Skip to main content

Degradation of Plant Cell Walls and Membranes by Microbial Enzymes

  • Chapter
Physiological Plant Pathology

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 4))

Abstract

One characteristic feature of many phytopathogenic organisms is their ability to produce an array of enzymes capable of degrading the complex polysaccharides of the plant cell wall (Bateman and Millar, 1966; Wood, 1967; Albersheim et al., 1969; Wood, 1973) and membrane constituents (Porter, 1966; Tseng and Bateman, 1968). These enzymes usually are produced inductively. Generally, they are extracellular, highly stable and present in infected host tissues. In most plant diseases caused by microbial agents, cell walls are penetrated, tissues are colonized, and permeability of host cells is altered. A brief summary of our understanding of cell wall and membrane structure, coupled with knowledge of the enzymes capable of degrading the components of these structures, and an analysis of the association of these enzymes with diseased tissue, should enable us to make an appraisal of their involvement in pathogenesis and point the way to an objective consideration of this area of disease physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim, P., Anderson, A.J.: Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc. Natl. Acad. Sci. U.S. 68, 1815–1819 (1971).

    CAS  Google Scholar 

  • Albersheim, P., Jones, T.M., English, P.D.: Biochemistry of the cell wall in relation to infective processes. Ann. Rev. Phytopathol. 7, 171–194 (1969).

    CAS  Google Scholar 

  • Albersheim, P., Killias, U.: Histochemical localization at the electron microscope level. Arn. J. Botany 50, 732–745 (1963).

    CAS  Google Scholar 

  • Albersheim, P., Mühlethaler, K., Frey-Wyssling, A.: Stained pectin as seen in the electron microscope. J. Biophys. Biochem. Cytol. 8, 501–506 (1960a).

    PubMed  CAS  Google Scholar 

  • Albersheim, P., Neukom, H., Deuel, H.: Über die Bildung von ungesättigten Abbauprodukten durch ein pektinabbauendes Enzym. Helv. Chem. Acta 43, 1422–1426 (1960b).

    CAS  Google Scholar 

  • Albersheim, P., Nevins, D.J., English, P.D., Karr, A.: A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohyd. Res. 5, 340–345 (1967).

    CAS  Google Scholar 

  • Anderson, A.J., Albersheim, P.: Host-pathogen interactions. V. Comparison of the abilities of proteins isolated from three varieties of Phaseolus vulgaris to inhibit the endopolygalact-uronases secreted by three races of Colletotrichum lindemuthianum. Physiol. Plant Pathol. 2, 339–346 (1972).

    CAS  Google Scholar 

  • Aspinall, G.O.: Polysaccharides. New York: Pergamon Press 1970.

    Google Scholar 

  • Ayers, W.A., Papavizas, G.C., Diem, A.F.: Polygalacturonate trans-eliminase and polygalacturonase production by Rhizoctonia solani. Phytopathology 56, 1006–1011 (1966).

    CAS  Google Scholar 

  • Ayers, W.A., Papavizas, G.C., Lumsden, R.D.: Factors affecting the pectolytic activity of Aphanomyces euteiches in vitro and in infected tissue. Phytopathology 59, 786–791 (1969).

    CAS  Google Scholar 

  • Balasubramani, K.A., Deverall, B.J., Murphy, J.V.: Changes in respiratory rate, polyphenol-oxidase and polygalacturonase activity in and around lesions caused by Botrytis in leaves of Vicia faba. Physiol. Plant Pathol. 1, 105–113 (1971).

    CAS  Google Scholar 

  • Barash, I.: Liberation of polygalacturonase during spore germination by Geotrichum candidum. Phytopathology 58, 1364–1371 (1968).

    CAS  Google Scholar 

  • Basham, H.G.: The role of pectolytic enzymes in the death of plant cells. Ph.D. Thesis, Cornell Univ., Ithaca, N.Y. (1974).

    Google Scholar 

  • Basham, H.G., Bateman, D.F.: Killing of plant cells by pectic enzymes: the lack of direct injurious interaction between pectic enzymes or their soluble reaction products and plant cells. Phytopathology 65, 141–153 (1975a).

    CAS  Google Scholar 

  • Basham, H.G., Bateman, D.F.: Relationship of cell death in plant tissue treated with a homogeneous endo-pectate lyase to cell wall degradation. Physiol. Plant Pathol. 5, 249–261 (1975b).

    CAS  Google Scholar 

  • Bateman, D.F.: Pectolytic activities of culture filtrates of Rhizoctonia solani and extracts of Rhizoctonia-infected of bean. Phytopathology 53, 197–204 (1963 a).

    CAS  Google Scholar 

  • Bateman, D.F.: The “macerating enzyme” of Rhizoctonia solani. Phytopathology 53, 1178–1186 (1963 b).

    CAS  Google Scholar 

  • Bateman, D.F.: An induced mechanism of tissue resistance to polygalacturonase in Rhizoctonia-infected hypocotyls of bean. Phytopathology 54, 438–445 (1964 a).

    CAS  Google Scholar 

  • Bateman, D.F.: Cellulase and the Rhizoctonia disease of bean. Phytopathology 54, 1372–1377 (1964 b).

    CAS  Google Scholar 

  • Bateman, D.F.: Hydrolytic and trans-eliminative degradation of pectic substances by extracellular enzymes of Fusarium solani f. phaseoli. Phytopathology 56, 238–244 (1966).

    PubMed  CAS  Google Scholar 

  • Bateman, D.F.: Alteration of cell wall components during pathogenesis by Rhizoctonia solani. In: The Dynamic Role of Molecular Constituents in Plant-Parasite Interaction, p. 58–79. (C.J. Mirocha, I. Uritani, eds.). St. Paul, Minn.: Amer. Phytopath. Soc. 1967.

    Google Scholar 

  • Bateman, D.F.: The enzymatic maceration of plant tissue. Neth. J. Plant Pathol. 74 (Suppl. 1), 67–80 (1968).

    CAS  Google Scholar 

  • Bateman, D.F.: depletion of the galacturonic acid content in bean hypocotyl cell walls during pathogenesis by Rhizoctonia solani and Sclerotium rolfsii. Phytopathology 60, 1846–1847 (1970).

    CAS  Google Scholar 

  • Bateman, D.F.: The polygalacturonase complex produced by Sclerotium rolfsii. Physiol. Plant Pathol. 2, 175–184 (1972).

    CAS  Google Scholar 

  • Bateman, D.F., Beer, S.V.: Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55, 204–211 (1965).

    PubMed  CAS  Google Scholar 

  • Bateman, D.F., Jones, T.M., Yoder, O.C.: degradation of corn cell walls by extracellular enzymes produced by Helminthosporium maydis race T. Phytopathology 63, 1523–1529 (1973).

    CAS  Google Scholar 

  • Bateman, D.F., Kosuge, T., Kilgore, W.W.: Purification and properties of uronate dehydrogenase. Arch. Biochem. Biophys. 136, 97–105 (1970).

    PubMed  CAS  Google Scholar 

  • Bateman, D.F., Millar, R.L.: Pectic enzymes in tissue degradation. Ann. Rev. Phytopathol. 4, 119–146 (1966).

    CAS  Google Scholar 

  • Bateman, D.F., Van Etten, H.D., English, P.D., Nevins, D.J., Albersheim, P.: Susceptibility to enzymatic degradation of cell walls from bean plants resistant and susceptible to Rhizoctonia solani Kuhn. Plant Physiol. 44, 641–648 (1969).

    PubMed  CAS  Google Scholar 

  • Bauer, W.D., Talmadge, K.W., Keegstra, K., Albersheim, P.: The structure of plant cell walls. II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol. 51, 174–187 (1973).

    PubMed  CAS  Google Scholar 

  • Bell, T.A., Etchells, J.L., Jones, I.D.: A method for testing cucumber salt-stock brine for softening activity. U.S. dept. Agr. ARS 72–5 (1955).

    Google Scholar 

  • Benson, A.A.: Plant membrane lipids. Ann. Rev. Plant Physiol. 15, 1–16 (1964).

    CAS  Google Scholar 

  • Beraha, L., Billeter, B.A., Garber, E.D.: Enzyme profiles and virulence in phosphatidase mutants of Erwinia carotovora. Phytopathology 62, 746 (Abstr.) (1972).

    Google Scholar 

  • Berlyn, G.P.: Ultrastructural and molecular concepts of cell-wall formation. Wood and Fiber 2, 196–227 (1970).

    CAS  Google Scholar 

  • Biehn, W.L., Dimond, A.E.: Effect of galactose on polygalacturonase production and pathogenesis by Fusarium oxysporum f. sp. lycopersici. Phytopathology 61, 242–243 (1971a).

    CAS  Google Scholar 

  • Biehn, W.L., Dimond, A.E.: Effect of pectin source and sugars on polygalacturonase production by Ceratocystis ulmi. Phytopathology 61, 745–746 (1971b).

    CAS  Google Scholar 

  • Branton, D.: Membrane structure. Ann. Rev. Plant Physiol. 20, 209–238 (1969).

    CAS  Google Scholar 

  • Brathwaite, C.W.D., Dickey, R.S.: Synergism between Pseudomonas caryophylli and a species of Corynebacterium. Phytopathology 60, 1046–1051 (1970).

    CAS  Google Scholar 

  • Brathwaite, C.W.D., Dickey, R.S.: Role of cellular permeability alterations and pectic and cellulolytic enzymes in the maceration of carnation tissue by Pseudomonas caryophylli and Corynebacterium sp. Phytopathology 61, 476–483 (1971).

    CAS  Google Scholar 

  • Bretscher, M.S.: Membrane structure: some general principles. Science 181, 622–629 (1973).

    PubMed  CAS  Google Scholar 

  • Brown, W.: Studies in the physiology of parasitism. I. The action of Botrytis cinerea. Ann. Botany 29, 313–348 (1915).

    Google Scholar 

  • Bulos, B.A., Sacktor, B.: Assay for phospholipase A activity of snake venom with asolectin as substrate. Anal. Biochem. 42, 530–534 (1971).

    PubMed  CAS  Google Scholar 

  • Bush, D.A., Codner, R.C.: The nature of macerating factor of Peicillium digitatum Saccardo. Phytochemistry 7, 863–869 (1968).

    CAS  Google Scholar 

  • Byrde, R.J.W., Fielding, A.H.: Resolution of endopolygalacturonase and a macerating factor in a fungal culture filtrate. Nature 196, 1227–1228 (1962).

    CAS  Google Scholar 

  • Byrde, R.J.W., Fielding, A.H.: Pectin methyl-trans-eliminase as the maceration factor of Sclerotinia fructigena and its significance in brown rot of apple. J. Gen. Microbiol. 52, 287–297 (1968).

    CAS  Google Scholar 

  • Byrde, R.J.W., Fielding, A.H., Archer, S.A., Davies, E.: The role of extracellular enzymes in the rotting of fruit tissue by Sclerotinia fructigena. In: Fungal Pathogenicity and the Plant’s Response p. 39–54. (R.J.W. Byrde, C.V. Cutting, eds.). London: Academic Press 1973.

    Google Scholar 

  • Calonge, F.D., Fielding, A.H., Byrde, R.J.W., Akinrefon, O.A.: Changes in ultrastructure following fungal invasion and the possible relevance of extracellular enzymes. J. Exptl. Botany 20, 350–357 (1969).

    CAS  Google Scholar 

  • Carraway, K.L., Kobylka, D., Triplett, R.B.: Surface proteins of erythrocyte membranes. Biochem. Biophys. Acta 241, 934–940 (1971).

    PubMed  CAS  Google Scholar 

  • Cole, A.L.J., Bateman, D.F.: Arabinase production by Sclerotium rolfsii. Phytopathology 59, 1750–1753 (1969).

    PubMed  CAS  Google Scholar 

  • Cole, A.L.J., Sturdy, M.L.: Hemicellulolytic enzymes associated with infection of potato tubers by Fusarium caeruleum and Phytophthora erythroseptica. (Abstr.) 2nd Int. Cong. Plant Pathol., Minneapolis, Minn, 964 (1973).

    Google Scholar 

  • Cole, A.L.J., Wood, R.K.S.: Production of hemicellulases by Penicillium digitatum. Phytochemistry 9, 695–699 (1970).

    CAS  Google Scholar 

  • Cole, M.: Oxidation products of leuco-anthocyanins as inhibitors of fungal polygalacturonase in rotting apple fruit. Nature 181, 1596–1597 (1958).

    CAS  Google Scholar 

  • Cole, M., Wood, R.K.S.: Pectic enzymes and phenolic substances in apples rotted by fungi. Ann. Botany 25, 435–452 (1961).

    CAS  Google Scholar 

  • Collander, R.: Cell membranes: their resistance to penetration and their capacity for transport, vol. II, p. 3–102. In: Plant Physiology (F.C. Steward, ed.), New York: Academic Press 1959.

    Google Scholar 

  • Condrea, E., De Vries, A.: Venom phospholipase A: a review. Toxicon 2, 261–273 (1965).

    CAS  Google Scholar 

  • Cook, G.M.W.: Membrane structure and function. Ann. Rev. Plant Physiol. 22, 97–120 (1971).

    CAS  Google Scholar 

  • Cooper, R.M., Wood, R.K.S.: Regulation of synthesis of cell wall degrading enzymes by Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici. Physiol. Plant Pathol. 5, 135–156 (1975).

    CAS  Google Scholar 

  • Cowling, E.B., Brown, W.: Structural features of cellulosic materials in relation to enzymatic hydrolysis. In: Cellulases and their Application. Advances in Chemistry, Series 95, p. 152–187 (R.F. Gould, ed.). Washington, D.C.: Amer. Chem. Soc. 1969.

    Google Scholar 

  • Cronshaw, D.K., Wood, R.K.S.: An analysis of the Mussell and Morre quantitative bioassay for polygalacturonases using pectate trans-eliminase from Erwinia atroseptica. Ann. Botany 37, 463–471 (1973).

    CAS  Google Scholar 

  • Davison, F.R., Willaman, J.J.: Biochemistry of plant diseases. IX. Pectic enzymes. Botan. Gaz. 83, 329–361 (1927).

    CAS  Google Scholar 

  • Dean, M., Wood, R.K.S.: Cell wall degradation by a pectate trans-eliminase. Nature 214, 408–410 (1967).

    PubMed  CAS  Google Scholar 

  • De Bary, A.: Über einige Sclerotinien und Sclerotienkrankheiten. Botan. Z. 44, 377–379 (1886).

    Google Scholar 

  • De Haas, G.H., Postema, N.M., Nieuwenhuizen, W., Van Deenen, L.L.M.: Purification and properties of phospholipase A from porcine pancreas. Biochim. Biophys. Acta 159, 103–117(1968).

    PubMed  Google Scholar 

  • Dehority, B.A., Johnson, R.R., Conrad, H.R.: Digestibility of forage hemicellulose and pectin by rumen bacteria in vitro and the effect of lignification thereon. J. Dairy Sci. 45, 508–512 (1962).

    Google Scholar 

  • Demain, A.L., Phaff, H.J.: Recent advances in the enzymatic hydrolysis of pectic substances. Wallerstein Lab. Commun. 20, 119–140 (1957).

    Google Scholar 

  • Deverall, B.J., Wood, R.K.S.: Chocolate spot of beans (Vicia faba L.) — interactions between phenolase of host and pectic enzymes of the pathogen. Ann. Appl. Biol. 49, 473–487 (1961).

    CAS  Google Scholar 

  • Dingle, J., Reid, W.W., Solomons, G.L.: The enzymatic degradation of pectin and other polysaccharides. II. Application of the “cup-plate” assay to the estimation of enzymes. J. Sci. Food Agric. 4, 149–155 (1953).

    CAS  Google Scholar 

  • Doery, H.M., Magnusson, B.J., Gulasekharam, J., Pearson, J.E.: The properties of phospholipase enzymes in staphylococcal toxins. J. Gen. Microbiol. 40, 283–296 (1965).

    PubMed  CAS  Google Scholar 

  • Earnshaw, M.J., Truelove, B.: Swelling of Phaseolus mitochondria induced by the action of phospholipase A. Plant Physiol. 45, 322–326 (1970).

    PubMed  CAS  Google Scholar 

  • English, P.D., Jurale, J.B., Albersheim, P.: Host-pathogen interactions. II. Parameters affecting polysaccharide-degrading enzyme secretion by Colletotrichum lindemuthianum grown in culture. Plant Physiol. 47, 1–6 (1971).

    PubMed  CAS  Google Scholar 

  • English, P.D., Maglothin, A., Keegstra, K., Albersheim, P.: A cell wall degrading endopoly-galacturonase secreted by Colletotrichum lindemuthianum. Plant Physiol. 49, 293–298 (1972).

    PubMed  CAS  Google Scholar 

  • Farkas, G.L., Kiraly, Z.: Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopathol. Z. 44, 105–150 (1962).

    CAS  Google Scholar 

  • Fergus, B.J., Frocter, A.R., Scott, J.A.N., Goring, D.A.I.: The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci. and Technol. 3, 117–138 (1969).

    Google Scholar 

  • Ferrari, L., Garibaldi, A., Matta, A.: Polygalacturonase and polygalacturonate trans-eliminase production in vitro and in vivo by Fusarium oxysporum f. sp. lycopersici. Phytopathol. Z. 81, 1–14 (1974).

    Google Scholar 

  • Fisher, M.L., Anderson, A.J., Albersheim, P.: Host pathogen interactions. VI. A single plant protein efficiently inhibits endopolygalacturonases secreted by Colletotrichum lindemuthianum and Aspergillus niger. Plant Physiol. 51, 489–491 (1973).

    PubMed  CAS  Google Scholar 

  • Fox, R.T.V., Manners, J.G., Myers, A.: Ultrastructure of entry and spread of Erwinia carotovora var. atroseptica into potato tubers. Potato Res. 14, 61–73 (1971).

    CAS  Google Scholar 

  • Fox, R.T.V., Manners, J.G., Myers, A.: Ultrastructure of tissue disintegration and host reactions in potato tubers infected by Erwinia carotovora var. atroseptica. Potato Res. 15, 130–145 (1972).

    Google Scholar 

  • Francki, R.I.B., Zaitlin, M., Jensen, R.G.: Metabolism of separated leaf cells. II. Uptake and incorporation of protein and ribonucleic acid precursors by tobacco cells. Plant Physiol. 48, 14–18 (1971).

    PubMed  CAS  Google Scholar 

  • Freudenberg, K.: The constitution and biosynthesis of lignin. In: The Constitution and Biosynthesis of Lignin, p. 47–122 (K. Freudenberg, A. Neish, eds.). New York: Springer-Verlag 1968.

    Google Scholar 

  • Frey-Wyssling, A.: The ultrastructure and biogenesis of native cellulose. Fortschr. Chem. Org. Naturstoffe 27, 1–30 (1969).

    CAS  Google Scholar 

  • Friedman, B.A.: Physiological differences between a virulent and a weakly virulent radiation-induced strain of Erwinia carotovora. Phytopathology 52, 328–332 (1962).

    CAS  Google Scholar 

  • Friedman, B.A., Jaffe, M.J.: Effect of soft rot bacteria and pectolytic enzymes on electrical conductance of witloof chicory tissue. Phytopathology 50, 272–274 (1960).

    CAS  Google Scholar 

  • Fuchs, A., Jobsen, J.A., Wouts, W.M.: Arabanases in phytopathogenic fungi. Nature 206, 714–715 (1965).

    CAS  Google Scholar 

  • Fushtey, S.G.: Studies in the physiology of parasitism. XXIV. Further experiments on the killing of plant cells by fungal and bacterial extracts. Ann. Botany (N.S.) 21, 273–286 (1957).

    Google Scholar 

  • Galliard, T.: The enzymatic deacylation of phospholipids and galactolipids in plants. Biochem. J. 121, 379–390 (1971).

    PubMed  CAS  Google Scholar 

  • Garibaldi, A., Bateman, D.F.: Pectic enzymes produced by Erwinia chrysanthemi and their effects on plant tissue. Physiol. Plant Pathol. 1, 25–40 (1971).

    CAS  Google Scholar 

  • Gatt, S., Barenholz, Y.: Enzymes of complex lipid metabolism. Ann. Rev. Biochem. 42, 61–90 (1973).

    PubMed  CAS  Google Scholar 

  • Goldman, M.: Fluorescent Antibody Methods. New York: Academic Press 1968.

    Google Scholar 

  • Gould, R.F. (ed.): Cellulases and their Application. Advances in Chemistry. Series No. 95. Washington, D.C.: Am. Chem. Soc. 1969.

    Google Scholar 

  • Habermann, E., Hardt, K.L.: A sensitive and specific plate test for the quantitation of phospholipases. Anal. Biochem. 50, 163–173 (1972).

    PubMed  CAS  Google Scholar 

  • Hall, J.A., Wood, R.K.S.: Plant cells killed by soft rot parasites. Nature 227, 1266–1267 (1970).

    PubMed  CAS  Google Scholar 

  • Hall, J.A., Wood, R.K.S.: The killing of plant cells by pectolytic enzymes. In: Fungal Pathogenicity and the Plant’s Response, p. 19–38 (R.J.W. Bryde, C.V. Cutting, eds.). London: Academic Press 1973.

    Google Scholar 

  • Halliwell, G.: Measurement of cellulase and factors affecting its activity. In: Advances in Enzymic Hydrolysis of Cellulose and Related Materials, p. 71–92. (E.T. Reese, ed.). New York: Pergamon Press 1963.

    Google Scholar 

  • Halliwell, G.: Solubilization of native and derived forms of cellulose by cell-free microbial enzymes. Biochem. J. 100, 315–320 (1966).

    PubMed  CAS  Google Scholar 

  • Halliwell, G., Mohammed, R.: Interactions between components of the cellulase complex of Trichoderma koningii on native substrates. Arch. Mikrobiol. 78, 295–309 (1971).

    PubMed  CAS  Google Scholar 

  • Hancock, J.G.: degradation of pectic substances associated with pathogenesis by Sclerotinia sclerotiorum in sunflower and tomato stems. Phytopathology 56, 975–979 (1966a).

    CAS  Google Scholar 

  • Hancock, J.G.: Pectate lyase production by Colletotrichum trifolii in relation to changes in pH. Phytopathology 56, 1112–1113 (1966b).

    CAS  Google Scholar 

  • Hancock, J.G.: Hemicellulose degradation in sunflower hypocotyls infected with Sclerotinia sclerotiorum. Phytopathology 57, 203–206 (1967).

    CAS  Google Scholar 

  • Hancock, J.G.: degradation of pectic substances during pathogenesis by Fusarium solani f. sp. Cucurbitae. Phytopathology 58, 62–69 (1968 a).

    CAS  Google Scholar 

  • Hancock, J.G.: The effect of infection by Hypomyces solani f. sp. Cucurbitae on apparent free space, cell membrane permeability and respiration of squash hypocotyls. Plant Physiol. 43, 1666–1672 (1968 b).

    PubMed  CAS  Google Scholar 

  • Hancock, J.G.: Changes in cell membrane permeability in sunflower hypocotyls infected with Sclerotinia sclerotiorum. Plant Physiol. 49, 358–364 (1972).

    PubMed  CAS  Google Scholar 

  • Hancock, J.G., Millar, R.L.: Association of cellulolytic, proteolytic, and xylolytic enzymes with southern anthracnose, spring black stem, and Stemphyllium leaf spot of alfalfa. Phytopathology 55, 356–360 (1965).

    Google Scholar 

  • Hashimoto, S., Muramatsu, T., Funatsu, M.: Studies on xylanase from Trichoderma viride. I. Isolation and some properties of crystalline xylanase. Agr. Biol. Chem. (Tokyo) 35, 501–508 (1971).

    CAS  Google Scholar 

  • Heath, M.C., Wood, R.K.S.: Role of cell-wall-degrading enzymes in the development of leaf spots caused by Ascochyta pisi and Mycosphaerella pinodes. Ann. Botany 35, 451–474 (1971).

    CAS  Google Scholar 

  • Hodges, T.K., Leonard, R.T., Bracker, C.W., Keenan, T.W.: Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc. Natl. Acad. Sci. U.S. 69, 3307–3311 (1972).

    CAS  Google Scholar 

  • Hoppe, H.H., Heitefuss, R.: Permeability and membrane lipid metabolism of Phaseolus vulgaris infected with Uromyces phaseoli. III. Changes in relative concentration of lipid bound fatty acids and phospholipase activity. Physiol. Plant Pathol. 4, 11–24 (1974).

    CAS  Google Scholar 

  • Horsfall, J.G., Dimond, A.E.: Interactions of tissue sugar, growth substances and disease susceptibility. Z. Pflanzenkrankh. Pflanzenpathol. Pflanzenschutz 64, 415–421 (1957).

    CAS  Google Scholar 

  • Horton, J.C., Keen, N.T.: Sugar repression of endopolygalacturonase and cellulase synthesis during pathogenesis by Pyrenochaeta terrestris as a resistance mechanism in onion pink root. Phytopathology 56, 908–916 (1966).

    CAS  Google Scholar 

  • Hrazdina, G., Neukom, H.: Isolation of a xylanase from a commercial cellulase preparation. Biochim. Biophys. Acta 128, 402–403 (1966).

    PubMed  CAS  Google Scholar 

  • Huang, J.S., Goodman, R.N.: The relationship of phosphatidase activity to the hypersensitive reaction in tobacco induced by bacteria. Phytopathology 60, 1020–1021 (1970).

    CAS  Google Scholar 

  • Ito, A., Sato, R.: Proteolytic microdissection of smooth-surfaced vesicles of liver microsomes. J. Cell Biol. 40, 179–189 (1969).

    PubMed  CAS  Google Scholar 

  • Jansen, E.F., Jang, R., Bonner, J.: Binding of enzymes to Avena coleoptile cell walls. Plant Physiol. 35, 567–574 (1960).

    PubMed  CAS  Google Scholar 

  • Jensen, R.G., Francki, R.I.B., Zaitlin, M.: Metabolism of separated leaf cells. I. Preparation of photosynthetically active cells from tobacco. Plant Physiol. 48, 9–13 (1971).

    PubMed  CAS  Google Scholar 

  • Jones, L.R.: The bacterial soft rots of certain vegetables. II. Pectinase, the cytolytic enzyme produced by Bacillus carotovorus and certain other soft-rot organisms. Tech. Bull. Vt. Agric. Exp. Sta. 147, 283–360 (1909).

    Google Scholar 

  • Jones, T.M., Albersheim, P.: A gas chromatographic method for determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 49, 926–936 (1972).

    PubMed  CAS  Google Scholar 

  • Jones, T.M., Anderson, A.F., Albersheim, P.: Host-pathogen interactions. IV. Studies on the polysaccharide-degrading enzymes secreted by Fusarium oxysporum f. sp. lycopersici. Physiol. Plant. Pathol. 2, 153–166 (1972).

    CAS  Google Scholar 

  • Joslyn, M.A.: The chemistry of protopectin: a critical review of historical data and recent developments. Advan. Food Res. 11, 1–107 (1962).

    CAS  Google Scholar 

  • Kaji, A.: Studies on macerating enzyme acting on middle lamella pectin. III. Separation of the macerating enzyme by Duolite CS-101. Tech. Bull. Fac. Agric, Kagawa Univ. 9, 141–145 (1958).

    CAS  Google Scholar 

  • Kaji, A., Ohsaki, T., Yoshihara, O.: Acid-stable β-1,3-D-glucanase produced by Corticium rolfsii. J. Agr. Chem. Soc. (Japan) 45, 278–283 (1971).

    CAS  Google Scholar 

  • Kaji, A., Tagawa, K., Motoyama, K.: Studies on the enzymes acting on araban. VII. Properties of arabanase produced by plant pathogens. J. Agr. Chem. Soc. (Japan) 39, 352–357 (1965).

    CAS  Google Scholar 

  • Kaji, A., Yoshihara, O.: Production of α-L-arabinofuranosidase from various strains of Corticium rolfsii. Agr. Biol. Chem. (Tokyo) 34, 1249–1253 (1970).

    CAS  Google Scholar 

  • Karr, A.L., Albersheim, P.: Polysaccharide degrading enzymes are unable to attack plant cell walls without prior action by a “wall-modifying enzyme”. Plant Physiol. 46, 69–80 (1970).

    PubMed  CAS  Google Scholar 

  • Keck, R.W., Hodges, T.K.: Membrane permeability in plants: Changes induced by host-specific pathotoxins. Phytopathology 63, 226–230 (1973).

    CAS  Google Scholar 

  • Keegstra, K., Talmadge, K.W., Bauer, W.D., Albersheim, P.: The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on interconnections of the macromolecular components. Plant Physiol. 51, 188–197 (1973).

    PubMed  CAS  Google Scholar 

  • Keen, N.T., Horton, J.C.: Induction and repression of endopolygalacturonase synthesis by Pyrenochaeta terrestris. Canad. J. Microbiol. 12, 443–453 (1966).

    CAS  Google Scholar 

  • Keen, N.T., Williams, P.H., Upper, CD.: A re-evaluation of the “protease” from Pseudomonas lachrymans: isolation of a fraction producing noncatalytic solubilization of proteins in trichloroacetic acid. Phytopathology 59, 703–704 (1969).

    CAS  Google Scholar 

  • Keen, N.T., Williams, P.H., Walker, J.C.: Characterization of a protease produced by Pseudomonas lachrymans. Phytopathology 57, 257–262 (1967 a).

    PubMed  CAS  Google Scholar 

  • Keen, N.T., Williams, P.H., Walker, J.C: Protease of Pseudomonas lachrymans in relation to cucumber angular leaf spot. Phytopathology 57, 263–271 (1967b).

    PubMed  CAS  Google Scholar 

  • Kelman, A., Cowling, E.B.: Cellulase of Pseudomonas solanacearum in relation to pathogenesis. Phytopathology 55, 148–155 (1965).

    Google Scholar 

  • Kern, H., Naef-Roth, S.: Phytolysin, ein durch pflanzenpathogene Pilze gebildeter mazerierender Faktor. Phytopath. Z. 71, 231–246 (1971).

    CAS  Google Scholar 

  • Kertesz, Z.I.: The Pectic Substances. New York: Interscience Publishers 1951.

    Google Scholar 

  • King, K.W., Vessal, M.I.: Enzymes of the cellulase complex. In: Cellulases and their Applications. Advances in Chemistry, Series No. 95, p. 7–25 (R.F. Gould, ed.), Wash., D.C.: Amer. Chem. Soc. 1969.

    Google Scholar 

  • King, N.J., Fuller, D.B.: The xylanase system of Coniophora cerebella. Biochem. J. 108, 571–576 (1968).

    PubMed  CAS  Google Scholar 

  • Kirk, T.K.: Effects of microorganisms on lignin. Ann. Rev. Phytopathol. 9, 185–210 (1971).

    CAS  Google Scholar 

  • Knee, M., Friend, J.: Extracellular “galactanase” activity from Phytophthora infestans (Mont.) de Bary. Phytochemistry 7, 1289–1291 (1968).

    CAS  Google Scholar 

  • Korn, E.D.: Structure of biological membranes. Science 153, 1491–1498 (1966).

    PubMed  CAS  Google Scholar 

  • Korn, E.D.: Cell membranes: structure and synthesis. Ann. Rev. Biochem. 38, 263–288 (1969).

    PubMed  CAS  Google Scholar 

  • Kuć, J., Williams, E.B.: Production of preoteolytic enzymes by four pathogens of apple fruit. Phytopathology 52, 739 (Abstr.) (1962).

    Google Scholar 

  • Kunitz, M.: Crystalline soybean trypsin inhibitor. II. General properties. J. Gen. Physiol. 30, 291–310 (1947).

    PubMed  CAS  Google Scholar 

  • Lai, M.T., Weinhold, A.R., Hancock, J.G.: Permeability changes in Phaseolus aureus associated with infection by Rhizoctonia solani. Phytopathology 58, 240–245 (1968).

    Google Scholar 

  • Lai, Y.F., Thompson, J.E.: The preparation and properties of an isolated plant membrane fraction enriched in (Na+-K+)-stimulated ATPase. Biochim. Biophys. Acta 233, 84–90 (1971).

    PubMed  CAS  Google Scholar 

  • Lamport, D.T.A.: Cell wall metabolism. Ann. Rev. Plant Physiol. 21, 235–270 (1970).

    CAS  Google Scholar 

  • Lamport, D.T.A., Katona, L., Roerig, S.: Galactosylserine in extensin. Biochem. J. 133, 125–132 (1973).

    PubMed  CAS  Google Scholar 

  • Linskens, H.F., Haage, P.: Cutinase-Nachweis in phytopathogenen Pilzen. Phytopathol. Z. 48, 306–311 (1963).

    Google Scholar 

  • Lovrekovich, L., Lovrekovich, H., Stahmann, M.A.: Inhibition of phenol oxidation by Erwinia carotovora in potato tuber tissue and its significance in disease resistance. Phytopathology 57, 737–742 (1967).

    PubMed  CAS  Google Scholar 

  • Lowenstein, J.M. (ed.): Methods in Enzymology. Vol. XIV. Lipids. New York: Academic Press 1969.

    Google Scholar 

  • Lumsden, R.D.: Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology 59, 653–657 (1969).

    CAS  Google Scholar 

  • Lumsden, R.D.: Phosphatidase of Sclerotinia sclerotiorum produced in culture and in infected bean. Phytopathology 60, 1106–110 (1970).

    CAS  Google Scholar 

  • Lumsden, R.D., Bateman, D.F.: Phosphatide-degrading enzymes associated with pathogensis in Phaseolus vulgaris infected with Thielaviopsis basicola. Phytopathology 58, 219–227 (1968).

    CAS  Google Scholar 

  • Lund, B.M.: The effect of certain bacteria on ethylene production by plant tissue. In: Fungal Pathogenicity and the Plant’s Response, p. 69–86 (R.J.W. Byrde, C.V. Cutting, eds.). London: Academic Press 1973.

    Google Scholar 

  • Mahadevan, A., Kuć, J., Williams, E.B.: Biochemistry of resistance in cucumber against Cladosporium cucumerinum. I. Presence of a pectinase inhibitor in resistant plants. Phytopathology 55, 1000–1003 (1965).

    CAS  Google Scholar 

  • Marsh, P.B.: A test for detecting the effects of micro-organism and of a microbial enzyme on cotton fiber. Plant Disease Rep. 37, 71–76 (1953).

    Google Scholar 

  • Marsh, P.B., Simpson, M.E.: Enzymatic fragmentation of cotton fiber. Phytopathology 54, 747 (Abstr.) (1964).

    Google Scholar 

  • Matsubara, H., Feder, J.: Other bacterial, mold, and yeast proteases. In: The Enzymes. Vol. III. Hydrolysis: Peptide Bonds. 3rd ed., p. 721–795 (P.D. Boyer, ed.). New York: Academic Press 1970.

    Google Scholar 

  • Maxwell, D.P.: Oxalate formation in Whetzelinia sclerotiorum by oxaloacetate acetylhydrolase. Physiol. Plant. Pathol. 3, 279–288 (1973).

    CAS  Google Scholar 

  • Maxwell, D.P., Bateman, D.F.: Changes in the activities of some oxidases in extracts of Rhizoctonia-infected bean hypocotyls in relation to lesion maturation. Phytopathology 57, 132–136 (1967).

    CAS  Google Scholar 

  • McClendon, J.H.: Evidence for the pectic nature of the middle lamella of potato tuber cell walls based on chromatography of macerating enzymes. Am. J. Botany 51, 628–633 (1964).

    CAS  Google Scholar 

  • McClendon, J.H., Somers, G.F.: The enzymatic maceration of plant tissues: Observations using a new method of measurement. Am. J. Botany 47, 1–7 (1960).

    CAS  Google Scholar 

  • McColloch, R.J., Kertesz, Z.I.: Pectic enzymes. VIII. A comparison of fungal pectin-methylesterase and that of higher plants, especially tomatoes. Arch. Biochem. 13, 217–229 (1947).

    PubMed  CAS  Google Scholar 

  • McMurray, W.C., Magee, W.L.: Phospholipid metabolism. Ann. Rev. Biochem. 41, 129–160 (1972).

    PubMed  CAS  Google Scholar 

  • Metlitskii, L.V., Ozeretskovskaya, O.L.: Plant immunity. New York: Plenum Press 1968.

    Google Scholar 

  • Mirocha, C.J.: Phytotoxins and metabolism. In: Phytotoxins in Plant Diseases, p. 191–208 (R.K.S. Wood, A. Bullio, A. Graniti, eds.). London: Academic Press 1972.

    Google Scholar 

  • Moran, F., Starr, M.P.: Metabolic regulation of polygalacturonic acid trans-eliminase in Erwinia. Europ. J. Biochem. 11, 291–295 (1969).

    PubMed  CAS  Google Scholar 

  • Morre, D.J., Roland, J.C., Lembi, C.A.: Comparison of isolated plasma membranes from plant stems and rat liver. Proc. Indiana Acad. Sci. 79, 96–106 (1969).

    CAS  Google Scholar 

  • Mount, M.S., Bateman, D.F., Basham, H.G.: Induction of electrolyte loss, tissue maceration, and cellular death of potato tissue by an endo-polygalacturonate trans-eliminase. Phytopathology 60, 924–931 (1970).

    CAS  Google Scholar 

  • Mühlethaler, K.: Ultrastructure and formation of plant cell walls. Ann. Rev. Plant Physiol. 18, 1–24 (1967).

    Google Scholar 

  • Mullen, J.M.: Enzymatic degradation of potato cell walls by Fusarium roseum (Lk.) Snyd. and Hans. ‘Avenaceum’. Ph. D. Thesis. Cornell Univ. (1974).

    Google Scholar 

  • Mullen, J.M., Bateman, D.F.: Production of an endo-polygalacturonate trans-eliminase by a potato dry-rot pathogen, Fusarium roseum ‘Avenaceum’ in culture and in diseased tissue. Physiol. Plant. Pathol. 1, 363–373 (1971).

    CAS  Google Scholar 

  • Mussell, H.W.: Endopolygalacturonase: evidence for involvement in Verticillium wilt of cotton. Phytopathology 63, 62–70 (1973).

    CAS  Google Scholar 

  • Mussell, H.W., Morre, D.J.: A quantitative bioassay specific for polygalacturonases. Anal. Biochem. 28, 353–360 (1969).

    PubMed  CAS  Google Scholar 

  • Mussell, H.W., Strouse, B.: Characterization of two polygalacturonases produced by Verticillium albo-atrum. Canad. J. Biochem. 50, 625–632 (1972).

    CAS  Google Scholar 

  • Naef-Roth, S., Gäumann, E., Albersheim, P.: Zur Bildung eines mazerierenden Fermentes durch Dothidea ribesia Fr. Phytopathol. Z. 40, 283–302 (1961).

    CAS  Google Scholar 

  • Nagel, C.W., Anderson, M.M.: Action of a bacterial transeliminase on normal and unsaturated oligogalacturonic acids. Arch. Biochem. Biophysics 112, 322–330 (1965).

    CAS  Google Scholar 

  • Nelson, N.: A photometric adaption of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380 (1944).

    CAS  Google Scholar 

  • Nelson, W.L., Ciaccio, E.I., Hess, G.P.: A rapid method for the quantitative assay of proteolytic enzymes. Anal. Biochem. 2, 39–44 (1961).

    PubMed  CAS  Google Scholar 

  • Neukom, H.: Über Farbreaktionen von Uronsäuren mit Thiobarbitursäure. Chimia (Aaraw) 14, 165–167 (1960).

    CAS  Google Scholar 

  • Nevins, D.J., English, P.D., Albersheim, P.: Changes in cell wall polysaccharides associated with growth. Plant Physiol. 43, 914–922 (1968).

    PubMed  CAS  Google Scholar 

  • Northcote, D.H.: The biology and chemistry of the cell walls of higher plants, algae, and fungi. Int. Rev. Cytol. 14, 223–265 (1963).

    PubMed  CAS  Google Scholar 

  • Northcote, D.H.: Chemistry of the plant cell wall. Ann. Rev. Plant Physiol. 23, 113–132 (1972).

    CAS  Google Scholar 

  • Ohad, I., Siekevitz, P., Palade, G.E.: Biogensis of choroplast membranes. I. Plastid dediffe-rentiation in a dark-grown algal mutant (Chlamydomonas reinhardi). J. Cell Biol. 35, 521–552 (1967).

    PubMed  CAS  Google Scholar 

  • Okamoto, K., Hatanaka, C., Ozawa, J.: A saccharifying pectate trans-eliminase of Erwinia aroideae. Agr. Biol. Chem. (Tokyo) 28, 331–336 (1964).

    CAS  Google Scholar 

  • Oseroff, A.R., Robbins, P.W., Burger, M.M.: The cell surface membrane: biochemical aspects and biophysical probes. Ann. Rev. Biochem. 42, 647–682 (1973).

    PubMed  CAS  Google Scholar 

  • Page, O.T.: Quantitative paper chromatographic techniques for the assay of products of polygalacturonase activity of fungus cultures. Phytopathology 51, 337–338 (1961).

    CAS  Google Scholar 

  • Page, O.T.: Effect of Phytotoxins on the permeability of cell membranes. In: Phytotoxins in Plant Diseases, p. 211–225 (R.K.S. Wood, A. Ballio, A. Graniti, eds.). London: Academic Press 1972.

    Google Scholar 

  • Patil, S.S., Dimond, A.E.: Inhibition of Verticillium polygalacturonase by oxidation products of polyphenols. Phytopathology 57, 492–496 (1967).

    PubMed  CAS  Google Scholar 

  • Patil, S.S., Dimond, A.E.: Repression of polygalacturonase synthesis in Fusarium oxysporum f. sp. lycopersici by sugars and its effect on symptom reduction in infected tomato plants. Phytopathology 58, 676–682 (1968).

    CAS  Google Scholar 

  • Pearl, I.A.: The Chemistry of Lignin. New York: Marcel dekker 1967.

    Google Scholar 

  • Perley, A.F., Page, O.T.: Differential induction of pectolytic enzymes of Fusarium roseum (Lk.) emend. Snyder and Hansen. Canad. J. Microbiol. 17, 415–420 (1971).

    CAS  Google Scholar 

  • Perlman, G.E., Lorand, L.: Methods in Enzymology. Vol. XIX. Proteolytic Enzymes. New York: Academic Press 1970.

    Google Scholar 

  • Perombelon, M., Hadley, G.: Production of pectic enzymes by pathogenic and symbiotic Rhizoctonia strains. New Phytologist 64, 144–151 (1965).

    CAS  Google Scholar 

  • Pilet, P.E.: Effect of wall-degrading enzymes on protoplasts transaminase activity. Experientia 29, 1206–1207 (1973).

    CAS  Google Scholar 

  • Porter, F.M.: Protease activity in diseased fruits. Phytopathology 56, 1424–1425 (1966).

    CAS  Google Scholar 

  • Preston, R.D.: Negative staining and cellulose microfibril size. J. Microscop. 93, 7–13 (1971).

    Google Scholar 

  • Pridham, J.B.: Phenolics in Plants in Health and Disease. New York: Pergamon Press 1959.

    Google Scholar 

  • Rautela, G.S., Cowling, E.B.: Simple cultural test for relative cellulolytic activity of fungi. Appl. Microbiol. 14, 892–898 (1966).

    PubMed  CAS  Google Scholar 

  • Rawlings, T.E., Takahashi, W.N.: Technics of Plant Histo-chemistry and Virology. Millbrae, Calif.: National Press 1952.

    Google Scholar 

  • Reddy, M.N., Stuteville, D.L., Sorenen, E.X.: Protease production during pathogenesis of bacterial leaf spot of alfalfa and by Xanthomonas alfalfae in vitro. Phytopathology 61, 361–365 (1971).

    CAS  Google Scholar 

  • Reese, E.T.: A microbiological progress report. Enzymatic hydrolysis of cellulose. Appl. Microbiol. 4, 39–45 (1956).

    PubMed  CAS  Google Scholar 

  • Reese, E.T. (ed.): Advances in enzymatic Hydrolysis of Cellulose and related Materials. New York: Pergamon Press 1963.

    Google Scholar 

  • Reese, E.T., Shibata, Y.: ß-Mannanases of fungi. Canad. J. Microbiol. 11, 167–183 (1965).

    CAS  Google Scholar 

  • Rehfeld, D.W., Jensen, R.G.: Metabolism of separated leaf cells. III. Effects of calcium and ammonium on product distribution during photosynthesis with cotton cells. Plant Physiol. 52, 17–22 (1973).

    PubMed  CAS  Google Scholar 

  • Riedel, R.M., Mai, W.F.: Pectinases in aqueous extracts of Ditylenchus dipsaci. J. Nematol. 3, 28–38 (1971).

    PubMed  CAS  Google Scholar 

  • Roland, J.C.: Mise en évidence sur coupes ultrafines de formations polysaccharides directement associées au plasmalemme. Comp. Rend. Ser. D 269, 939–942 (1969).

    CAS  Google Scholar 

  • Roland, J.C., Vian, B.: Réactivité du plasmalemme végétal: étude cytochimique. Protoplasma 73, 121–137 (1971).

    Google Scholar 

  • Rombouts, F.M.: Occurrence and properties of bacterial pectic lyases. Agric. Res. Rep. (Versl. Lanbouwk. Onderz.) 779, 1–132 (1972).

    Google Scholar 

  • Rombouts, F.M., Pilnik, W.: Research on pectin depolymerases in the sixties—a literature review. Chem. Rubb. Comp. Crit. Rev. Food Technol. 3, 1–26 (1972).

    CAS  Google Scholar 

  • Ruesink, A.W.: The plasma membrane of Avena coleoptile protoplasts. Plant Physiol. 47, 192–195 (1971).

    PubMed  CAS  Google Scholar 

  • Sadava, D., Chrispeels, M.J.: Hydroxyproline-rich cell wall protein (extensin): role in the cessation of elongation in excised pea epicotyls. develop. Biol. 30, 49–55 (1973).

    PubMed  CAS  Google Scholar 

  • Sadava, D., Walker, F., Chrispeels, M.J.: Hydroxyproline-rich cell wall protein (extensin): biosynthesis and accumulation in growing pea epicotyls. develop. Biol. 30, 42–48 (1973).

    CAS  Google Scholar 

  • Saito, K., Sato K.: Studies on the lecithinose from Penicillium notatum. Biochim. Biophys. Acta 151, 706–708 (19780.

    Google Scholar 

  • Sato, S.: Enzymatic maceration of plant tissue. Physiol. Plantar. 21, 1067–1075 (1968).

    CAS  Google Scholar 

  • Satomura, Y., Oi, S., Sawada, A., Fukomoto, J.: Purification and some properties of the lipase and phospholipase of Sclerotinia fungus. Bull. Agr. Chem. Soc. Japan 24, 329–333 (1960).

    CAS  Google Scholar 

  • Schubert, W.J.: Lignin Biochemistry. New York: Academic Press 1965.

    Google Scholar 

  • Sequeira, L.: Hormone metabolism in diseased plants. Ann. Rev. Plant Physiol. 24, 353–380 (1973).

    CAS  Google Scholar 

  • Sherwood, R.T.: Pectin lyase and polygalacturonose production by Rhizoctonia solani and other fungi. Phytopathology 56, 279–287 (1966).

    CAS  Google Scholar 

  • Shibata, Y., Fukimbara, T.: Enzymic hydrolysis of glucans containing β-1,3- and β-1,6-linkages. I. β-1,6-glucan hydrolase of fungi. J. Ferment. Technol. 50, 388–396 (1972).

    CAS  Google Scholar 

  • Siegel, S.M., Halpern, L.A.: Effects of peroxides on permeability and their modification by indoles, Vitamin E, and other substances. Plant Physiol. 40, 792–796 (1965).

    PubMed  CAS  Google Scholar 

  • Singer, S.J.: The molecular organization of biological membranes. In: Structure and Function of Biological Membranes, p. 145–222 (L.I. Rothfield, ed.). New York: Academic Press 1971.

    Google Scholar 

  • Singer, S.J.: The molecular organization of membranes. Ann. Rev. Biochem. 43, 805–833

    Google Scholar 

  • (1974).

    Google Scholar 

  • Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    PubMed  CAS  Google Scholar 

  • Smith, E.L.: Peptide bond cleavage (survey). In: The Enzymes, vol. IV, p. 1–10 (P.D. Boyer, H. Lardy, K. Myrback, eds.). New York: Academic Press 1960.

    Google Scholar 

  • Smith, I.: Chromatographic and Electrophoretic Techniques, vol. I. New York: Interscience Publishers 1960.

    Google Scholar 

  • Snyder, F., Stephens, N.: A simplified spectrophotometric determination of ester groups in lipids. Biochim. Biophys. Acta 34, 244–245 (1959).

    PubMed  CAS  Google Scholar 

  • Spalding, D.H.: Production of pectinolytic and cellulolytic enzymes by Rhizopus stolonifer. Phytopathology 53, 929–931 (1963).

    CAS  Google Scholar 

  • Spalding, D.H.: Toxic effect of macerating action of extracts of sweet potatoes rotted by Rhizopus stolonifer and its inhibition by ions. Phytopathology 59, 685–692 (1969).

    CAS  Google Scholar 

  • Spalding, D.H., Wells, J.M., Allison, D.W.: Catabolite repression of polygalacturonase, pectin lyase and cellulase synthesis in Penicillium expansum. Phytopathology 63, 840–844 (1973).

    CAS  Google Scholar 

  • Starr, M.P., Moran, F.: Eliminative split of pectic substances by phytopathogenic soft rot bacteria. Science 135, 920–921 (1962).

    PubMed  CAS  Google Scholar 

  • Stephens, S.J., Wood, R.K.S.: Killing of protoplasts by soft-rot bacteria. Physiol. Plant Pathol. 5, 165–181 (1975).

    CAS  Google Scholar 

  • Strobel, G.A.: A xylanase system produced by Diplodia viticola. Phytopathology 53, 592–596 (1963).

    CAS  Google Scholar 

  • Swinburne, T.R., Corden, M.E.: A comparison of the polygalacturonases produced in vivo and in vitro by Penicillium expansum Thorn. J. Gen. Microbiol. 55, 75–87 (1969).

    PubMed  CAS  Google Scholar 

  • Tagawa, K., Kaji, A.: Studies on pectolytic enzymes. XXI. Assay methods of enzymatic activity causing plant tissue maceration. Tech. Bull. Fac. Agr. Kagawo Univ. 17, 104–109 (1966).

    CAS  Google Scholar 

  • Talmadge, K.W., Keegstra, K., Bauer, W.D., Albersheim, P.: The structure of plant cell walls. I. The macromolecular components of the walls of suspension cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol. 51, 158–173 (1973).

    PubMed  CAS  Google Scholar 

  • Tani, T.: The relation of soft rot caused by pathogenic fungi to pectic enzyme production by the host. In: The Dynamic Role of Molecular Constituents in Plant-parasite Interaction, p. 40–57 (C.J. Mirocha, I. Uritani, eds.). St. Paul, Minn.: Am. Phytopathol. Soc. 1967.

    Google Scholar 

  • Thatcher, F.S.: Further studies of osmotic permeability relations in parasitism. Canad. J. Res. (C)20, 283–311 (1942).

    Google Scholar 

  • Thompson, G.A.: Cellular membranes. In: Plant Biochemistry, p. 64–88 (J. Bonner, J.E. Varner, eds.), New York: Academic Press 1965.

    Google Scholar 

  • Tribe, H.T.: Studies in the physiology of parasitism. XIX. On the killing of plant cells by enzymes from Botrytis cinerea and Bacterium aroideae. Ann. Botany (N.S.) 19, 351–368 (1955).

    Google Scholar 

  • Tseng, T.C., Bateman, D.F.: Production of phosphatidases by phytopathogens. Phytopathology 58, 1437–1438 (1968).

    CAS  Google Scholar 

  • Tseng, T.C., Bateman, D.F.: A phosphatidase produced by Sclerotium rolfsii. Phytopathology 59, 359–363 (1969).

    PubMed  CAS  Google Scholar 

  • Tseng, T.C., Chang, L.H.: Phosphatidases produced by some fungal rice pathogens in vitro. Bot. Bull. Acad. Sinica 11, 120–122 (1970).

    Google Scholar 

  • Tseng, T.C., Mount, M.S.: Toxicity of endopolygalacturonate trans-eliminase, phosphotidase, and protease to potato and cucumber tissue. Phytopathology 64, 229–236 (1974).

    CAS  Google Scholar 

  • Ulrich, J. M.: Pectic enzymes of Pseudomonas cepacia and penetration of polygalacturonase into cells. Physiol. Plant Pathol. 5, 37–44 (1975).

    CAS  Google Scholar 

  • Uritani, I., Stahmann, M. A.: Pecto lytic enzymes of Ceratocystis fimbriata. Phytopathology 51, 277–285 (1961).

    CAS  Google Scholar 

  • Van Den Ende, G., Linskens, H.F.: Cutinolytic enzyme in relation to pathogensis. Ann. Rev. Phytopathol. 12, 247–258 (1974).

    Google Scholar 

  • Van Etten, H.D.: Endopeptidases and cell wall degrading enzymes associated with bean hypocotyls infected with Rhizoctonia solani Kuhn. M.S. Thesis. Cornell Univ., Ithaca, N.Y. (1966).

    Google Scholar 

  • Van Etten, H.D., Bateman, D.F.: Proteolytic activity in extracts of Rhizoctonia-infected bean hypocotyls. Phytopathology 55, 1285 (Abstr.) (1965).

    Google Scholar 

  • Van Etten, H.D., Bateman, D.F.: Enzymatic degradation of galactan, galactomannan, and xylan by Sclerotium rolfsii. Phytopathology 59, 968–972 (1969).

    PubMed  Google Scholar 

  • Van Sumere, C.F., Van Sumere-de Preter, C., Ledingham, G.A.: Cell wall-splitting enzymes of Puccinia gram in is var. tritici. Canad. J. Microbiol. 3, 761–770 (1957).

    Google Scholar 

  • Verhoeff, K., Warren, J.M.: In vitro and in vivo production of cell wall degrading enzymes of Botrytis cinerea from tomato. Neth. J. Plant Pathol. 78, 179–185 (1972).

    CAS  Google Scholar 

  • Walker, D.J.: Some properties of xylanase and xylobiase from mixed rumen organisms. Australian J. Biol. Sci. 20, 799–808 (1967).

    CAS  Google Scholar 

  • Walsh, K.H., Wilcox, D.E.: Serine proteases. In: Methods in Enzymology. Proteolytic Enzymes, vol. XIX, p. 31–41 (G.E. Perlman; L. Lorand, eds.). New York: Academic Press

    Google Scholar 

  • 1970.

    Google Scholar 

  • Weinstein, R.S., Bullivant, S.: The application of freeze-cleaving techniques to studies in red blood cell fine structure. Blood J. Hematol. 29, 780–789 (1967).

    CAS  Google Scholar 

  • Weissbach, A., Hurwitz, J.: The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J. Biol. Chem. 234, 705–709 (1959).

    PubMed  CAS  Google Scholar 

  • Wheeler, H., Hanchey, P.: Permeability phenomena in plant disease. Ann. Rev. Phytopathol. 6, 331–350 (1968).

    Google Scholar 

  • Williamson, B., Hadley, G.: Penetration and infection of orchid protocorms by Thanatephorus cucumeris and other Rhizoctonia isolates. Phytopathology 60, 1092–1096 (1970).

    Google Scholar 

  • Wilson, C.L.: A lysosomal concept for plant pathology. Ann. Rev. Phytopathol. 11, 247–272 (1973).

    Google Scholar 

  • Wood, R.K.S.: Physiological Plant Pathology. Oxford: Blackwell Scientific Publ., Ltd. 1967.

    Google Scholar 

  • Wood, R.K.S.: The killing of plant cells by soft rot parasites. In: Phytotoxins in Plant Diseases, p. 272–288 (R.K.S. Wood, A. Ballio, A. Graniti, eds.). London: Academic Press 1972.

    Google Scholar 

  • Wood, R.K.S.: Specificity in plant diseases. In: Fungal Pathogenicity and the Plant’s Response, p. 1–16 (R.J.W. Byrde, C.V. Cutting, eds.). London: Academic Press 1973.

    Google Scholar 

  • Wood, R.K.S., Ballio, A., Graniti, A.: Phytotoxins in Plant Diseases. London: Academic Press 1972.

    Google Scholar 

  • Zaitlin, M., Coltrin, D.: Use of pectic enzymes in a study of the nature of the intercellular cement of tobacco leaf cells. Plant Physiol. 39, 91–95 (1964).

    PubMed  CAS  Google Scholar 

  • Zucker, M., Hankin, L.: Inducible pectate lyase synthesis and phytopathogenicity of Pseudomonas fluorescens. Canad. J. Microbiol. 10, 1313–1318 (1971).

    Google Scholar 

  • Zwaal, R.F.A., Roelofsen, B., Comfurius, P., Van Deenen, L.L.M.: Complete purification and some properties of phospholipase C from Bacillus cereus. Biochim. Biophys. Acta 233, 474–479 (1971).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Bateman, D.F., Basham, H.G. (1976). Degradation of Plant Cell Walls and Membranes by Microbial Enzymes. In: Heitefuss, R., Williams, P.H. (eds) Physiological Plant Pathology. Encyclopedia of Plant Physiology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66279-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66279-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66281-2

  • Online ISBN: 978-3-642-66279-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics