Skip to main content

The Unfrozen Interfacial Phase in Frozen Soil Water Systems

  • Chapter
Physical Aspects of Soil Water and Salts in Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 4))

Abstract

The evidence establishing the existence of a continuous, unfrozen water phase that separates ice from the mineral or organic matrix in frozen soils has come from many sources and is now widely accepted (e.g., Anderson, 1963; Lovell, 1957; Martynov, 1959; Miller, 1963; Nersesova and Tsytovich, 1963; Williams, 1964c). Questions regarding such things as the mobility of the interfacial water, the nature of the ice phase and the factors governing the quantity of water remaining unfrozen under given conditions have been answered, at least in qualitative terms. The unfrozen, interfacial water possesses the properties of a liquid, and water molecules, ions and solutes are freely mobile in this zone (e.g., Ducros and Dupont, 1962; Graham et al., 1964; Hecht et al., 1966; Hoekstra and Chamberlain, 1964; Hoekstra, 1965). Nuclear magnetic resonance (NMR) spectra show decreasing, but significant molecular mobility down to -40° C. Although it was once claimed that anomalous ice phases might exist in frozen soil, in all instances so far reported the ice formed is normal, hexagonal ice I (Anderson and Hoekstra, 1965 a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. M.: The latent heat of freezing soil water. Proc. 1st Permafrost Intern. Conf. Lafayette, Indiana. NRC-NAS Pub. No. 1287, pp. 238–239 (1963 a).

    Google Scholar 

  • Anderson, D. M.: Phase composition of frozen montmorillonite-water mixtures from heat capacity measurement. Soil Sci. Soc. Amer. Proc. 30, 670–675 (1966).

    Article  CAS  Google Scholar 

  • Anderson, D. M.: The interface between ice and silicate surfaces. J. Colloid and Interface Si. 25, 174–191 (1967).

    Article  CAS  Google Scholar 

  • Anderson, D. M., Hoekstra, P.: Crystallization of clay-adsorbed water. Science 149, 318–319 (1965 a).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D. M., Hoekstra, P.: Migration of interlamellar water during freezing and thawing of Wyoming bentonite. Soil Sci. Soc. Amer. Proc. 29, 498–504 (1965 b).

    Article  Google Scholar 

  • Anderson, D. M., Low, P. F.: The density of water adsorbed by lithium-, sodium- and potassium-bentonite. Soil Sci. Soc. Amer. Proc. 22, 99–103 (1958).

    Article  CAS  Google Scholar 

  • Anderson, D. M., Tice, A. R.: Low-temperature phases of interfacial water in clay-water systems. Soil Sci. Soc. Amer. Proc. 35, 47–54 (1971).

    Article  CAS  Google Scholar 

  • Bouyoucos, G.J.: The freezing point method as a new means of measuring the concentration of the soil solution directly in the soil. Mich. Agr. Coll. Exp. Sta. Tech. Bull 24, pp. 1–44 (1916).

    Google Scholar 

  • Bouyoucos, G. J.: Classification and measurement of the different forms of water in soil by means of the dilatometer method. Mich. Agric. Coll. Exp. St., Tech. Bull. 36, 48 pp. (1917).

    Google Scholar 

  • Buehrer, T. F., Aldrich, D. G.: Studies in soil structure VI. Water bound by individual soil constituents as influenced by puddling. Univ. Ariz. Tech. Bull. 110 (1946).

    Google Scholar 

  • Dillon, H. B., Andersland, O. B.: Predicting unfrozen water contents in frozen soils. Can. Geotechn. J. 3, 53–60 (1966).

    Article  Google Scholar 

  • Ducros, P., Dupont, M.: A nuclear magnetic resonance study of water in clays. In: Magnetic and electrical resonance and relaxation. Eindhoven: Compte. Rendu du XIe Colloque Ampere 1962.

    Google Scholar 

  • Graham, J., Walker, G. F., West, G. W.: Nuclear magnetic resonance study of interlayer water in hydrated layer silicates. J. Chem. Physics 40, 540–550 (1964).

    Article  CAS  Google Scholar 

  • Hecht, A. M., Dupont, M., Ducros, P.: Étude des phénomenes de transport de l’eau adsorbée dans certains minéraux argileux par le résonnance magnétique nucléaire. (Study of movement phenomena of adsorbed water in certain clay minerals by nuclear magnetic resonance). Bull de la Soc. Française de minéralogie et Cristallographie, 89, 6–13 (1966).

    CAS  Google Scholar 

  • Hemwall, J. B., Low, P. F.: The hydrostatic repulsive force in clay swelling. Soil Sci. 82, 135–145 (1955).

    Article  Google Scholar 

  • Hoekstra, P.: Conductance of frozen bentonite suspensions. Soil Sci. Soc. Amer. Proc, 29, 519–522 (1965).

    Article  CAS  Google Scholar 

  • Hoekstra, P., Chamberlain, E.: Electroosmosis in frozen soil. Nature 203, 1406–1407 (1964).

    Article  Google Scholar 

  • Jung, E.: Weiterer Beitrag zur aggregierenden Einwirkung des Frostes auf den Erdboden. Zeitschr. für Pflanzenern. Düng. u. Bodenk. A, Wiss. Teil, Bd. S. 1–20 (1932).

    Google Scholar 

  • Kolaian, J. H., Low, P. F.: Calorimetric determination of unfrozen water in montmorillonite pastes. Soil Sci., 95, 376–383 (1963).

    Article  CAS  Google Scholar 

  • Lovell, C. W.: Temperature effects on phase composition and strength of partially-frozen soil. High. Res. Bd. Bull. 168, 74–95 (1958).

    Google Scholar 

  • Low, P. F., Anderson, D. M., Hoekstra, P.: Some thermodynamic relationships for soils at or below the freezing point.1. Freezing point depression and heat capacity. Water Resources Res. 4, 379–394 (1968).

    Article  Google Scholar 

  • Martynov, G. S.: The calorimetric method of determining the quantity of unfrozen water in frozen soil: In: Data on the principles of the study of frozen zones in the earth’s crust Issue III. Ed.: L. A. Meister, Acad. of Sci. USSR, V. A. Obruchev, Inst. of Permafrost Studies, Moscow. Ottawa: National Research Council of Canada, Techn. Translation 1088 (1956).

    Google Scholar 

  • Martynov, G. A.: Principles of geocryology. Part I: General geocryology. Chapter VI: Heat and moisture transfer in freezing and thawing soils. Akad. Nauk SSSR, p. 153–192. Translated by E. R. Hope, National Research Council of Canada Technical Translation 1065 (1959).

    Google Scholar 

  • Miller, R. D.: Discussion of “Saturation, phase composition and freezing point depression in a rigid soil model” by Lange and McKim. Proc. 1st Permafrost Intern. Conf. Lafayette, Indiana. NAS-NRC Publ. Na. 1287, pp. 191–192 (1963).

    Google Scholar 

  • Neresova, Z. A.: Kalorimetricheskii metod opredelniga l’distosti gruntove (The calorimetric method of determining the ice content of soils). Materialy po laboratornym issledoramyam merzlykh gruntor, Sb-1 Akad Nauk SSSR (1953).

    Google Scholar 

  • Nersesova, Z. A.: Instruktivnye ukarzaniya po apredeliniyu kolichestva nezamenzshei vody i l’da v marzlykh gruntakh (Instructions on the determination of the quantity of unfrozen water and ice in frozen soils). Materialy po laboratornym issledovaniyam merzlykh gruntove, Sb-2, Akad Nauk SSSR (1954).

    Google Scholar 

  • Nersesova, Z. A., Tsytovich, N. A.: Unfrozen water in frozen soils. Proceedings 1st Permafrost Intern. Conf. Lafayette, Indiana. NAS-NRC Publ. No. 1287 (1963).

    Google Scholar 

  • Penner, E.: Soil moisture tension and ice segregation. Highw. Res. Bd. Bull. 168, 50–64 (1958).

    Google Scholar 

  • Schofield, R. K., Botelho de Costa, J. V.: The measurement of pF in soil by freezing point. J. Agr. Sci. 28, 644–653 (1938).

    Article  CAS  Google Scholar 

  • Williams, P. J.: Specific heats and unfrozen water content of frozen soils. In: Proc. 1st Can. Conf. Permafrost., Natl. Res. Counc., Canada, Assoc. Cttee on Soil and Snow Mechs., Tech. Memo. 76, pp. 109–126 (1963).

    Google Scholar 

  • Williams, P. J.: Specific heat and apparent specific heat of frozen soils. Géotechnique 14, 133–142 (1964a).

    Article  Google Scholar 

  • Williams, P. J.: Author’s closure to paper: Section and its effects in unfrozen water of frozen soils. In: Proc. 1st. Permafrost Intern. Conf. (1964b).

    Google Scholar 

  • Williams, P. J.: Unfrozen water content of frozen soils and soil moisture suction. Géotechnique 14, 231–246 (1964c).

    Article  Google Scholar 

  • Wu, T. H.: A nuclear magnetic resonance study of water in clay. J. Geophys. Res. 69, 1083–1091 (1964).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin — Heidelberg

About this chapter

Cite this chapter

Anderson, D.M., Tice, A.R. (1973). The Unfrozen Interfacial Phase in Frozen Soil Water Systems. In: Hadas, A., Swartzendruber, D., Rijtema, P.E., Fuchs, M., Yaron, B. (eds) Physical Aspects of Soil Water and Salts in Ecosystems. Ecological Studies, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65523-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65523-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65525-8

  • Online ISBN: 978-3-642-65523-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics