Skip to main content

Fats, Waxes, and Resins in Soil

  • Chapter
Soil Components

Abstract

A survey of the literature pertaining to soil fats, waxes, and resins (often called bitumens or simply lipids) indicates that these substances are probably the least studied of soil organic matter components. Soil organic matter chemists have largely ignored these materials in preference to studies on the true humic materials. This neglect is probably based on the fact that fats, waxes, and resins comprise but a small percentage of the total organic matter of mineral soils (1 to 5%). However, 10 to 20% of the total organic matter of organic soils may come under the lipid classification. Three review articles deal with the soil lipid fraction:HOWARD and HAMER [1960], STEVENSON [1966], and MORRISON [1969]. WOLLRAB and STREIBL [1969] also review the literature on peat and lignite waxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, L. M., A. Schatz, and G. S. Trelawny, 1957. Metabolism of lipids and lipid derivatives by a soil actinomycete. J. Bacteriol. 73:148.

    Google Scholar 

  • Agarwal, G. S., K. S. K. Rao, and L. S. Negi, 1958. Influence of certain species of earthworms on the structure of some hill soils. Curr. Sci. 27:213.

    Google Scholar 

  • Alexander, M., 1961. Introduction to soil microbiology. New York:John Wiley.

    Google Scholar 

  • Aschan, O., 1921. Humoceric acid. Finska Kern, sanfundets Medal. 30:37. Chem. Abstr. 16:1567 (1921).

    Google Scholar 

  • Asinger, F., 1956. Chemie und Technologie der Paraffin—Kohlenwasserstoffe. Berlin:Akademie.

    Google Scholar 

  • Barton, L. V., and M. L. Solt, 1948. Growth inhibitors in seeds. Contrib. Boyce Thompson Inst. 15:259.

    Google Scholar 

  • Baudisch, O., and H. Von Euler, 1935. Uber den Gehalt einiger Moor-Erdarten an Carotinoiden. Arkiv Kemi. Miner. Geol. 11:21, A, 10.

    Google Scholar 

  • Bel’kevich, P. I., 1960. Production of wax from peat. Tr. Inst. Torfa, Akad. Nauk Belarussk.S.S.R. 9:19. Chem. Abstr. 58:6620P (1963).

    Google Scholar 

  • Bel’kevich, P. I, G. P. Verkholitova, F. L. Kaganovich, and L. V. Targov, 1963. ß-Sitosterol from peat wax. Izv. Akad. Nauk. S.S.S.R., Otd. Khim Nauk. 112. Chem. Abstr. 58:10011 (1963).

    Google Scholar 

  • Bel’kevich, P. I, F. L. Kaganovich, E. V. Trubilko, A. V. Bystraya, and E. A. Yurkevich., 1965. The presence of stearins in peat waxes. Kompleksn. Ispol’z Torfa, Uses. Nauchn.-Issled. Inst. Torfa 73. Chem. Abstr. 64:7929 (1966).

    Google Scholar 

  • Bergmann, E. D., R. Ikan, and J. Kashmann, 1964. The occurrence of perylene in Huleh peat. Israel J. Chem. 2:171.

    Google Scholar 

  • Bhandari, G. S., M. S. Maskina, and N. S. Randhawa, 1969. Characterization of lipids in some soils and their humic acids formed under different agro-climatic conditions. Sci. Cult. 35:68. Chem. Abstr. 71:111908 (1969).

    Google Scholar 

  • Bishop, D. G., and J. L. Still, 1961. Fatty acid metabolism in Serratia marcescens. 1. Oxidation of saturated fatty acid by whole cells. J. Bacteriol. 82:370.

    Google Scholar 

  • Black, W. A. P., W. J. Cornhill, and F. N. W. Woodward, 1955. A preliminary investigation on the chemical composition of sphagnum moss and peat. J. Appl. Chem. 5:484.

    Article  Google Scholar 

  • Blumer, M., 1961. Benzypyrenes in soil. Science 134:474.

    Article  Google Scholar 

  • Bond, R. D., 1964. The influence of the microflora on the physical properties of soils. 2. Field studies on water repellent sands. Australian J. Soil Res. 2:123.

    Article  Google Scholar 

  • Bond, R. D, and J. R. Harris, 1964. The influence of the microflora on physical properties of soils. 1. Effects associated with filamentous algae and fungi. Australian J. Soil Res. 2:111.

    Article  Google Scholar 

  • Bone, W. A., and L. J. Tei, 1934. Researches on the chemistry of coal. Part 7. An investigation of German brown coals and Irish peat. Proc. Royal Soc. (London) A 147:58.

    Article  Google Scholar 

  • Borneff, I., and H. Kante, 1963. Kanzerogene Substanzen in Wasser und Boden. Weitere Untersuchungen über polyzyklische, aromatische Kohlenwasserstoffe in Erdproben. Arch. Hyg. Bakt. 147:401.

    Google Scholar 

  • Braids, O. C., 1966. A study of the components of the lipid fraction of Rifle peat. Ph.D. Dissertation, The Ohio State University.

    Google Scholar 

  • Braids, O. C., F. L. Himes, and G. W. Volk, 1967. The occurrence of carbazole in a peat soil. Soil Sci. Soc. Amer. Proc. 31:435.

    Article  Google Scholar 

  • Butler, J. H. A., D. T. Downing, and R. S. Swaby, 1964. Isolation of chlorinated pigment from green soil. Aust. J. Chem. 17:717.

    Article  Google Scholar 

  • Cawley, C. M., and J. G. King, 1945. Ester waxes from British lignite and peat. J. Soc. Chem. Ind. (London) 64:237.

    Google Scholar 

  • Cawley, C. M., J. H. G. Carlile, and C. C. Naaks, 1948. Ester waxes from British peat. Petroleum (London) 11:77. Chem. Abstr. 42:520r (1948).

    Google Scholar 

  • Chahal, K. S., J. L. Mortensen, and F. L. Himes, 1966. Decomposition products of carbon-14 labelled rye tissue in a peat profile. Soil Sci. Soc. Amer. Proc. 30:217.

    Article  Google Scholar 

  • Dawes, E. A., and D. W. Ribbons, 1964. Some aspects of the endogenous metabolism of bacteria. Bact. Rev. 28:126.

    Google Scholar 

  • Deinema, M. H., 1961. Intra- and extracellular lipid production by yeast. Meded. Landbouwhogeschool, Wageningen 61:1.

    Google Scholar 

  • Deinema, M. H, and C. A. Landheer, 1960. Extracellular lipid production by a strain of Rhodotorula graminis Biochem. Biophys. Acta 37:178.

    Article  Google Scholar 

  • Deinema, M. H, M. Van Ammers, G. A. Landheer, and M. H. M. Van Rooyen, 1964. Note on the isolation of ß-hydroxypalmitic acid from the extracellular lipids of Rhodotorula glutinis. Rec. Trav. Chim. Pays-Bas 83:708.

    Google Scholar 

  • Di Menna, M. E ., 1958. Two new species of yeasts from New Zealand. J. Gen. Microbiol. 18:269.

    Google Scholar 

  • Edigarova, N. N., 1963. Behavior of organic substances of petroleum origin in the soil. Neft. Udo- breniya i Stimulyatory (Baku:Akad. Nauk Azerb. S.S.R.) Sb. 190. Chem. Abstr. 60:13, 822a (1964).

    Google Scholar 

  • Fehl, A. J., and W. Lange, 1965. Soil stabilization induced by growth of microorganisms on high calorie mold nutrients. Soil Sci. 100:368.

    Article  Google Scholar 

  • Feustel, I. C., and H. G. Byers, 1930. The physical chemical characteristics of certain American peat profiles. U.S. Dept. Agr. Tech. Bull. 214.

    Google Scholar 

  • Fraps, G. S ., 1915. The effect of organic compounds in pot experiments. Texas Agr. Exp. Sta. Bull. 174.

    Google Scholar 

  • Foster, J. W., 1949. Chemical activities of fungi. New York:Academic Press.

    Google Scholar 

  • Gallopini, C., and R. Rifffadi, 1969. Composition of ether extracts of soil. Agrochimica 13:207.

    Google Scholar 

  • Geoghegan, M. J., 1950. Aggregate formation in soil. Influence of some microbial metabolic products and other substances on aggregation of soil particles. Trans. 4th Int. Congr. Soil Sci. 1:198.

    Google Scholar 

  • Geoghegan, M. J., and E. R. Armitage, 1949. Influence of some lipoidal substances on aggregate formation in soils. Nature, Lond. 163:29.

    Article  Google Scholar 

  • Gilliland, M. R., and A. J. Howard, 1968. Some constituents of peat wax separated by column chromatography. Transactions of the 2nd International Peat Congress, Leningrad, 1963. Vol. II, p. 877. Edinburgh:H.M.S.O.

    Google Scholar 

  • Gilliland, M. R., A. J. Howard, and D. Hamer, 1960. Polycyclic hydrocarbons in crude peat wax. Chem. Ind. 1357.

    Google Scholar 

  • Greenland, D. J., G. R. Lindstrom, and J. P. Quirk, 1961. Role of polysaccharides in stabilization of natural soil aggregates. Nature, Lond. 191:1283.

    Article  Google Scholar 

  • Greenland, D. J., G. R. Lindstrom, and J. P. Quirk, 1962. Organic materials which stabilize natural soil aggregates. Soil Sci. Soc. Amer. Proc. 26:366.

    Article  Google Scholar 

  • Gregors-Hansen, B., 1964. Decomposition of diethylstilboestrol in soil. Plant Soil 20:50.

    Article  Google Scholar 

  • Greig-Smith, R., 1910. Contributions to our knowledge of soil fertility. 1. The action of wax solvents and the presence of thermolabile bacteriotoxins in soil. Proc. Linn. Soc. N.S. Wales 35:808.

    Google Scholar 

  • Guenzi, W. D., and T. M. McCalla, 1962. Inhibition of germination and seedling development by crop residues. Soil Sci. Soc. Amer. Proc. 26:456.

    Article  Google Scholar 

  • Hance, R. J., and Anderson, G., 1963a. Extraction and estimation of soil phospholipids. Soil Sci. 96:94.

    Article  Google Scholar 

  • Hance, R. J., and G. Anderson, 1963b. Identification of hydrolysis products of soil phospholipids. Soil Sci. 96:157.

    Article  Google Scholar 

  • Hauser, G., and M. Karnovsky, 1954. Studies on the production of glycolipids by Pseudomonas aeruginosa. J. Bacteriol. 68:645.

    Google Scholar 

  • Himes, F. L., and C. Bloomfield, 1967. Extraction of triacontyl stearate from a soil. Plant Soil 26:383.

    Article  Google Scholar 

  • Howard, A. J., and D. Hamer, 1960. The extraction and constitution of peat wax. Review of peat wax chemistry. J. Amer. Oil Chem. Soc. 37:478.

    Article  Google Scholar 

  • Ikan, R., and J. Kashman, 1963. Steroids and triterpenoids of Hula peat as compared to other humoliths. Israel J. Chem. 1:502.

    Google Scholar 

  • Ivanova, L. A., P. I. Bel’kevich, F. L. Kaganovich, and P. D. Shepetovskii, 1968. Acids of peat wax. 2. Separation and identification of methylates from insoluble sodium salts by gas-liquid chromatography. Vestsi. Akad. Navuk Belarus. SSR, Ser. Khim. Navuk 121. Chem. Abstr. 70:79824 (1969).

    Google Scholar 

  • Ives, A. J., and A. N. O’Neill, 1958. The chemistry of peat. Part 1. The sterols of peat moss (Sphagnum). Can. J. Chem. 36:434.

    Article  Google Scholar 

  • Ivler, D., J. B. Wolfe, and S. O. Rittenberg, 1955. Studies on the aerobic oxidation of fatty acids by bacteria. 5. Caprate oxidation by cell-free extracts of Pseudomonas fluorescens. J. Bacteriol. 70:99.

    Google Scholar 

  • Jamison, V. C., 1942. The slow reversible drying of soil beneath citrus trees in Central Florida. Soil Sci. Soc. Amer. Proc. 7:36.

    Article  Google Scholar 

  • Jamison, V. C., 1945. Penetration of irrigation and rain water into sandy soils of central Florida. Soil Sci. Soc. Amer. Proc. 10:25.

    Article  Google Scholar 

  • Jarvis, F. G., and M. J. Johnson, 1949. A glyco-lipid produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71:4124.

    Article  Google Scholar 

  • Johnson, R. C., and R. Thiessen, 1934. Studies on peat alcohol and ether-soluble matter of certain soils. Fuel 8:44. Chem. Abstr. 28:4205 (1934).

    Google Scholar 

  • Josephy, E., and F. Radt, editors. 1946. Elsevier’s Encyclopedia of Organic Chemistry. New York:Elsevier.

    Google Scholar 

  • Katkouski, A. P., and N. Ts. Karosik., 1954. Preparation of bitumens from peat. Vestsi Akad. Navuk, Belarus, S.S.R. No. 2, 78. Chem. Abstr. 49:15211 (1955).

    Google Scholar 

  • Kern, W., 1947. The occurrence of chrysene in soil. Helv. Chim. Acta 30:1595.

    Article  Google Scholar 

  • Khesina, A. Ya., N. P. Shcherback, L. M. Shabad, and I. S. Vostrov, 1969. Destruction of benzo [x] pyrene by soil microflora. Byull. Eksp. Biol. Med. 68:70. Chem. Abstr. 72:42240 (1969).

    Google Scholar 

  • Kian, R., G. Stahl, and E. D. Bergmann, 1968. Constituents of Huleh peat. 3. Acids. Israel J. Chem. 6:485.

    Google Scholar 

  • Kleinzeller, A., 1944. Fat formation in Torulopsis lipofera. Biochem. J. 38:480.

    Google Scholar 

  • Kononenko, E. V., 1958. Soil yeasts of the genus Lipomyces. Mikrobiologiya 27:605.

    Google Scholar 

  • Kowalenko, C. G., and R. B. McKercher, 1971. Phospholipid components extracted from Saskatchewan soils. Can. J. Soil Sci. 51:19.

    Article  Google Scholar 

  • Krause, F. P., and W. Lang, 1965. Vigorous mold growth in soils after addition of water insoluble fatty substances. Appl. Microbiol. 13:160.

    Google Scholar 

  • Ksenofontova, E. V., M. V. Mukhina, A. M. Khaletskii, F. L. Kaganovich, and P. I. Bel’kevich, 1969. Quantitative determination of ß-sito-sterol in peat wax resin. Dokl. Akad. Nauk Beloruss. SSR 13:143. Chem. Abstr. 70:99569 (1969).

    Google Scholar 

  • Kwiatkowski, A., 1963. Effect of the extracting solvent on the composition of peat bitumen. Zeszyty Nauk. Politech. Gdansk. Chem. 33:53. Chem. Abstr. 60:7839 (1964).

    Google Scholar 

  • Lukoshko, E S., 1965. Changes in the chemical composition of peat-forming plants during decomposition of peat-forming layers under aerobic and unaerobic conditions. Vestis Akad. Navuk Belarusk. SSR. Ser:Khim. Navuk 90. Chem. Abstr. 64:4212d (1966).

    Google Scholar 

  • Mair, B. J., 1964. Terpenoids, fatty acids and alcohols as source materials for petroleum hydrocarbons. Geochim. Cosmochim. Acta 28:1303.

    Article  Google Scholar 

  • Mallet, L., and M. Tissier, 1969. Biosynthesis of polycyclic hydrocarbons of the benzoa-pyrene type in forest soil. C. R. Soc. Biol. 163:63.

    Google Scholar 

  • Martin, J. P., J. D. Ervin, and R. A. Shepard, 1959. Decomposition and aggregating effect of fungus cell material in soil. Soil Sci. Soc. Amer. Proc. 23:217.

    Article  Google Scholar 

  • McCalla, T. M., 1945. Influence of microorganisms and some organic substances on soil structure. Soil Sci. 59:287.

    Article  Google Scholar 

  • McCalla, T. M. 1946. The biology of soil structure. J. Soil Water Cons. 1:71.

    Google Scholar 

  • McCalla, T. M. 1964. Phytotoxic substances from soil microorganisms and crop residue. Bact. Rev. 28:181.

    Google Scholar 

  • McCalla, T. M., W. D. Guenzi, and F. A. Norstadt, 1963. Microbial studies of phytotoxic substances in the stubble-mulch system. Z. Allgem, Microbiol. 3:202.

    Article  Google Scholar 

  • McLean, J., G. H. Rettie, and F. S. Spring, 1958. Triterpenoids from peat. Chem. Ind. 1515. Mishustin, E. N., and N. S. Erofeev, 1966. Nature of toxic substances accumulating during straw decomposition in soil. Mikrobiol. 35:150.

    Google Scholar 

  • Morrison, R. I., 1969. Soil lipids. In Organic geochemistry, Chap. 23, p. 558. New York:Springer-Verlag.

    Google Scholar 

  • Morrison, R. I., and W. Bick, 1966. Long-chain methyl ketones in soils. Chem. Ind. (London) 596.

    Google Scholar 

  • Morrison, R. I., and W. Bick, 1967. The wax fraction of soils; separation and determination of some components. J. Sci. Food Agr. 18:351.

    Article  Google Scholar 

  • Nagy, B., 1966. The optical rotation of lipids extracted from soils, sediments, and the Orgueil carbonaceous meteorite. Proc. Natl. Acad. Sci. U.S. 56:389.

    Article  Google Scholar 

  • Oro, J., D. W. Nooner, A. Zlatkis, S. A. Wikstrom, and E. S. Barghoorn, 1965. Hydrocarbons of biological origin in sediments about 2 billion years old. Science 148:77.

    Article  Google Scholar 

  • Pedersen, T. A., 1958. Cryptococcus terricolus Nov. spec. A new yeast isolated from Norwegian soils. C. R. Trav. Lab. Czarlsberg 31:93.

    Google Scholar 

  • Prill, E. A., L. V. Barton, and M. L. Solt, 1949a. Effects of some surface-active agents on the growth of wheat roots in solutions. Contrib. Boyce Thompson Inst. 15:311.

    Google Scholar 

  • Prill, E. A., L. V. Barton, and M. L. Solt, 1949b. Effect of some organic acids on the growth of wheat roots in solutions. Contrib. Boyce Thompson Inst. 15:429.

    Google Scholar 

  • Rakovskii, V. E., and E. S. Lukoshko, 1965. Changes in the chemical composition of peat-forming plants during the growth period. Kompleksn. Ispol’z. Torfa, Vses. Nauchn.-Issled. Inst. Torfa. 24. Chem. Abstr. 64:7042h (1966).

    Google Scholar 

  • Rakowski, E. W., and N. G. Edelstein, 1932. Peat bitumens. 1. Fatty acids. Brennstoff— Chem. 13:46. Chem. Abstr. 26:1751 (1932).

    Google Scholar 

  • Ralston, A. W., 1948. Fatty acids and their derivatives. New York:John Wiley. Randies, G. I., 1950. The oxidation of fatty acids by Neisseria catarrholis. J. Bacteriol. 60:627.

    Google Scholar 

  • Reilly, J., and J. A. Emlyn, 1940. Studies in peat. 8. Preliminary note on Irish peat wax (mona wax). Sci. Proc. Royal Dublin Soc. 22:263.

    Google Scholar 

  • Reilly, J., and J. P. Wilson, 1940. Studies in peat. 9. The cerotic and carboceric acid fractions of mona wax. Sci. Proc. Royal Dublin Soc. 22:321.

    Google Scholar 

  • Reilly, J., D. F. Kelly, and J. Duffy, 1939. Extraction of peat with azeotrope-like petroleum mixed solvents. Sci. Proc. Royal Dublin 22:149.

    Google Scholar 

  • Reilly, J., D. F. Kelly, and D. J. Ryan, 1937. Mixtures of constant boiling point for solvent-extraction purposes. Extraction of waxes from peat. J. Soc. Chem. Ind. 56:231.

    Google Scholar 

  • Robinson, T., 1963. The organic constituents of higher plants. Minneapolis:Burgess Publishing Co. Rodd, E. H., ed. 1951. Chemistry of the carbon compounds, Vol. Ia. Amsterdam:Elsevier.

    Google Scholar 

  • Roginskaya, E. V., 1936. The composition of the acids of high molecular weight from the bitumen wax of peat. J. Applied Chem. (USSR) 9:108. Chem. Abstr. 30:5441 (1936).

    Google Scholar 

  • Rogoff, M. H., and I. Wander, 1957. The microbiology of coal. 1. Bacterial oxidation of phenanthrene. J. Bacteriol. 73:764.

    Google Scholar 

  • Romashkevich, I. F., 1964. Role of bitumens in delaying mobilization of nitrogen compounds in peats and uptake of nitrogen by plants. Soviet Soil Sci. 1:81. Translation of Pochvovednie 1:102 (1964).

    Google Scholar 

  • Ruinen, J., and M. H. Deinema, 1964. Composition and properties of the extra-cellular lipids of yeast species from the phyllosphere. Antonie van Leeuwenhoek 30:377.

    Article  Google Scholar 

  • Ryan, H., and T. Dillon, 1909. Montanin and montana (montan) waxes. Proc. Dublin Soc. 12:202.

    Google Scholar 

  • Schatz, A., K. Savard, and I. J. Pintner, 1949. The ability of soil microorganisms to decompose steroids. J. Bacteriol. 58:117.

    Google Scholar 

  • Schreiner, O., and E. C. Lathrop, 1911. Examination of soils for organic constituents, especially dihydroxystearic acid. U.S. Dept. Agr. Bur. Soils Bull. 80.

    Google Scholar 

  • Schreiner, O, and E. C. Shorey, 1908. The isolation of dihydroxystearic acid from soils. J. Amer. Chem. Soc. 30:1599.

    Article  Google Scholar 

  • Schreiner, O, and E. C. Shorey, 1909a. The presence of a cholesterol substance in soils. Agrosterol. J. Amer. Chem. Soc. 31:116.

    Article  Google Scholar 

  • Schreiner, O, and E. C. Shorey, 1909b. The isolation of harmful organic substances from soils. U.S. Dept. Agr. Bur. Soils, Bull. 53.

    Google Scholar 

  • Schreiner, O, and E. C. Shorey, 1910. Some acid constituents of soil humus. J. Amer. Chem. Soc. 32:1674

    Article  Google Scholar 

  • Schreiner, O, and E. C. Shorey, 1911a. Cholesterol bodies in soils:Phytosterol. J. Biol. Chem. 9:9.

    Google Scholar 

  • Schreiner, O, and E. C. Shorey, 1911b. Glycerides of fatty acids in soils. J. Amer. Chem. Soc. 33:78.

    Article  Google Scholar 

  • Shcherbak, N. P ., 1969. Fate of benzo[α]pyrene in soil. Vop. Onkol. 15:75. Chem. Abstr. 71:48877 (1969).

    Google Scholar 

  • Shcherbak, N. P., 1969. Fate of benzo[α]pyrene in soil. Vop. Onkol. 15:75. Chem. Abstr. 71:48877 (1969).

    Google Scholar 

  • Silliker, J. H., and S. C. Rittenberg, 1951. Studies on the aerobic oxidation of fatty acids by bacteria. 1. The nature of the enzymes constitutive or adaptive. J. Bacteriol. 61:653.

    Google Scholar 

  • Silliker, J. H., and S. C. Rittenberg, 1952. Studies on the aerobic oxidation of fatty acids by bacteria. 3. The effect of 2,4-dinitrophenol on the oxidation of fatty acids by Serratia marcescens. J. Bacteriol. 64:197.

    Google Scholar 

  • Simonart, P., and L. Batistic, 1966. Aromatic hydrocarbons in soils. Nature 212:1461.

    Article  Google Scholar 

  • Simonsen, J., and W. C. J. Ross, 1957. The terpenes. Vol. 4. The triterpenes and their derivatives. Cambridge:Cambridge University Press.

    Google Scholar 

  • Smirnov, G. A., 1970. Benzo[a] pyrene content in soil and vegetation near an airport. Vop. Onkol. 16:83. Chem. Abstr. 73:59045 (1970).

    Google Scholar 

  • Springer, V., and A. Lehner, 1952a. Decomposition and the synthesis of humus by aerobic and anaerobic decomposition of organic substances important in agriculture and forestry. 1. Z. Pflernahr. Dung. 58:193.

    Article  Google Scholar 

  • Springer, V., and A. Lehner, 1952b. Decomposition and the synthesis of humus by aerobic and anaerobic decomposition of organic substances important in agriculture and forestry. 2. Z. Pflernahr. Dung. 59:1.

    Google Scholar 

  • Stadnikoff, G., and R. Wahner, 1931. Uber die Natur der Kohlenbitumina. Brennstoff-Chem. 12:23.

    Google Scholar 

  • Starkey, R. L., 1946. Lipid production by a soil yeast. J. Bacteriol. 51:33.

    Google Scholar 

  • Stecher, P.CG., Ed. 1960. The Merck index. Rahway, N. J.:Merck and Company.

    Google Scholar 

  • Stern, A. M., Z. J. Ordal, and H. O. Halverson, 1954. Utilization of fatty acids by and lipolytic activities of Mucor mucedo. J. Bacteriol. 68:25.

    Google Scholar 

  • Stevenson, F. J., 1966. Lipids in soil. J. Amer. Oil Chem. Soc. 43:203.

    Article  Google Scholar 

  • Sundgren, A., 1949. Investigations on extraction of peat and manufacture of wax and resinous substances from the peat bitumen obtained. Tek. Foren. Finland. Fork. 69:29. Chem. Abstr. 43:5570 (1949).

    Google Scholar 

  • Sundgren, A., and V. T. Rauhala, 1949. Preliminary note on fatty acids in peat. Suomen Kemistilekti 228:24 Chem. Abstr. 44:3270 (1950).

    Google Scholar 

  • Sundgren, A., and V. T. Rauhala, 1965. Free acids of peat wax. Valtion Tek. Tutkimuslaitos, Julkaisu No. 92, 27 pp. Chem. Abstr. 65:3610 (1966).

    Google Scholar 

  • Swan, E. P., 1965. Identity of a hydrocarbon found in a forest soil. Forest Prod. J. 15:272.

    Google Scholar 

  • Tenney, F. G., and S. A. Waksman, 1929. Composition of natural organic materials and their decomposition in the soil. 4. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Sci. 28:55.

    Article  Google Scholar 

  • Tenney, F. G., and S. A. Waksman, 1930. Composition of natural organic materials and their decomposition in the soil. 5. Decomposition of various chemical constituents in plant materials, under anaerobic conditions. Soil Sci. 30:143.

    Article  Google Scholar 

  • Titov, N., 1932. Bitumens of sphagnum peat. Brennstoff-Chem. 13:266. Chem. Abstr. 26:5195 (1932).

    Google Scholar 

  • Tsybul’kin, V. M., and P. I. Bel’kevich, 1964. Comparative study of bitumen-forming substances of some species of plant and peat bitumens. Vest is Akad. Tavik. Belarusk. SSSR, Ser. Fiz-Telshan Navik, 101. Chem. Abstr. 61:1671 (1964).

    Google Scholar 

  • Turfitt, G. E ., 1943. The microbiological degradation of steroids. 1. The sterol content of soils. Biochem. J. 37:115.

    Google Scholar 

  • Turfitt, G. E. 1944a. The microbiological agencies in the degradation of steroids. 1. The cholesterol-decomposing organisms of soils. J. Bacteriol. 47:487.

    Google Scholar 

  • Turfitt, G. E., 1944b. The microbiological degradation of steroids. 2. Oxidation of cholesterol by Pro-actinomyces spp. Biochem. J. 38:492.

    Google Scholar 

  • Turfitt, G. E. 1947. Microbiological agencies in the degradation of steroids. 2. Steroid utilization by the microflora of soils. J. Bacteriol. 54:557.

    Google Scholar 

  • Waksman, S. A., 1936. Humus. Baltimore:Williams and Wilkins.

    Google Scholar 

  • Waksman, S. A., and I. J. Hutchings, 1935. Chemical nature of organic matter in different soil types. Soil Sci. 40:347.

    Article  Google Scholar 

  • Waksman, S. A., and K. R. Stevens, 1929. Contribution to the chemical composition of peat. 5. The role of microorganisms in peat formation and decomposition. Soil Sci. 28:315.

    Article  Google Scholar 

  • Waksman, S. A., and K. R. Stevens, 1930. A critical study of the methods for determining the nature and abundance of soil organic matter. Soil Sci. 30:97.

    Article  Google Scholar 

  • Waksman, S. A., F. G. Tenny, and K. R. Stevens, 1928. The role of microorganisms in the transformations of organic matter in forest soils. Ecology 9:126.

    Article  Google Scholar 

  • Wander, I. W., 1949a. An interpretation of the cause of water-repellent sandy soils found in citrus groves in central Florida. Science 110:299.

    Article  Google Scholar 

  • Wander, I. W . 1949b. An interpretation of the cause of resistance to wetting in Florida soils. Proc. Fla. Hort. Soc. Nov., 92.

    Google Scholar 

  • Wang, T. S. C., Pau-Tsung Hwang, and Chung-Yi Chen, 1971. Soil lipids under various crops. Soil Sci. Soc. Amer. Proc. 35:584.

    Article  Google Scholar 

  • Wang, T. S. C., Yu-Cheng Liang, and Wei-Chiang Shen, 1969. Method of extraction and analysis of higher fatty acids and triglycerides in soils. Soil Sci. 107:181.

    Article  Google Scholar 

  • Warth, A. H., 1956. The chemistry and technology of waxes. New York:Reinhold.

    Google Scholar 

  • Webley, D. M. 1954. The morphology of Nocardia opaca Waksman and Henrici (Proactinomyces opacus Jensen) when grown on hydrocarbons, vegetable oils, fatty acids and related substances. J. Gen. Microbiol. 12:420.

    Google Scholar 

  • Webley, D. M., R. B. Duff, and V. C. Farmer, 1955. Beta-oxidation of fatty acids by Nocardia opaca. J. Gen. Microbiol. 13, 361.

    Google Scholar 

  • Winter, A. G., 1961. New physiological and biological aspects in the interrelationships between higher plants. Symposia Soc. Exptl. Biol. 15:229.

    Google Scholar 

  • Wollrab, V., and M. Streibl, 1969. Earth waxes, peat, montan wax and other organic brown coal constituents. In Organic geochemistry, Chap. 24, p. 576. New York:Springer-Verlag.

    Google Scholar 

  • Zalozieki, R., and J. Hausman, 1907. Zer Kenntnis des Torfwachses. Z. Angew. Chem. 20:1141.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Braids, O.C., Miller, R.H. (1975). Fats, Waxes, and Resins in Soil. In: Gieseking, J.E. (eds) Soil Components. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65915-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65915-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06861-7

  • Online ISBN: 978-3-642-65915-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics