping cat. Electroenceph. clin. Neurophysiol. 24, 532–541 (1968).

    Article  PubMed  CAS  Google Scholar 

  78. Burke, W.: The function of the lateral geniculate nucleus. Digest of the 9th Int. Conf. on Med. and Biol. Engineering Melbourne p. 266 (1971).

    Google Scholar 

  79. Burns, B.D.: The uncertain nervous system. London: E. Arnold Ltd. 1968.

    Google Scholar 

  80. Burns, B.D., Heron, W., Grafstein, B.: Responses of cerebral cortex to diffuse monocular and binocular stimulation. Amer. J. Physiol. 198, 200–204 (1960).

    PubMed  CAS  Google Scholar 

  81. Burns, B.D., Heron, W., Pritchard, R.: Physiological excitation of visual cortex in cat’s unanaesthetized isolated forebrain. J. Neurophysiol. 25, 165–181 (1962).

    PubMed  CAS  Google Scholar 

  82. Burns, B.D., Pritchard, R.: Contrast discrimination by neurones in the cat’s visual cerebral cortex. J. Physiol. (Lond.) 175, 445–463 (1964).

    CAS  Google Scholar 

  83. Burns, B.D., Pritchard, R.: Cortical conditions for fused binocular vision. J.Physiol. (Lond.) 197, 149–171(1968).

    Google Scholar 

  84. Burns, B.D., Pritchard, R.: Geometrical illusions and the response of neurones in the cat’s visual cortex to angle patterns. J. Physiol. (Lond.) 213, 599–616 (1971).

    CAS  Google Scholar 

  85. Burns, B.D., Webb, A.C.: Spread of responses in the cerebral cortex to meaningful stimuli. Nature (Lond.) 225, 469–470 (1970).

    Article  CAS  Google Scholar 

  86. Burns, B.D., Webb, A.C.: The effects of stationary retinal patterns upon the behaviour of neurones in the cat’s visual cortex. Proc. roy. Soc. Lond. B. 178, 63–78 (1971).

    Article  CAS  Google Scholar 

  87. Buser, P., Imbert, M.: Sensory projections to the motor cortex in cats: a microelectrode study. In: Rosenblith, W. A. (Ed.): Sensory Communication Symposion, pp. 597–626. New York-London: John Wiley Sons, M.I.T. Press.

    Google Scholar 

  88. Buser, P., Kitsikis, A., Wiesendanger, M.: Modulation of visual input to single neurones of the motor cortex by the primary visual area in the cat. Brain Res. 10, 262–265 (1968).

    Article  PubMed  CAS  Google Scholar 

  89. Campbell, F.W.: Trends in physiological optics. In: Reichardt, W. (Ed.): Processing of Optical Data by Organisms and by Machines, pp. 137–143. Varenna: Academic Press 1969.

    Google Scholar 

  90. Buser, P., Cleland, B.G., Cooper, G. F., Enroth-Cugell, C.: The angular selectivity of visual cortical cells to moving gratings. J. Physiol. (Lond.) 198, 237–250 (1968).

    Google Scholar 

  91. Buser, P., Cooper, G.F., Enroth-Cugell, C.: The spatial selectivity of the visual cells of the cat. J. Physiol. (Lond.) 203, 223–235 (1969).

    Google Scholar 

  92. Buser, P., Cooper, G.F., Robson, J.G., Sachs, M.B.: The spatial selectivity of visual cells of the cat and the squirrel monkey. J. Physiol. (Lond.) 204, 120–121P (1969).

    Google Scholar 

  93. Buser, P., Green, D.G. Optical and retinal factors affecting visual resolution. J. Physiol. 181, 576–593 (1965).

    Google Scholar 

  94. Buser, P., Kulikowski, J. J.: Orientation selectivity of the human visual system. J. Physiol. (Lond.) 187, 437–446 (1966).

    Google Scholar 

  95. Buser, P., Kulikowski, J. J., Levinson, J.: The effect of orientation on the visual resolution of gratings. J. Physiol. (Lond.) 187, 427–436 (1966).

    Google Scholar 

  96. Buser, P., Maffei, L.: Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J. Physiol. (Lond.) 207, 635–652 (1970).

    Google Scholar 

  97. Buser, P., Nachmias, J., Jukes, J.: Spatial frequency discrimination in human vision. J. opt. Soc. Amer. 60, 555–559 (1970).

    Article  Google Scholar 

  98. Chang, H.-T.: Cortical response to stimulation of lateral geniculate body and the potentiation thereof by continuous illumination of retina. J. Neurophysiol. 15, 5–26 (1952).

    PubMed  CAS  Google Scholar 

  99. Choudhury, B.P., Whitteridge, D., Wilson, M.E.: The function of the callosal connections of the visual cortex. Quart. J. exp. Physiol. 50, 214–219 (1965).

    PubMed  CAS  Google Scholar 

  100. Chow, K.L., Lindsley, D.F., Gollender, M.: Modification of response patterns of lateral geniculate neurons after paired stimulation of contralateral and ipsilateral eyes. J. Neurophysiol. 31, 729–739 (1968).

    PubMed  CAS  Google Scholar 

  101. Clare, M.H., Bishop, G.H.: Responses from an association area secondarily activated from optic cortex. J. Neurophysiol. 17, 271–277 (1954).

    PubMed  CAS  Google Scholar 

  102. Clare, M.H., Landau, W.M., Bishop, G.H.: The relationship of optic nerve fiber groups activated by electrical stimulation to the consequent central postsynaptic events. Exp. Neurol. 24, 400–420 (1969).

    Article  PubMed  CAS  Google Scholar 

  103. Cleland, B.G., Dubin, M.W., Levick, W.R.: Simultaneous recording of input and output of lateral geniculate neurones. Nature (Lond.) 231, 191–192 (1971).

    CAS  Google Scholar 

  104. Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physiol. (Lond.) 217, 473–496 (1971).

    CAS  Google Scholar 

  105. Cobb, W. A., Morton, H.B., Ettlinger, G.: Cerebral potentials evoked by pattern reversal and their suppression in visual rivalry. Nature (Lond.) 216, 1123–1125 (1967).

    Article  CAS  Google Scholar 

  106. Cohen, B., Feldmann, M.: Potential changes associated with rapid eye movement in the calcarine cortex. Exp. Neurol. 31, 100–113 (1971).

    Article  PubMed  CAS  Google Scholar 

  107. Colonnier, M.: Synaptic patterns on different cell types in the different lamina of the cat visual cortex: an electron microscopy study. Brain Res. 9, 268–287 (1968).

    Article  PubMed  CAS  Google Scholar 

  108. Colonnier, M.: The fine structural arrangement of the cortex. Arch. Neurol. 16, 651–657 (1967).

    PubMed  CAS  Google Scholar 

  109. Colonnier, M., Rossignol, S.: Heterogeneity of the cerebral cortex. In: Jasper, H.H., Ward, A. A. (Eds.) Basic Mechanisms of the Epilepsies. Boxton: Little, Brown 1969.

    Google Scholar 

  110. Corazza, R., Tradari, V., Umiltà, C.: Tonic responses to steady diffuse illumination of the maintained neuronal discharge in the cat central visual pathways. Brain Res. 27, 241–250 (1971).

    Article  PubMed  CAS  Google Scholar 

  111. Cowey, A.: Projection of the retina on to the striate and prestriate cortex in the squirrel monkey, Saimiri sciureus. J. Neurophysiol. 27, 366–393 (1964).

    PubMed  CAS  Google Scholar 

  112. Cowey, A., Gross, C.G.: Effects of foveal, prestriate and inferotemporal lesions on visual discrimination by Rhesus monkeys. Exp. Brain Res. 11, 128–144 (1970).

    Article  PubMed  CAS  Google Scholar 

  113. Cragg, B.G., Ainsworth, A.: The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res. 9, 733–747 (1969).

    Article  PubMed  CAS  Google Scholar 

  114. Creutzfeldt, O.: Reaktionen einzelner Neurone des optischen Cortex nach Reizung unspezifischer Thalamuskerne. Proc. 20th Int. Congr. Physiol. Brussels, p. 387 (1956).

    Google Scholar 

  115. Creutzfeldt, O., Akimoto, M.: Konvergenz und gegenseitige Beeinflussung aus der Retina und den unspezifischen Thalamuskernen an einzelnen Neuronen des optischen Cortex. Arch. Psychiat. Nervenkr. 196, 520–538 (1957/58).

    Article  Google Scholar 

  116. Creutzfeldt, O., Baumgartner, G.: Reactions of neurones in the occipital cortex to electrical stimuli applied to the intralaminar thalamus. Electroenceph. clin. Neurophysiol. 7, 664–665 (1955).

    Google Scholar 

  117. Creutzfeldt, O., Fromm, G.H., Kapp, H.: Influence of transcortical d—c currents on cortical neuronal activity. Exper. Neurol. 5, 436–452 (1962).

    Article  CAS  Google Scholar 

  118. Creutzfeldt, O., Fromm, G.H., Jung, R.: Convergence of specific and unspecific afferent impulses on neurons of the visual cortex. Electroenceph. Clin. Neurophysiol. 8, 163–164 (1956).

    Google Scholar 

  119. Creutzfeldt, O., Grüsser, O.-J.: Beeinflussung der Flimmerreaktion einzelner corticaler Neurone durch elektrische Reize unspezifischer Thalamuskerne. 1. Int. Congr. Neurol. Sci. Brussels 4, 349–355. London-New York-Paris: Pergamon Press 1959.

    Google Scholar 

  120. Creutzfeldt, O., Ito, M.: Functional synaptic organization of primary visual cortex neurones in the cat. Exp. Brain Res. 6, 324–352 (1958)

    Google Scholar 

  121. Creutzfeldt, O., Ito, M.: Inhibition in the visual cortex. In: Euler, C. von, Skogltjnd, S., Söderberg, U. (Eds.): Structure andFunction of Inhibitory Neuronal Mechanisms, pp. 343–349. Oxford: Pergamon Book 1968.

    Google Scholar 

  122. Creutzfeldt, O., Pöppel, E., Singer, W.: Quantitativer Ansatz zur Analyse der funktionellen Organisation des visuellen Cortex (Untersuchungen an Primaten). In: Grüsser, O.-J., Klinke, R. (Hrsg.): Zeichenerkennung durch biologische und technische Systeme, S. 81–96. Berlin-Heidelberg-New York: Springer 1971.

    Chapter  Google Scholar 

  123. Creutzfeldt, O., Rosina, A., Ito, M., Probst, W.: Visual evoked response of single cells and of the EEG in primary visual area of the cat. J. Neurophysiol. 32, 127–139 (1969).

    PubMed  CAS  Google Scholar 

  124. Creutzfeldt, O., Spehlmann, R., Lehmann, D.: Veränderung der Neuronaktivität des visuellen Cortex durch Reizung der Substantia reticularis mesencephali. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, Symposion, S. 351–363. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  125. Curtis, D.R., Davis, R.: Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat. Brit. J. Pharmacol. 18, 217–246 (1962).

    PubMed  CAS  Google Scholar 

  126. Daw, N.W.: Color coded units in the goldfish retina. Ph. D. Thesis. Baltimore, Md.: Johns Hopkins Univ. 1967.

    Google Scholar 

  127. Daw, N.W., Pearlman, A.L.: Cat color vision: one cone process or several? J. Physiol. (Lond.) 201, 745–764 (1969).

    CAS  Google Scholar 

  128. De Valois, R.L.: Color vision mechanisms in the monkey. J. gen. Physiol. 43, 115–128 (1960).

    Article  Google Scholar 

  129. De Valois, R.L., Abramov, L., Mead, W.R.: Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. J. Neurophysiol. 30, 415–433 (1967).

    PubMed  CAS  Google Scholar 

  130. De Valois, R.L., Jacobs, G.H.: Primate color vision. Science 162, 533–540 (1968).

    Article  PubMed  Google Scholar 

  131. De Valois, R.L., Pease, P. L.: Contours and contrast: responses of monkey LGN cells to luminance and color figures. Science 171, 694–696 (1971).

    Article  PubMed  Google Scholar 

  132. Denney, D., Adorjani, C.: Orientation specificity of visual cortical neurons after head tilt. Exp. Brain Res. 14, 312–317 (1972).

    Article  PubMed  CAS  Google Scholar 

  133. Denney, D., Baumgartner, G., Adorjani, C.: Responses of cortical neurones to stimulation of the visual afferent radiations. Exp. Brain Res. 6, 265–272 (1968).

    Article  PubMed  CAS  Google Scholar 

  134. Doty, R. W.: Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli. J. Neurophysiol. 21, 437–464 (1958).

    PubMed  CAS  Google Scholar 

  135. Doty, R. W., Kimura, D.S., Mogenson, G.J.: Photically and electrically elicited responses in the central visual system of the squirrel monkey. Exp. Neurol. 10, 19–51 (1964).

    Article  PubMed  CAS  Google Scholar 

  136. Dow, B.M., Dubner, R.: Visual receptive fields and responses to movement in an association area of cat cerebral cortex. J. Neurophysiol. 32, 773–784 (1969).

    PubMed  CAS  Google Scholar 

  137. Dow, B.M., Dubner, R.: Single-unit responses to moving visual stimuli in middle suprasylvian gyrus of the cat. J. Neurophysiol. 34, 47–55 (1971).

    PubMed  CAS  Google Scholar 

  138. Dubner, R., Brown, F.J.: Response of cells to restricted visual stimuli in an association area of cat cerebral cortex. Exp. Neurol. 20, 70–86 (1968).

    Article  PubMed  CAS  Google Scholar 

  139. Dumont, S., Dell, P.: Facilitations spécifiques et non spécifiques des réponses visuelles corticales. J. Physiol. (Lond.) 50, 261–264 (1958).

    CAS  Google Scholar 

  140. Ecoles, J.C.: Functional significance of arrangement of neurones in cell assemblies. Arch. Psychiat. Nervenkr. 215, 92–106 (1971).

    Article  Google Scholar 

  141. Enroth-Cugell, Christina, Robson, J. Gr.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966).

    CAS  Google Scholar 

  142. Evarts, E.V.: Photically evoked responses in visual cortex units during sleep and waking. J. Neurophysiol. 26, 229–248 (1963).

    Google Scholar 

  143. Feldman, M., Cohen, B.: Electrical activity in the lateral geniculate body of the alert monkey associated with eye movements. J. Neurophysiol. 31, 455–466 (1968).

    PubMed  CAS  Google Scholar 

  144. Fischer, M. H.: Elektrobiologische Erscheinungen an der Hirnrinde. Pflügers Arch. ges. Physiol. 230, 161–178 (1932).

    Article  CAS  Google Scholar 

  145. Fischer, M. H.: Elektrobiologische Erscheinungen an der Hirnrinde bei Belichtung eines Auges. Pflügers Arch. ges. Physiol. 233, 738–753 (1933).

    Google Scholar 

  146. Fitzhugh, R.: A statistical analyzer for optic nerve message. J. gen. Physiol. 41, 675–692 (1958).

    Article  PubMed  CAS  Google Scholar 

  147. Fox, S.S., O’Brien, J.H.: Duplication of evoked potential waveform by curve of probability of firing of a single cell. Science 147, 888–890 (1965).

    Article  PubMed  CAS  Google Scholar 

  148. Fukada, Y.: Receptive field organization of cat optic nerve fibres with special reference to conduction velocity. Vision Res. 11, 209–226 (1971).

    Article  PubMed  CAS  Google Scholar 

  149. Fuster, J.M.: Excitation and inhibition of neuronal firing in visual cortex by reticular stimulation. Science 133, 2011–2012 (1961).

    Article  PubMed  CAS  Google Scholar 

  150. Fuster, J.M., Creutzfeldt, O.D., Straschill, M.: Intracellular recording of neuronal activity in the visual system. Z. vergl. Physiol. 49, 605–622 (1965).

    Article  Google Scholar 

  151. Ganz, L., Fitch, M.: The effect of visual deprivation on perceptual behavior. Exp. Neurol. 22, 638–660 (1968).

    Article  PubMed  CAS  Google Scholar 

  152. Ganz, L., Fitch, M., Satterberg, J.A.: The selective effect of visual deprivation on receptive field shape determined neurophysiologically. Exp. Neurol. 22, 614–637 (1968).

    Article  PubMed  CAS  Google Scholar 

  153. Garey, L. J.: The termination of thalamo-cortical fibers in the visual cortex of the cat and monkey. J. Physiol. (Lond.) 210, 15–17 (1970).

    Google Scholar 

  154. Garey, L. J., Jones, E.G., Powell, T.P.S.: Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiat. 31, 135–157 (1968).

    Article  PubMed  CAS  Google Scholar 

  155. Garey, L. J., Powell, T.P.S.: An experimental study of the termination of the lateral geniculocortical pathway in the cat and monkey. Proc. roy. Soc. B 179, 41–63 (1971).

    Article  CAS  Google Scholar 

  156. Garey, L. J., Powell, T.P.S.: The projection of the lateral geniculate nucleus upon the cortex in the cat. Proc. roy. Soc. B. 169, 107–126 (1967).

    Article  Google Scholar 

  157. Gerbrandt, L., Bureš, J., Burešová, O.: Investigations of plasticity in single units in the mammalian brain. In: Pribram, K.H., Broadbent, D.E. (Eds.). Biology of Memory, pp. 223–235. New York-London: Academic Press 1970.

    Google Scholar 

  158. Gerrits, H. J. M., Vendrik, A.J.H.: Artificial movements of a stabilized image. Vision Res. 10, 1443–1456 (1970).

    Article  PubMed  CAS  Google Scholar 

  159. Gerrits, H. J. M., Vendrik, A.J.H.: Simultaneous contrast, filling-in process and information processing in man’s visual system. Exp. Brain Res. 11, 411–430 (1970).

    Article  PubMed  CAS  Google Scholar 

  160. Gibson, J.J.: The senses considered as perceptual systems. Boston: Houghton Mifflin 1966.

    Google Scholar 

  161. Gillinsky, A.S., Doherty, R.S.: Interocular transfer of orientational effects. Science 164, 454–455 (1969).

    Article  Google Scholar 

  162. Giolli, R.A., Tigges, T.: The primary optic pathways and nuclei in primates. In: Noback, C.R. (Ed.): Advances in Primatology. New York: Appleton-Century-Crofts (in press).

    Google Scholar 

  163. Glickstein, M., Miller, L., Smith, O.A., Jr.: Lateral geniculate nucleus and cerebral cortex: Evidence for a crossed pathway. Science 145, 159–161 (1964).

    Article  PubMed  CAS  Google Scholar 

  164. Globus, A., Scheibel, A.B.: Synaptic loci on visual cortical neurons of the rabbit – the specific afferent radiation. Exp. Neurol. 18, 116–131 (1967).

    Article  PubMed  CAS  Google Scholar 

  165. Globus, A., Scheibel, A.B.: The effect of visual deprivation on cortical neurons – a Golgi study. Exp. Neurol. 19, 331–345 (1967).

    Article  PubMed  CAS  Google Scholar 

  166. Goldberg, M.E., Wttrtz, R.H.: Superior colliculus: single unit responses to stimulation of visual cortex in the cat. Science 170, 1426–1427 (1970).

    Article  Google Scholar 

  167. Gorgiladze, G.I., Smirnov, G. D.: Effect of vestibular stimulation on neuronal activity in the visual cortex of the cat. Neurosci. Transi. 2, 153–159 (1968).

    Google Scholar 

  168. Gorgiladze, G.I.: The effects of light-adaptation on rod and cone receptive field organisation of monkey ganglion cells. J. Physiol. (Lond.) 192, 747–760 (1967).

    Google Scholar 

  169. Gouras, P.: Antidromic responses of orthodromically identified ganglion cells in monkey retina. J. Physiol. (Lond.) 204, 407–419 (1969).

    CAS  Google Scholar 

  170. Gouras, P.: Trichromatic mechanisms in single cortical neurons. Science 168, 489–492 (1970).

    Article  PubMed  CAS  Google Scholar 

  171. Gouras, P.: The function of the midget cell system in primate color vision. Vision Res. Suppl. 3, 397–410 (1971).

    Article  Google Scholar 

  172. Grafstein, B., Burns, B.D., Heron, W.: Activity of cortical neurons in response to patterned visual stimuli. In: Tower, D.B., Schadé, J.P. (Eds.): Structure and Function of the Cerebral Cortex, pp. 234–238. Amsterdam: Elsevier 1960.

    Google Scholar 

  173. Granit, R.: Receptors and sensory perception. London: Yale Univ. Press 1955.

    Google Scholar 

  174. Gray, E.C.: Electronmicroscopy of excitatory and inhibitory synapses: a brief review. Brain Res. 31, 141–155 (1969).

    Article  CAS  Google Scholar 

  175. Gross, C. H., Bender, D. B., Rocha-Miranda, C. E.: Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969).

    Article  PubMed  CAS  Google Scholar 

  176. Gross, O.G., Schiller, P.H., Wells, C., Gerstein, G.L.: Single-unit activity in temporal association cortex of the monkey. J. Neurophysiol. 30, 833–843 (1967).

    PubMed  CAS  Google Scholar 

  177. Grüsser, O. J., Creutzfeldt, O.: Eine neurophysiologische Grundlage des Brücke-Bartley-Effektes: Maxima der Impulsfrequenz retinaler und corticaler Neurone bei Flimmerlicht mittlerer Frequenzen. Pflügers Arch. ges. Physiol. 263, 668–681 (1957).

    Article  Google Scholar 

  178. Grüsser, O. J., Grüsser-Cornehls, U.: Neurophysiologische Grundlagen des Binocularsehens. Arch. Psychiat. Nervenkr. 207, 296–317 (1965).

    Article  PubMed  Google Scholar 

  179. Grüsser, O. J., Grüsser-Cornehls, U.: Periodische Aktivierungsphasen visueller Neurone nach kurzen Lichtreizen verschiedener Dauer. Beziehungen zu den periodischen Nachbildern und dem Charpentier-Intervall. Pflügers Arch. ges. Physiol. 275, 292–311 (1962).

    Article  Google Scholar 

  180. Grüsser, O. J., Grüsser-Cornehls, U.: Mikroelektrodenuntersuchungen zur Konvergenz vestibulärer und retinaler Afferenzen an einzelnen Neuronen des optischen Cortex der Katze. Pflügers Arch. ges. Physiol. 270, 227–238 (1960).

    Article  Google Scholar 

  181. Grüsser, O. J., Grüsser-Cornehls, U., Saur, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischer Polarisation des Labyrinths. Pflügers Arch. ges. Physiol. 269, 593–612 (1959).

    Article  Google Scholar 

  182. Grüsser, O. J., Grützner, A.: Reaktionen einzelner Neurone des optischen Cortex der Katze nach elektrischen Reizserien des Nervus opticus. Arch. Psychiat. Nervenkr. 197, 405–432 (1958).

    Article  PubMed  Google Scholar 

  183. Grüsser, O. J., Rabelo, C.: Die Wirkung von Flimmerreizen mit Lichtblitzen an einzelnen corticalen Neuronen. In: Bogaert, L. v., Radermecker, J. (Eds.): Proc. 1st Int. Congr. Neurol. Sci., Vol. 3, Electroencephalography, Clinical Neurophysiol. and Epilepsy, pp. 371–375. London-New York-Paris: Pergamon 1959.

    Google Scholar 

  184. Grüsser, O. J., Snigula, F.: Vergleichende verhaltensphysiologische und neurophysiologische Untersuchungen am visuellen System von Katzen. Psychol. Forsch. 32, 43–63 (1968).

    Article  PubMed  Google Scholar 

  185. Grüsser-Cornehls, U., Grüsser, O. J.: Reaktionsmuster der Neurone im zentralen visuellen System von Fischen, Kaninchen und Katzen auf monoculare und binoculare Lichtreize. In: Jung, R., Kornhuber, H. H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 275–287. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  186. Grützner, A., Grüsser, O.-J., Baumgartner, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischer Reizung des N. opticus. Arch. Psychiat. Nervenkr. 197, 377–404 (1958).

    Article  Google Scholar 

  187. Guillery, R.W.: An abnormal retinogeniculate projection in Siamese cats. Brain Res. 14, 739–741 (1969).

    Article  PubMed  CAS  Google Scholar 

  188. Guillery, R.W.: Patterns of fibre degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex. J. comp. Neurol. 130, 197–222 (1967).

    Article  PubMed  CAS  Google Scholar 

  189. Guld, C., Lennox-Buchthal, M.: Effect of direct current on the responses to colored flashes of single cells in monkey cortex. Acta physiol. scand. 74, 142–152 (1968).

    Article  PubMed  CAS  Google Scholar 

  190. Haber, R.N.: How we remember what we see. Sci. Amer. 222, 104–115 (1970).

    Article  PubMed  CAS  Google Scholar 

  191. Hall, R.A., Rapport, M., Hopkins, H.K., Griffin, R., Silverman, I.: Evoked responses and behaviour in cats. Science 170, 998–1000 (1970).

    Article  PubMed  CAS  Google Scholar 

  192. Hamilton, C.R., Lund, J.S.: Visual discrimination of movement: midbrain or forebrain? Science 170, 1428–1430 (1970).

    Article  PubMed  CAS  Google Scholar 

  193. Hananashvili, M.M., Obukhova, G.P., Silakov, V.L., Burakova, N.S.: Materials for the analysis of corticofugal effects on subcortical structures of the visual system. In: Narikashvili, S.P. (Ed.): Cortical regulation of subcortical activity, pp. 145–153. Metsniereba: Tbilisi 1968.

    Google Scholar 

  194. Hartline, H.K.: The receptive fields of optic nerve fibres. Amer. J. Physiol. 130, 690–699 (1940).

    Google Scholar 

  195. Harutionian-Kozak, Bella., Kozak, W., Tarnecki, R.: The convergence of somatic and visual afferents in sensori-motor cortex of the cat. Acta Neurobiol. exp. 31, 325–330 (1971).

    Google Scholar 

  196. Hassler, R.: Comparative anatomy of the central visual systems in day- and night- active primates. In: Hassler, R., Stephan, H. (Eds.): Evolution of the Forebrain, pp. 419–434. Stuttgart: Thieme 1966.

    Google Scholar 

  197. Hayashi, Y.: Recurrent collateral inhibition of visual cortical cells projecting to superior colliculus in cats. Vision Res. 9, 1367–1380 (1969).

    Article  PubMed  CAS  Google Scholar 

  198. Held, R.: Two models of processing spatially distributed visual stimulation. In: Schmitt, F.O. (Ed.): The Neurosciences, Second Study Program, pp. 317–324. New York: Rockefeller Univ. Press 1970.

    Google Scholar 

  199. Henry, G.H., Bishop, P.O.: Simple cells of the striate cortex. In: Neff, W.D. (Ed.): Contributions to Sensory Physiology, pp. 1–46. New York: Academic Press 1971.

    Google Scholar 

  200. Henry, G.H., Bishop, P.O., Coombs, J. S.: Inhibitory and sub-liminal excitatory receptive fields of simple units in cat striate cortex. Vision Res. 9, 1289–1296 (1969).

    Article  PubMed  CAS  Google Scholar 

  201. Henry, G.H., Bishop, P.O., Coombs, J. S.: The beginning of form recognition at the level of the simple striate neuron. Digest of the 9th Int. Conf. on Medical and Biological Engineering. Melbourne 1971.

    Google Scholar 

  202. Herz, A., Creutzfeldt, O., Fitster, J.: Statistische Eigenschaften derNeuronenaktivität im ascendierenden visuellen System. Kybernetik 2, 61–71 (1964).

    Article  PubMed  CAS  Google Scholar 

  203. Hirsch, H.V.B.: Perceptual abilities of cats after selective visual experience during postnatal development. Exp. Brain Res., 15, 405–423 (1972).

    Article  PubMed  CAS  Google Scholar 

  204. Hirsch, H.V.B., Spinelli, D.N.: Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 13, 1–43 (1971).

    Google Scholar 

  205. Hirsch, H.V.B., Spinelli, D.N.: Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 869–871 (1970).

    Article  PubMed  CAS  Google Scholar 

  206. Hoffmann, K.P., Stone, J.: Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 32, 460–466 (1971).

    Article  Google Scholar 

  207. Hoffmann, K.P., Straschill, M.: Influences of cortico-tectal and intertectal connections on visual responses in the cat’s superior colliculus. Exp. Brain Res. 12, 120–131 (1971).

    Article  PubMed  CAS  Google Scholar 

  208. Holländer, H.: The projection from the visual cortex to the lateral geniculate body (LGB). An Experimental Study with Silver Impregnation Methods in the cat. Exp. Brain Res. 10, 219–235 (1970).

    Article  PubMed  Google Scholar 

  209. Horn, G.: The effect of somesthetic and photic stimuli on the activity of units in the striate cortex of unanaesthetized, unrestrained cats. J. Physiol. (Lond.) 179, 263–277 (1965).

    CAS  Google Scholar 

  210. Horn, G.: Selective mechanisms of habituation. Proc. 25. Int. Congr. Physiol. Munich 7, 205–206 (1971).

    Google Scholar 

  211. Horn, G., Hill, R.M.: Modifications of receptive fields of cells in the visual cortex occurring spontaneously and associated with bodily tilt. Nature (Lond.) 221, 186–188 (1969).

    Article  CAS  Google Scholar 

  212. Horn, G., Hill, R.M.: Responsiveness to sensory stimulation of units in superior colliculus and subjacent tectotegmental regions of the rabbit. Exp. Neurol. 14, 199–223 (1966).

    Article  PubMed  CAS  Google Scholar 

  213. Howaed, I.P., Templeton, W.B.: Human spatial orientiation. London-New York-Sydney: John Wiley & Sons 1966.

    Google Scholar 

  214. Hubel, D.H.: Cortical unit responses to visual stimuli in nonanesthetized cats. Amer. J. Ophthal. 46, 110–122 (1958).

    PubMed  CAS  Google Scholar 

  215. Hubel, D.H.: Single unit activity in striate cortex of unrestrained cats. J. Physiol. (Lond.) 147, 226–238 (1959).

    CAS  Google Scholar 

  216. Hubel, D.H., Wiesel, T. N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).

    CAS  Google Scholar 

  217. Hubel, D.H., Wiesel, T. N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    CAS  Google Scholar 

  218. Hubel, D.H., Wiesel, T. N.: Shape and arrangement of columns in the cat’s striate cortex. J. Physiol. (Lond.) 165, 559–568 (1963).

    CAS  Google Scholar 

  219. Hubel, D.H., Wiesel, T. N.: Receptive fields of cells in striate cortex of very young visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).

    PubMed  CAS  Google Scholar 

  220. Hubel, D.H., Wiesel, T. N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    PubMed  CAS  Google Scholar 

  221. Hubel, D.H., Wiesel, T. N.: Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28, 1041–1059 (1965).

    PubMed  CAS  Google Scholar 

  222. Hubel, D.H., Wiesel, T. N.: Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J. Neurophysiol. 30, 1561–1573 (1967).

    PubMed  CAS  Google Scholar 

  223. Hubel, D.H., Wiesel, T. N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    CAS  Google Scholar 

  224. Hubel, D.H., Wiesel, T. N.: Visual area of the lateral suprasylvian gyrus (Clare-Bishop-Area) of the cat. J. Physiol. (Lond.) 202, 251–260 (1969).

    CAS  Google Scholar 

  225. Hubel, D.H., Wiesel, T. N.: Anatomical demonstration of columns in the monkey striate cortex. Nature (Lond.) 221, 747–750 (1969).

    Article  CAS  Google Scholar 

  226. Hubel, D.H., Wiesel, T. N.: Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature (Lond.) 225, 41–42 (1970).

    Article  CAS  Google Scholar 

  227. Hubel, D.H., Wiesel, T. N.: Aberrant visual projections in the Siamese cat. J. Physiol. (Lond.) 218, 33–62 (1971).

    CAS  Google Scholar 

  228. Hughes, A.: Single units of the rabbit visual cortex. J. Physiol. (Lond.) 198, 120P–121P (1968).

    Google Scholar 

  229. Hull, E.M.: Corticofugal influence in the macaque lateral geniculate nucleus. Vision Res. 8, 1285–1298 (1968).

    Article  PubMed  CAS  Google Scholar 

  230. Humphrey, N.K., Weiskrantz, L.: Vision in monkeys after removal of the striate cortex. Nature (Lond.) 215, 595–597 (1967).

    Article  CAS  Google Scholar 

  231. Ikeda, H., Hill, R.M.: Can a peripheral retinal ganglion cell respond differentially to images in or out of focus? Nature (Lond.) 229, 557–558 (1971).

    Article  CAS  Google Scholar 

  232. Ikeda, H., Wright, M.J.: How large is the receptive field or a single retinal ganglion cell? J. Physiol. (Lond.) 217, 52P–53P (1971).

    Google Scholar 

  233. Iwama, K., Sakakura, H., Kasamatsu, T.: Presynaptic inhibition in the lateral geniculate body induced by stimulation of the cerebral cortex. Japan. J. Physiol. 15, 310–322 (1965).

    Article  Google Scholar 

  234. Jacobs, G.H., De Valois, R.L.: Chromatic opponent cells in squirrel monkey lateral geniculate nucleus. Nature (Lond.) 206, 487–489 (1965).

    Article  CAS  Google Scholar 

  235. Jasper, H.H., Ajmone-Marsan, C.: Thalamocortical integrating mechanisms. Proc. Ass. Res. Nerv. Mental Dis. 30, 493–512 (1952).

    CAS  Google Scholar 

  236. Jasper, H., Ricci, G., Doane, B.: Microelectrode analysis of cortical cell discharge during avoidance conditioning in the monkey. In: Jasper, H.H., Smirnov, G.D. (Eds).: The Moscow Colloquium on Electroencephalography of Higher Nervous Activity. Electroenceph. clin. Neurophysiol. Suppl. 13, 137–155. Montreal: EEG Journal 1960.

    Google Scholar 

  237. Jassik-Gerschekfeld, D., Ascher, P., Guevara, J.A.: Influence of the geniculo-cortical system on visual responses of the superior colliculus. Arch. ital. Biol. 104, 30–49 (1966).

    Google Scholar 

  238. Jeannerod, M., Putkonen, P.T.S.: Oculomotor influences on lateral geniculate body neurons. Brain Res. 24, 125–129 (1970).

    Article  PubMed  CAS  Google Scholar 

  239. Jeannerod, M., Sakai, K.: Occipital and geniculate potentials related to eye movements in the unanesthetized cat. Brain Res. 19, 361–377 (1970).

    Article  PubMed  CAS  Google Scholar 

  240. Jeannerod, M., Sakai, K.: Potentials related to visual field motions as compared to eye movement potentials in the cat’s visual system. Vision Res. 11, 161–165 (1971).

    Article  PubMed  CAS  Google Scholar 

  241. Jones, B.H.: Responses of single neurons in cat visual cortex to a simple and a more complex stimulus. Amer. J. Physiol. 218, 1102–1107 (1970).

    PubMed  CAS  Google Scholar 

  242. Joshua, D.E., Bishop, P.O.: Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral units in cat striate cortex. Exp. Brain Res. 10, 389–426 (1970).

    Article  PubMed  CAS  Google Scholar 

  243. Jung, R.: Neuronal discharge. Electroenc. clin. Neurophysiol. Suppl. 4, 57–71 (1953).

    Google Scholar 

  244. Jung, R.: Coordination of specific and nonspecific afferent impulses at single neurons of the visual cortex. In: Jasper, H. H., et al. (Eds.): Reticular Formation of the Brain, pp.423–434. Boston: Little, Brown 1958.

    Google Scholar 

  245. Jung, R.: Korrelationen von Neuronentätigkeit und Sehen. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 410–434. Berlin-Heidelberg-New York: Springer 1961.

    Google Scholar 

  246. Jung, R.: Microphysiologie corticaler Neurone. Ein Beitrag zur Koordination der Hirnrinde und des visuellen Systems. In: Tower, D.E., Schade, J.P. (Eds.): Structure and Function of the Cerebral Cortex, pp. 204–233. Proc. of the Soc. Int. Meeting of Neurobiologist. Amsterdam: Elsevier 1959.

    Google Scholar 

  247. Jung, R.: Neuronal integration in the visual cortex and its significance for visual information. In: Rosenblith, W. (Ed.): Sensory Communication, pp. 627–674. New York-London: MIT Press 1961.

    Google Scholar 

  248. Jung, R.: Neuronale Grundlagen des Hell-Dunkelsehens und der Farbwahrnehmung. Ber. dtsch. Ophthal. Ges. 66, 70–111 (1964).

    Google Scholar 

  249. Jung, R.: Neuropharmakologie: Zentrale Wirkungsmechanismen chemischer Substanzen und ihre neurophysiologischen Grundlagen. Klin. Wschr. 36, 1153–1167 (1958).

    Article  PubMed  CAS  Google Scholar 

  250. Jung, R.: Optisch-vestibuläre Regulation der Augenbewegungen, des Bewegungssehens und der Verikal-Horizontal-Wahrnehmung: Ein Beitrag zu optisch-vestibulären, optisch-oculomotorischen und optisch-gravizeptorischen Integration. In: G. Alemà et al. (Eds.): Brain and Mind Problems, pp. 185–226. Rome: II Pensiero Scientifico 1968.

    Google Scholar 

  251. Jung, R.: Neurophysiological and psychophysical correlates in vision research. In: Karczmar, A.G., Eccles, J.C. (Eds.): Brain and Human Behavior. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  252. Jung, R., Baumgarten, R. v., Baumgartner, G.: Mikroableitungen von einzelnen Neuronen im optischen Cortex der Katze: Die lichtaktivierten B-Neurone. Arch. Psychiat. Nervenkr. 189, 521–538 (1952).

    Article  PubMed  CAS  Google Scholar 

  253. Jung, R., Baumgartner, G.: Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex: Ein Beitrag zur Koordination corticaler Erregungsvorgänge. Pflügers Arch. ges. Physiol. 261, 434–456 (1955).

    Article  CAS  Google Scholar 

  254. Jung, R., Baumgartner, G.: Neuronenphysiologie der visuellen und para visuellen Rindenfelder. 8. Int. Congr. Neurol. Disturbances of the occipital lobe. Proc. 3 (5) 47–75 (1965).

    Google Scholar 

  255. Jung, R., Creutzfeldt, O., Grüsser, O.-J.: Die Mikrophysiologie kortikaler Neurone und ihre Bedeutung für die Sinnes- und Hirnfunktionen. Dtsch. med. Wschr. 82, 1050–1059 (1957).

    Article  PubMed  CAS  Google Scholar 

  256. Jung, R. Kornhuber, H.H., Da Fonseca, J.S.: Multisensory convergence on cortical neurons. Neuronal effects of visual acoustic and vestibular stimuli in the superior convolutions of the cat’s cortex. Progr. Brain Res. 1, 207–240 (1963).

    Article  Google Scholar 

  257. Kaas, J., Hall, W.C., Diamond, I.T.: Cortical visual areas I and II in the hedgehog: Relation between evoked potential maps and architectonic subdivision. J. Neurophysiol. 23, 595–615 (1970).

    Google Scholar 

  258. Kalil, R.E., Chase, R.: Corticofugal influence on activity of lateral geniculate neurons in the cat. J. Neurophysiol. 33, 459–474 (1970).

    PubMed  CAS  Google Scholar 

  259. Kandel, E.R.: Cellular studies of learning. In: Quarton, G.C., Melnechuk, T., Schmitt, F.O. (Eds.): The Neurosciences, pp. 666–689. New York: Rockefeller Univ. Press 1967.

    Google Scholar 

  260. Kasamatsu, T., Kiyono, S., Iwama, K.: Electrical activities of the visual cortex in chronically blinded cats. Tohoku J. exp. Med. 93, 139–152 (1967).

    Article  PubMed  CAS  Google Scholar 

  261. Keesey, U.T.: Effects of involuntary eye movements on visual acuity. J. opt. Soc. Amer. 50, 769–773 (1960).

    Article  CAS  Google Scholar 

  262. Kinston, W.J., Vadas, M.A., Bishop, P.O.: Multiple projection of the visual field to the medial portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. J. comp. Neurol. 136, 295–316 (1969).

    Article  PubMed  CAS  Google Scholar 

  263. Klüver, H.: Visual functions after removal at the occipital lobes. J. Psychol. (Lond.) 11, 23–45 (1941).

    Google Scholar 

  264. Koenig, J.O., Frazier, D.T.: Light sensitive neurons in the pulvinar nucleus of the cat. Proc. Soc. exp. Biol. (N. Y.) 130, 399–403 (1969).

    CAS  Google Scholar 

  265. Kondratjeva, I.N.: Investigation of unit responses in the visual cortex to a light of growing intensity. Zh. vyssh. nerv. Deyat Pavlova 18, 157–159 (1968) (Rus.).

    Google Scholar 

  266. Kondratjeva, I.N., Polyansky, V.B.: Inhibition in the neuronal systems of the visual cortex. Activ Nerv. Sup. (Praha) 10, 1–11 (1968).

    CAS  Google Scholar 

  267. Kornhuber, H.H., Da Fonseca, J.S.: Convergence of vestibular, visual and auditory afferents at single neurons of the cat’s cortex. Intern. Congr. EEG and Clin. Neurophysiol. 5th Rome, 1961. Excerpta Medica, Int. Congr. Ser., 1961, 15–14.

    Google Scholar 

  268. Kornhuber, H.H., Da Fonseca, J.S.: Optovestibular integration in the cat’s cortex: a study of sensory convergence of cortical neurons. In: Bender, M.B. (Ed.): The Oculomotor System. New York: Hoeber Medical Division, Harper & Row 1964.

    Google Scholar 

  269. Kornmüller, A.E.: Architektonische Lokalisation bioelektrischer Erscheinungen auf der Großhirnrinde. I. Mitt.: Untersuchungen am Kaninchen bei Augenbelichtung. J. Psychol. Neurol. 44, 447–459 (1932).

    Google Scholar 

  270. Kornmüller, A.E., Tönnies, J.F.: Registrierung der spezifischen Aktionsströme eines architektonischen Feldes der Großhirnrinde vom uneröffneten Schädel. Psychiat.-neurol. Wschr. 34, 581 (1932).

    Google Scholar 

  271. Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    PubMed  CAS  Google Scholar 

  272. Kuffler, S.W., Fitzhugh, R., Barlow, H.B.: Maintained activity in the cat’s retina in light and darkness. J. gen. Physiol. 40, 683–702 (1957).

    Article  PubMed  CAS  Google Scholar 

  273. Kuypers, H.G.J.M., Szwarcbart, M.K., Mishkin, M., Rosvold, H. E.: Occipitotemporal corticocortical connections in the rhesus monkey. Exp. Neurol. 11, 245–262 (1965).

    Article  PubMed  CAS  Google Scholar 

  274. Lehmann, D., Koukkou, M.: Neuronal discharge patterns and spontaneous EEG spindles in the visual cortex of encéphale isolé cats. Excerpta med. (Amst.) Int. Congr. Ser. 37, 8 (1961).

    Google Scholar 

  275. Lehmann, D., Koukkou, M.: Neuronale Effekte der Caudatumreizung im visuellen Cortex. Pflügers Arch. ges. Physiol. 280, 297–315 (1964).

    Article  Google Scholar 

  276. Lehmann, D., Murata, K., Koukkou, M.: Simultane Periodik der Neuronenaktivität in verschiedenen Cortexfeldern der Katze. Naturwissenschaften 49, 611–612 (1962).

    Article  Google Scholar 

  277. Leicester, J.: Projection of the visual vertical meridian to cerebral cortex of the cat. J. Neurophysiol. 31, 371–382 (1968).

    PubMed  CAS  Google Scholar 

  278. Lennox-Buchthal, M.A.: Single units in monkey, Cercocebus torquatus atys. Cortex with narrow spectral responsiveness. Vision Res. 2, 1–15 (1962).

    Article  Google Scholar 

  279. Lennox-Buchthal, M.A.: Spectral sensitivity of single units in the cortical area corresponding to central vision in the monkey. Acta physiol. scand. 65, 101–104 (1965).

    Article  Google Scholar 

  280. Levick, W.R., Williams, W.O.: Maintained activity of lateral geniculate neurons in darkness. J. Physiol. (Lond.) 170, 582–597 (1961).

    Google Scholar 

  281. Levick, W.R., Zacks, J.L.: Responses of cat retinal ganglion cells to brief flashes of light. J. Physiol. (Lond.) 206, 677–700 (1970).

    CAS  Google Scholar 

  282. Li, Ch.-L., Ortiz-Golvin, A., Chou, S. N., Howard, S.Y.: Cortical intracellular potentials in response to stimulation of lateral geniculate body. J. Neurophysiol. 23, 592–601 (1960).

    PubMed  CAS  Google Scholar 

  283. Lipetz, L.E.: The relation of physiological and psychological aspects of sensory intensity. In: Loewenstein, W.R. (Ed.): Handbook of Sensory Physiology I, pp. 191–225. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  284. Lömo, T., Mollica, A.: Attivitá di singole unitá della corteccia ottica primaria durante stimolazioni luminose acustiche, olfattive e dolorifiche, nel coniglio senza narcosi. Boll. Soc. ital. Biol. sper. 35, 1879–1882 (1959).

    PubMed  Google Scholar 

  285. Lömo, T., Mollica, A.: Activity of single units in the primary optic cortex in the unanesthetized rabbit during visual, acoustic, olfactory and painful stimulation. Arch. ital. Biol. 100, 86–120 (1962).

    Google Scholar 

  286. Lorente de Nó, R.: Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton, J.F.: Physiology of the Nervous Systems, 3 ed, pp. 228–330. Oxford: Univ. Press 1949.

    Google Scholar 

  287. Lund, R.D.: Terminal distribution in the superior colliculus of fibres originating in the visual cortex. Nature (Lond.) 204, 1283–1285 (1964).

    Article  CAS  Google Scholar 

  288. MacKay, D.M.: Elevation of visual threshold by displacement of retinal image. Nature (Lond.) 225, 90–92 (1970).

    Article  CAS  Google Scholar 

  289. MacKay, D.M.: Interocular transfer of suppression effects of retinal image displacement. Nature (Lond.) 225, 872 (1970).

    Article  CAS  Google Scholar 

  290. MacLean, P.D., Yokota, T., Kinnard, M. A.: Photically sustained on-responses of units in posterior hippocampal gyrus of awake monkey. J. Neurophysiol. 31, 870–883 (1968).

    PubMed  CAS  Google Scholar 

  291. Magoun, H.W.: The waking brain. Springfield, Ill.: Charles C. Thomas 1958.

    Book  Google Scholar 

  292. Malis, L.I., Kruger, L.: Multiple response and excitability of cat’s visual cortex. J. Neurophysiol. 19, 172–186 (1956).

    PubMed  CAS  Google Scholar 

  293. Mandl, G.: Localization of visual patterns by neurons in cerebral cortex of the cat. J. Neurophysiol. 33, 812–826 (1970).

    PubMed  CAS  Google Scholar 

  294. Marchiafava, P.L., Rizzolatti, G., Sprague, J.M.: Studies on corticotectal activity in the unanesthetized mid-pontine cat. Effects of cortical cooling and ablation. Arch. ital. Biol. 108, 21–40 (1968).

    Google Scholar 

  295. Marg, E., Adams, J.E.: Evidence for a neurological zoom system in vision from angular changes in some receptive fields of single neurons with changes in fixation distance in the human visual cortex. Experientia (Basel) 26, 270–271 (1970).

    Article  CAS  Google Scholar 

  296. Marty, R., Benoit, O., Larguier, M.M.: Etude topographique et stratigraphique des projections du corps genouillé lateral sur le cortex cérébral. Arch. ital. Biol. 107, 723–742 (1969).

    Google Scholar 

  297. Massopust, L.C.Jr., Wolin, L.R., Kadoya, S.: Differential color responses in the visual cortex of the squirrel monkey. Vision Res. 9, 465–474 (1969).

    Article  PubMed  Google Scholar 

  298. McIlwain, J.T.: Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964).

    PubMed  CAS  Google Scholar 

  299. McIlwain, J.T.: Cortical origin of collicular directional selectivity in the cat: a review of the evidence. Brain Behav. Evol. 3, 219–221 (1970).

    Article  PubMed  CAS  Google Scholar 

  300. McIlwain J.T. Buser, P.: Receptive fields of single cells in the cat’s superior colliculus. Exp. Brain Res. 5, 314–325 (1968).

    Article  PubMed  CAS  Google Scholar 

  301. McIlwain, J.T., Fields, H.L.: Interactions of cortical and retinal projections on single neurons of the cat’s superior colliculus. J. Neurophysiol. 34, 763–772 (1971).

    PubMed  CAS  Google Scholar 

  302. Mello, N.K., Peterson, N.J.: Behavioral evidence for color discrimination in the cat. J. Neurophysiol. 27, 323–333 (1964).

    PubMed  CAS  Google Scholar 

  303. Meshchersky, R.M.: The functional organization of the corticofugal system of the visual analyser. In: Narikashvili, S.P. (Ed.): Cortical Regulation of Subcortical Activity, pp. 132–142. Tbilisi: Matsniereba 1968.

    Google Scholar 

  304. Meyer, D.R., Miles, R.C., Ratoosh, R.: Absence of color vision in cat. J. Neurophysiol. 31, 268–282 (1968).

    Google Scholar 

  305. Michael, J.A., Ichinose, L.Y.: Influence of oculomotor activity on visual processing. Brain Res. 22, 249–253 (1970).

    Article  PubMed  CAS  Google Scholar 

  306. Mitchell, D.E., Blakemore, C.: Binocular depth perception and the corpus callosum. Vision Res. 10, 49–54 (1970).

    Article  PubMed  CAS  Google Scholar 

  307. Mitrani, L., Mateeff, St., Yakimoff, N.: Is saccadic suppression really saccadic? Vision Res. 11, 1157–1162 (1971).

    Article  PubMed  CAS  Google Scholar 

  308. Mkrtycheva, L.L., Samsonova, V.G.: Functional characteristics of units in the primary visual cortex of cats. Neirofiziogiia 2, 173–179 (1970). (Russ.) (English summary).

    Google Scholar 

  309. Morrell, F.: Microelectrode and steady potential studies suggesting a dendritic locus of closure. In: Jasper, H.H., Smirnov, G.D. (Eds.): The Moscow Colloquium on Electroencephalography of Higher Nervous Activity. Electroenceph. clin. Neurophysiol. Suppl. 13, 65–79. Montreal: The EEG Journal 1960.

    Google Scholar 

  310. Morrell, F.: Information storage in nerve cells. In: Fields, W.S., Abbot, W. (Eds.): Information Storage and Neural Control. C. C. Thomas: Springfield, Ill. 1963.

    Google Scholar 

  311. Morrell, F.: Electrical signs of sensory coding. In: Quarton, G.C., Melnechuk, T., Schmitt, F.O. (Eds.): The Neurosciences, pp. 452–469. New York: The Rockefeller Univ. Press 1967.

    Google Scholar 

  312. Morrell, F.: Integrative properties of parastriate neurones. In: Karczmar, A.G., Eccles, J.C. (Eds.): Brain and Human Behavior. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  313. Moruzzi, G.: The physiological properties of the brain stem reticular system. In: Delafresnaye, J.F. (Ed.): Brain Mechanisms and Consciousness, pp. 21–48. Oxford: Blackwell 1954.

    Google Scholar 

  314. Motokawa, K.: Color and pattern vision. Igaku Shoin Ltd. Tokio 1970. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

  315. Motokawa, K., Taira, N., Okuda, J.: Spectral responses of single units in the primate visual cortex. Tohoku J. exp. Med. 78, 320–337 (1962).

    Article  PubMed  CAS  Google Scholar 

  316. Mountcastle, V.B.: Modality and topographic properties of single neuron of cat’s somatic sensory cortex. J. Neurophysiology 20, 408 (1957).

    CAS  Google Scholar 

  317. Murata, K.: Personal Communication. 1971.

    Google Scholar 

  318. Murata, K., Kameda, K.: The activity of single cortical neurones of unrestrained cats during sleep and wakefulness. Arch. ital. Biol. 101, 306–331 (1963).

    PubMed  CAS  Google Scholar 

  319. Murata, K., Cramer, H., Bach-Y-Rita, A.Neuronal convergence of noxious, acoustic, and visual stimuli in the visual cortex of the cat. J. Neurophysiol. 28, 1223–1240 (1965).

    PubMed  CAS  Google Scholar 

  320. Niimi, K., Sprague, J.M.: Thalamo-cortical organization of the visual system in the cat. J. comp. Neurol. 138, 219–250 (1970).

    Article  PubMed  CAS  Google Scholar 

  321. Nikara, T., Bishop, P.O., Pettigrew, J.D.: Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6, 353–372 (1968).

    Article  PubMed  CAS  Google Scholar 

  322. Noda, H., Adey, W.R.: Firing of neuron pairs in cat association cortex during sleep and wakefulness. J. Neurophysiol. 23, 672–684 (1970).

    Google Scholar 

  323. Noda, H., Creutzfeldt, O.D., Freeman, R.B.Jr.: Binocular interaction in the visual cortex of the awake cat. Exp. Brain Res. 12, 406–427 (1971).

    Google Scholar 

  324. Noda, H. Freeman, R.B., Gies, B., Creutzfeldt, O.D.: Neuronal responses in the visual cortex of awake cats to stationary and moving targets. Exp. Brain Res. 12, 389–405 (1971).

    Google Scholar 

  325. Noton, D., Stark, L.: Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision Res. 11, 929–942 (1971).

    Article  PubMed  CAS  Google Scholar 

  326. Noton, D., Stark, L.: Scanpaths in eye movements during pattern perception. Science 171, 308–311 (1971).

    Article  PubMed  CAS  Google Scholar 

  327. Ogawa, T., Karita, K., Tsuchiya, Y.: Response characteristics of single neurons in the rabbit visual cortex. Tohoku J. exp. Med. 96, 349–364 (1968).

    Article  PubMed  CAS  Google Scholar 

  328. Ogden, T.E.: On the function of efferent retinal fibers. In: Structure and Function of Inhibitory Neuronal Mechanisms, pp. 89–109. Oxford: Pergamon 1968.

    Google Scholar 

  329. Ohno, T., Kiyohara, T., Simpson, J.I.: Postsynaptic potentials evoked in cells of area 19 and its lateral zone during stimulation of the visual pathway in cat. Brain Res. 20, 453–456 (1970).

    Article  Google Scholar 

  330. Orban, G., Wissaert, R., Callens, M.: Modulation of cortical visual neuron responses to light by stimulation of brainstem oculomotor areas. Arch.intern.Physiol. 77, 946–950 (1969)

    CAS  Google Scholar 

  331. Orem, J., Feeney, D.M.: Reciprocal reticular influences on cells in rostral and caudal visual cortex of the cat. Brain Res. 30, 200–203 (1971).

    Article  PubMed  CAS  Google Scholar 

  332. Oscar-Berman, M., Heywood, S.P., Gross, C.G.: Eye orientation during visual discrimination learning by monkeys. Neuropsychologia 9, 351–358 (1971).

    Article  PubMed  CAS  Google Scholar 

  333. Otsuka, R., Hassler, R.: Über Aufbau und Gliederung der corticalen Sehsphäre bei der Katze. Arch. Psychiat. Nervenkr. 203, 212–234 (1962).

    Article  PubMed  CAS  Google Scholar 

  334. Pasik, P., Pasik, T., Schilder, P.: Extrageniculostriate vision in the monkey: discrimination of luminous flux-equated figures. Exp. Neurol. 24, 421–437 (1969).

    Article  PubMed  CAS  Google Scholar 

  335. Pearlman, A.L., Daw, N.W.: Opponent color cells in the cat lateral geniculate nucleus. Science 167, 84–86 (1970).

    Article  PubMed  CAS  Google Scholar 

  336. Pettigrew, J.D., Nikara, T., Bishop, P.O.: Responses to moving slits by single units in cat striate cortex. Exp. Brain Res. 6, 373–390 (1968).

    PubMed  CAS  Google Scholar 

  337. Pettigrew, J.D., Nikara, T., Bishop, P.O.: Binocular interaction on single units in cat striate cortex. — imultaneous stimulation by single moving slit with receptive fields in correspondence. Exp. Brain Res. 6, 391–410 (1968).

    PubMed  CAS  Google Scholar 

  338. Poggio, G.F., Baker, F.H., Lamarre, Y., Sanseverino, E.: Afferent inhibition at input to visual cortex of the cat. J. Neurophysiol. 32, 892–915 (1969).

    PubMed  CAS  Google Scholar 

  339. Polianskii, V. B., Sokolov, E. N., Prokof’ev, S. K.: Convergence of acoustic and photic stimuli of unit of the visual cortex in unanesthetized rabbits. Zh. vyssh nerv. Deyat Pavlova 20, 163–169 (1970) (Russ., Engl, summary).

    CAS  Google Scholar 

  340. Poljak, S.: An experimental study of the association, callosal, and projection fibres of the cerebral cortex of the cat. J. Comp. Neurol. 44, 197–258 (1927).

    Article  Google Scholar 

  341. Pribram, K.H.: The neurophysiology of remembering. Sci. Amer. 220, 73–87 (1969).

    Article  PubMed  CAS  Google Scholar 

  342. Pribram, K.H., Spinelli, D.N., Kamback, M.C.: Electrocortical correlates of stimulus response and reinforcement. Science 157, 94–95 (1967).

    Article  PubMed  CAS  Google Scholar 

  343. Regan, D., Richards, W.: Independence of evoked potentials and apparent size. Vision Res. 11, 679–684 (1971).

    Article  PubMed  CAS  Google Scholar 

  344. Riesen, A.N.: Effects of early deprivation of photic stimulation. In: Osler, S.F., Cooke, R.E. (Eds.): The Biosocial Basis of Mental Retardation, pp. 61–86. Baltimore: John Hopkins Press 1965.

    Google Scholar 

  345. Robertson, A.D.J.: Anasthesia and receptive fields. Nature (Lond.) 205, 80 (1965).

    Article  CAS  Google Scholar 

  346. Robson, I.G.: Spatial and temporal contrast sensitivity functions of the visual system. J. opt. Soc. Amer. 56, 1141–1142 (1966).

    Article  Google Scholar 

  347. Robson, I.G.: The effects of anesthetic drugs on cortical units. Anesthesiology 28, 144–153 (1967).

    Article  PubMed  CAS  Google Scholar 

  348. Rodieck, R.W., Stone, J.: Response of cat retinal ganglion cells to moving visual patterns. J. Neurophysiol. 28, 819–832 (1965).

    PubMed  CAS  Google Scholar 

  349. Rodieck, R.W., Stone, J.: Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28, 833–849 (1965).

    Google Scholar 

  350. Sachs, M.B., Nachmias, J., Robson, J.G.: Spatial-frequency channels in human vision. J. Opt. Soc. Amer. 61, 1176–1186 (1971).

    Article  CAS  Google Scholar 

  351. Sakmann, B., Creutzfeldt, O.D.: Scotopic and mesopic light adaptation in the cat’s retina. Pflügers Arch. 313, 168–185 (1969).

    Article  PubMed  CAS  Google Scholar 

  352. Sanderson, K.J.: Visual field projection columns and magnification. Factors in the lateral geniculate nucleus of the cat. Exp. Brain Res. 13, 159–177 (1971).

    PubMed  CAS  Google Scholar 

  353. Sanderson, K.J., Darian-Smith, L., Bishop, P.O.: Binocular corresponding receptive fields of single units in the cat dorsal lateral geniculate nucleus. Vision Res. 9, 1297–1303 (1969).

    Article  PubMed  CAS  Google Scholar 

  354. Sanderson, K.J., Murray Sherman, S.: Nasotemporal overlap in the visual field projected to lateral geniculate nucleus in the cat. J. Neurophysiol. 34, 453 (1971).

    PubMed  CAS  Google Scholar 

  355. Sanides, F., Hoffmann, J.: Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J. Hirnforsch. 11, 79–104 (1969).

    PubMed  CAS  Google Scholar 

  356. Sasaki, H., Bear, D.M., Ervin, P.R.: Quantitative Characterization of unit response in the visual system. Exp. Brain Res. 13, 239–255 (1971).

    Google Scholar 

  357. Sasaki, H., Saito, Y., Bear, D.M., Ervin, F.R.: Quantitative variation in striate receptive fields of cats as a function of light and dark adaptation. Exp. Brain Res. 13, 273–293 (1971).

    Google Scholar 

  358. Scheich, H., Korn, A.: Timing properties and temporal summation in the retina. Pflügers Arch. 327, 16–36 (1970).

    Article  Google Scholar 

  359. Schepelmann, F., Aschayeri, H., Baumgartner, G.: Die Reaktionen der “simple field” Neurone in Area 17 der Katze beim Hermann-Gitter-Kontrast. Pflügers Arch. ges. Physiol. 294, 57 (1967).

    Google Scholar 

  360. Schilder, P., Pasik, T., Pasik, P.: Extrageniculostriate vision in the monkey. II. Demonstration of brightness discrimination. Brain Res. 32, 383–398 (1971).

    Article  PubMed  CAS  Google Scholar 

  361. Schmidt, R., Creutzfeldt, O.D.: Veränderung von Spontanaktivität und Reizantwort retinaler and genicularer Neurone der Katze bei fraktionierter Injektion von Pentobarbitalna. Pflügers Arch. 350, 120–147 (1968).

    Google Scholar 

  362. Sechzer, J.A., Brown, J.L.: Color discrimination in the cat. Science 144, 427–429 (1964).

    Article  PubMed  CAS  Google Scholar 

  363. Shkol’nik-Yarros, E.G.: In: Doty, R.W. (Ed.): Neurons and Interneuronal Connections of the Central Visual System. New York-London: Plenum Press 1971.

    Google Scholar 

  364. Singer, W.: Inhibitory binocular interaction in the lateral geniculate body of the cat. Brain Res. 18, 165–170 (1970).

    Article  PubMed  CAS  Google Scholar 

  365. Skrebitsky, V.G.: Nonspecific influences on neuronal firing in the central visual pathway. Exp. Brain Res. 9, 269 283 (1969).

    Google Scholar 

  366. Skrebitsky, V.G., Gapich, L.I.: Microelectrode investigation of extinction of neuronal responses in visual cortex of waking rabbits to acoustic stimulation. Translation of: Fiziol. Zh SSR Sechenov 53, 906–914 (1967).

    Google Scholar 

  367. Snigula, F., Grüsser, O.-J.: Vergleichende verhaltensphysiologische und neurophysiologische Untersuchungen am visuellen System von Katzen. I. Die simultane Helligkeitsschwelle. Psychol. Forsch. 32, 14–42 (1968).

    Article  PubMed  CAS  Google Scholar 

  368. Snyder, M., Killackey, H., Diamond, I.T.: Color vision in the tree shrew after removal of the visual cortex. J. Neurophysiol. 32, 554–563 (1969).

    PubMed  CAS  Google Scholar 

  369. Sokolov, E.N., Polyansky, V.B., Bagdonas, A.: Dynamics of the single unit reactions in the visual cortex of the unanesthetized rabbit. Vision Res. 10, 11–28 (1970).

    Article  PubMed  CAS  Google Scholar 

  370. Spatz, W.W., Tigges, J., Tigges, M.: Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri). J. comp. Neurol. 140, 155–174 (1970).

    Article  PubMed  CAS  Google Scholar 

  371. Spehlmann, R.: Acetylcholine and prostigmine electrophoresis at visual cortex neurons. J. Neurophysiol. 26, 127–139 (1963).

    PubMed  CAS  Google Scholar 

  372. Spehlmann, R.: Acetylcholine facilitation, atropine block of synaptic excitation of cortical neurons. Science 165, 404–405 (1969).

    Article  PubMed  CAS  Google Scholar 

  373. Spehlmann, R.: ACH and the synaptic transmission of non-specific impulses to the visual cortex. Brain 94, 139–150 (1971).

    Article  PubMed  CAS  Google Scholar 

  374. Spehlmann, R., Daniels, J.C., Smathers, C.C., Jr.: Acetylcholine and the synaptic transmission of specific impulses to the visual cortex. Brain 94, 125–138 (1971).

    Article  PubMed  CAS  Google Scholar 

  375. Spehlmann, R., Kapp, H.: Die Wirkung lokaler Mikroelektrophorese von Acetylcholin auf einzelne Neurone des visuellen Cortex. Pflügers Arch. ges. Physiol. 274, 37–38 (1961).

    Article  Google Scholar 

  376. Spehlmann, R., Kapp, H.: Direct extracellular polarization of cortical neurons with multibarreled microelectrodes. Arch. ital. Biol. 102, 74–94 (1964).

    PubMed  CAS  Google Scholar 

  377. Spehlmann, R., Kapp, H., Jung, R.: Acetylcholin-Aktivierung von Neuronen des visuellen Cortex durch Mikro-Elektrophorese. Progr. in Brain Res. 6, 215–240 (1964).

    Article  Google Scholar 

  378. Sperry, R.W.: Split-brain approach to learning problems. In: Quarton, G.C., Melnechuk, T., Schmitt, F.O. (Eds.): The Neurosciences, pp. 714–722. New York: Rockefeller Univ. Press 1967.

    Google Scholar 

  379. Spinelli, D.N.: Receptive field organization of ganglion cells in the cat’s retina. Exp. Neurol. 19, 291–315 (1967).

    Article  PubMed  CAS  Google Scholar 

  380. Spinelli, D.N.: Evoked responses to visual patterns in area 17 of the rhesus monkey. Brain Res. 5, 511–514 (1967).

    Article  PubMed  CAS  Google Scholar 

  381. Spinelli, D.N., Barrett, T.W.: Visual receptive field organization of single units in the cat’s visual cortex. Exp. Neurol. 24, 76–98 (1969).

    Article  PubMed  CAS  Google Scholar 

  382. Spinelli, D.N., Pribram, K. H.: Neuronal correlates of stimulus response and reinforcement. Brain Res. 17, 377–385 (1970).

    Article  PubMed  CAS  Google Scholar 

  383. Spinelli, D.N., Starr, A., Barrett, T.W.: Auditory specificity in unit recordings from cat’s visual cortex. Exp. Neurol. 22, 75–84 (1968).

    Article  PubMed  CAS  Google Scholar 

  384. Spinelli, D.N., Pribram, K.H., Bridgeman, B.: Visual receptive field organization of single units in the visual cortex of monkey. Int. J. Neurosci. 1970, 67–74.

    Google Scholar 

  385. Spinelli, D.N., Weingarten, M.: Afferent and efferent activity in single units of the cat’s optic nerve. Exp. Neurol. 15, 347–362 (1966).

    Article  PubMed  CAS  Google Scholar 

  386. Sprague, J.M.: Corticofugal projections to the superior colliculus in the cat. Anat. Rec. 145, 288 (1963).

    Google Scholar 

  387. Sprague, J.M.: Interaction of cortex and superior colliculus in mediation of visually guided behaviour in the cat. Science 152, 1544–1547 (1966).

    Article  Google Scholar 

  388. Stark, L.: Multi-level control in the eye movement system. Digest of the 9th Int. Conf. on Med. and Biol. Engineering (1971) Melbourne.

    Google Scholar 

  389. Steinberg, R.H.: High-intensity effects on slow potentials and ganglion cell activity in the area centralis of cat retina. Vision Res. 9, 333–350 (1969).

    Article  PubMed  CAS  Google Scholar 

  390. Stone, J.: The nasotemporal division of the cat’s retina. J.comp.Neurol. 126, 585–600(1966).

    PubMed  CAS  Google Scholar 

  391. Stone, J., Hoffmann, K.P.: Conduction velocity as a parameter in the organisation of the afferent relay in the cat’s lateral geniculate nucleus. Brain Res. 32, 454–459 (1971).

    Article  PubMed  CAS  Google Scholar 

  392. Straschill, M.: Aktivität von Neuronen im tractus opticus und corpus geniculatum laterale bei langdauernden Lichtreizen verschiedener Intensität. Kybernetik 3, 1–8 (1966).

    Article  PubMed  CAS  Google Scholar 

  393. Suzuki, H., Kato, E.: Cortically induced presysnaptic inhibition in cat’s lateral geniculate body. Tohoku J. exp. Med. 86, 277–289 (1965).

    Article  PubMed  CAS  Google Scholar 

  394. Szentágothai, J.: Synaptic articulation in the thalamus and the geniculate bodies of descending cortical systems. In: Narikashvili, S.P. (Ed.): Cortical Regulation of Subcortical Activity, pp. 9–17. Tbilisi: Publishing House “Metsniereba” 1968.

    Google Scholar 

  395. Talbot, S.A., Marshall, W.H.: Physiological studies on neural mechanisms of visual localization and discrimination. Amer. J. Ophthal. 24, 1255–1263 (1941).

    Google Scholar 

  396. Tasaki, I., Polley, E.G., Orrego, F.: Action potentials from individual elements in cat geniculate and striate cortex. J. Neurophysiol. 17, 454–474 (1954).

    PubMed  CAS  Google Scholar 

  397. Thompson, R.F.: Role of the cerebral cortex in stimulus generalization. J. comp. physiol. Psychol. 55, 279–287 (1962).

    Article  PubMed  CAS  Google Scholar 

  398. Thompson, R.F., Smith, H.E., Bliss, D.: Auditory, somatic sensory, and visual response interactions and interrelations in association and primary cortical fields of the cat. J. Neurophysiol. 26, 365–378 (1963).

    PubMed  CAS  Google Scholar 

  399. Thompson, R.F., Spencer, W.A.: Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73, 16–43 (1966).

    Article  PubMed  CAS  Google Scholar 

  400. Tönnies, J.F., Kornmüller, A.E.: Registrierung der spezifischen Aktionsströme von architektonischen Rindenfeldern mittels des Tönniesschen Neurographen. Dtsch. Z. Nervenheilk. 130, 166–167 (1933).

    Article  Google Scholar 

  401. Towe, A.L., Harding, G.W.: Extracellular microelectrode sampling bias. Exp. Neurol. 29, 366–381 (1970).

    Article  PubMed  CAS  Google Scholar 

  402. Toyama, K., Matsunami, K.: Synaptic action of specific visual impulses upon cat’s parastriate cortex. Brain Res. 10, 473–476 (1968).

    Article  PubMed  CAS  Google Scholar 

  403. Toyama, K., Matsunami, K., Ohno, T.: Antidromic identification of association, commissural and corticofugal efferent cells in cat visual cortex. Brain Res. 14, 513–517 (1969).

    Article  PubMed  CAS  Google Scholar 

  404. Toyama, K., Tokyshiki, S., Matsunami, K.: Synaptic action of commissural impulses upon association efferent cells in cat visual cortex. Brain Res. 14, 518–520 (1969).

    Article  PubMed  CAS  Google Scholar 

  405. Valleala, P.: Nystagmus and the activity of visual cortex. Experientia (Basel) 24, 358–359 (1968).

    Article  CAS  Google Scholar 

  406. Valleala, P.: The temporal relation of unit discharge in visual cortex and activity of the extraocular muscles during sleep. Arch. ital. Biol. 105, 1–14 (1967).

    PubMed  CAS  Google Scholar 

  407. Vastola E.F.: Steady-state effects of visual cortex on geniculate cells. Vision Res. 7, 599–609 (1967).

    Article  PubMed  CAS  Google Scholar 

  408. Vesbaesya, C., Whitteridge, D., Wilson, M.E.: Callosal connexions of the cortex representing the area centralis. J. Physiol. (Lond.) 191, 79P–80P (1967).

    CAS  Google Scholar 

  409. Vinogradova, O. U., Lindsley, D. F.: Extinction of reactions to sensory stimuli in single neurons of visual cortex in unanesthetized rabbits. Fed. Proc. 23, 241–246 (1964).

    CAS  Google Scholar 

  410. Voronin, L.L., Skrebitsky, V.G.: Spontaneous and induced potential of the cortex neurons in non-anaesthetized rabbits. Abstr. 6th Int. Congr. Electroencephalog. Clin. Neurophysiol., Vienna p. 79, 1965.

    Google Scholar 

  411. Watanabe, S., Konishi, M., Creutzfeldt, O.D.: Postsynaptic potentials in the cat’s visual cortex following electrical stimulation of afferent pathways. Exp. Brain Res. 1, 272–283 (1966).

    PubMed  CAS  Google Scholar 

  412. Weingarten, M., Spinelli, D.N.: Retinal receptive field changes produced by auditory and somatic stimulation. Exp. Neurol. 15, 363–376 (1966).

    Article  PubMed  CAS  Google Scholar 

  413. Weiskrantz, L.: Contour discrimination in a young monkey with striate cortex ablation. Neuropsychologia 1, 145–164 (1963).

    Article  Google Scholar 

  414. Weiskrantz, L.: Visual memory and the temporal lobe of the monkey. In: Whalen, R.E., Thompson, R.F., Verzeano, M., Weinberger, N.M. (Eds.): The Neural Control of Behavior. New York-London: Academic Press 1970.

    Google Scholar 

  415. Weisstein, N.: Neuronal symbolic activity: A psychophysical measure. Science 186, 1489–1491 (1970).

    Article  Google Scholar 

  416. Westheimer, G., Mitchell, D.E.: The sensory stimulus for disjunctive eye movements. Vision Res. 9, 149–156 (1969).

    Article  Google Scholar 

  417. Westheimer, G., Tanzman, I.J.: Qualitative depth localization with diplopic images. J. opt. Soc. Amer. 46, 116–117 (1956).

    Article  CAS  Google Scholar 

  418. Whitterldge, D.: Area 18 and the vertical meridian of the visual field. In: Ettlinger, E.G. (Ed.): Functions of the Corpus Callosum. London: Churchill 1965.

    Google Scholar 

  419. Wickelgren, Barbara: Personal communication. Meeting at Neubeuern, Germany, 1971.

    Google Scholar 

  420. Wickelgren, B.G., Sterling, P.: Influence of visual cortex on receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32, 16–23 (1969).

    PubMed  CAS  Google Scholar 

  421. Widén, L., Ajmone-Marsan, C.: Unitary analysis of the response elicited in the visual cortex of cat. Arch. ital. Biol. 98, 248–274 (1960).

    Google Scholar 

  422. Widén, L., Ajmone-Marsan, C.: Effects of corticopetal and corticofugal impulses upon single elements of the dorsolateral geniculate nucleus. Exp. Neurol. 2, 468–502 (1960).

    Article  PubMed  Google Scholar 

  423. Wiesel, T.N., Hubel, D.H.: Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26, 978–993 (1963).

    PubMed  CAS  Google Scholar 

  424. Wiesel, T.N., Hubel, D.H.: Single cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    PubMed  CAS  Google Scholar 

  425. Wiesel, T.N., Hubel, D.H.: Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040 (1965).

    PubMed  CAS  Google Scholar 

  426. Wiesel, T.N., Hubel, D.H.: Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28, 1060–1072 (1965).

    PubMed  CAS  Google Scholar 

  427. Wiesel, T.N., Hubel, D.H.: Spatial and chromatic interaction in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966).

    PubMed  CAS  Google Scholar 

  428. Wilson, M.E.: Cortico-cortical connexions of the cat visual areas. J. Anat. 102, 375–386 (1968).

    PubMed  CAS  Google Scholar 

  429. Wilson, M.E., Cragg, B.G.: Projections from the lateral geniculate nucleus in the cat and monkey. J. Anat. 101, 677–692 (1967).

    PubMed  CAS  Google Scholar 

  430. Wilson, M.E. Toyne, M.J.: Retino-tectal and cortico-tectal projections in Macaca mulatta. Anat. Rec. 163, 286 (1969).

    Google Scholar 

  431. Winans, S.S.: Visual form discrimination after removal of the visual cortex in cats. Science 158, 944–946 (1967).

    Article  PubMed  CAS  Google Scholar 

  432. Winter, R.W., Walters, J.W.: Transient and steady state stimulus-response relations for cat retinal ganglion cells. Vision Res. 10, 461–477 (1970).

    Article  Google Scholar 

  433. Wurtz, R.H.: Visual cortex neurons: response to stimuli during rapid eye movements. Science 162, 1148–1150 (1968).

    Article  PubMed  CAS  Google Scholar 

  434. Wurtz, R.H.: Visual receptive fields of striate cortex neurons in awake monkeys. J. Neurophysiol. 32, 727–742 (1969).

    PubMed  CAS  Google Scholar 

  435. Wurtz, R.H.: Response of striate cortex neurons to stimuli during rapid eye movements in the monkey. J. Neurophysiol. 32, 975–986 (1969).

    PubMed  CAS  Google Scholar 

  436. Wurtz, R.H.: Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J. Neurophysiol. 32, 987–994 (1969).

    PubMed  CAS  Google Scholar 

  437. Wurtz, R.H., Goldberg, M.E.: Superior colliculus cell responses related to eye movements in awake monkeys. Science 171, 82–84 (1971).

    Article  PubMed  CAS  Google Scholar 

  438. Zeki, S.M.: Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. Brain Res. 28, 338–340 (1971).

    Article  PubMed  CAS  Google Scholar 

  439. Zeki, S.M.: Personal communication

    Google Scholar 

  440. Zuber, B.L., Stark, L.: Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16, 65–79 (1966).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Jung

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Brooks, B., Jung, R. (1973). Neuronal Physiology of the Visual Cortex. In: Jung, R. (eds) Visual Centers in the Brain. Handbook of Sensory Physiology, vol 7 / 3 / 3 B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65495-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65495-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65497-8

  • Online ISBN: 978-3-642-65495-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics