Skip to main content

Preformed Substances as Potential Protectants

  • Chapter
Physiological Plant Pathology

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 4))

Abstract

Plant resistance to pathogens based on preformed inhibitory substances is easy to conceive, but despite extensive studies, reviewed by Walker and Stahmann (1955), Allen (1959), Farkas and Kiraly (1962), Tomiyama (1963), Rohringer and Samborski (1967) and Wood (1967) there are only a few well-documented examples. Preformed resistance is often based on inadequate evidence; mainly the demonstration that a crude extract of a plant resistant to a pathogen contains material which reduces the growth of the pathogen in vitro. Therefore, we would like to stress some of the points which Wood (1967) considers as additional evidence required before resistance can reasonably be attributed to a particular substance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim, P., Anderson, A.J.: Host-pathogen interactions. III. Proteins from plant cell wall inhibit polygalacturonase secreted by plant pathogens. Proc. Natl. Acad. Sci. U.S. 68, 1815–1819(1971).

    CAS  Google Scholar 

  • Allen, P.J.: Physiology and Biochemistry of defense. In: Plant Pathology, vol. I, p. 435–467, (J.G. Horsfall, A.E. Diamond, eds.), New York-London: Academic Press 1959.

    Google Scholar 

  • Allen, E.H., Kuc, J.: Solanine and chaconine as fungitoxic compounds in extracts of Irish potato tubers. Phytopathology 58, 776–781 (1968).

    CAS  Google Scholar 

  • Anderson, A.J., Albersheim, P.: Host-pathogen interactions. V. Comparison of the abilities of proteins isolated from three varieties of Phaseolus vulgaris to inhibit the endopolygalactu-ronases secreted by three races of Colletotrichum lindemuthianum. Physiol. Plant Pathol. 2, 339–346 (1972).

    CAS  Google Scholar 

  • Anschel, M.: Biogenesis and biological activity of polyacetylenes. In: Antibiotics, vol. II. p. 189–215. (D. Gottlieb, P.D. Shaw, eds.). Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Arneson, P.A., Durbin, R.D.: Hydrolysis of tornatine by Septoria lycopersici: A detoxification mechanism. Phytopathology 57, 1258–1260 (1967).

    Google Scholar 

  • Arneson, P.A., Durbin, R.D.: The sensitivity of fungi to α-tornatine. Phytopathology 58, 536–537 (1968a).

    Google Scholar 

  • Arneson, P.A., Durbin, R.D.: Studies on the mode of action of tornatine as a fungitoxic agent. Plant Physiol. 43, 683–686 (1968 b).

    PubMed  CAS  Google Scholar 

  • Baltruschat, H.: Untersuchungen ĂĽber den EinfluĂź der endotrophen Mycorrhiza auf den Befall von Pflanzen durch pathogene Pilze, insbesondere von Nicotina tabacum durch Thielaviopsis basicola. Diss. Bonn (1975).

    Google Scholar 

  • Baltruschat, H., Schönbeck, F.: Untersuchungen ĂĽber den EinfluĂź der endotrophen Mycorrhiza auf die Chlamydosporenbildung von Thielaviopsis basicola in Tabakwurzeln. Phytopathol. Z. 74, 358–361 (1972).

    Google Scholar 

  • Bangham, A.D., Horne, R.W., Glauert, A.M., Dingle, J.T., Lucy, J.A.: Action of saponin on biological cell membranes. Nature 196, 952–955 (1962).

    PubMed  CAS  Google Scholar 

  • Beck, S.D., Smissman, E.E.: The european corn borer, Pyrausta nubilalis, and its principal host plant. IX. Biological activity of chemical analogs of corn resistance factor A (6-methoxybenzoxazolinone). Ann. Entomol. Soc. Am. 54, 53–61 (1961).

    CAS  Google Scholar 

  • Beijersbergen, J.C.M.: α-Methylen-Îł-Butyrolacton uit tulpen. Diss. Leiden (1969).

    Google Scholar 

  • Beijersbergen, J.C.M., Lemmers, C.B.G.: Enzymic and non-enzymic liberation of tulipalin A (α-methylene butyrolactone) in extract of tulip. Physiol. Plant Pathol. 2, 265–270 (1972).

    CAS  Google Scholar 

  • Bergman, B.H.H.: Presence of a substance in the white skin of young tulip bulbs which inhibits growth of Fusarium oxysporum. Neth. J. Plant Pathol. 72, 222–230 (1966).

    CAS  Google Scholar 

  • Bergman, B.H.H., Beijersbergen, J.C.M.: A fungitoxic substance extracted from tulips and its possible role as a protectant against disease. Neth. J. Plant Pathol. 74, 157–162 (1968).

    CAS  Google Scholar 

  • Bergman, B.H.H., Beijersbergen, J.C.M.: A possible explanation of variation in susceptibility of tulip bulbs to infection by Fusarium oxysporum. In: First Int. Symp. Flower Bulbs, Noordwijk/Lisse 30 March-4 April 1970. Ed. Int. Soc. hort. Sci., Den Haag, vol. 2, p. 225 – 229 (1971).

    Google Scholar 

  • Bergman, B.H.H., Beuersbergen, J.C.M., Overeem, J.C., Sijpesteijn, A.K.: Isolation and identification of α-methylene-butyrolactone, a fungitoxic substance from tulips. Recl. Trav. chim. Pays-Bas 86, 709–714 (1967).

    CAS  Google Scholar 

  • Bernhard, N.: L-evolution dans la symbiose. Les orchidĂ©es et leurs champignons commensaux. Ann. Sci. Nat. SĂ©r. 9, 1–196 (1909).

    Google Scholar 

  • Bernhard, R.A.: Chemo taxonomy: distribution studies of sulphur compounds in Allium. Phytochemistry 9, 2019–2027.

    Google Scholar 

  • Boas, F.: Beiträge zur Wirkungsphysiologie einheimischer Pflanzen. I. Ber. Deut. Botan. Ges. 52, 126–131 (1934).

    CAS  Google Scholar 

  • Byrde, R.J.W., Fielding, A.H., Williams, A.H.: In: Phenolics in Plants in Health and Disease, p. 95–99, (J.B. Pridham, ed.). Oxford: Pergamon Press 1960.

    Google Scholar 

  • Cavallito, C.J., Bailey, J.H.: Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 66, 1950–1951 (1944).

    CAS  Google Scholar 

  • Couture, R.M., Routley, D.G., Dunn, G.M.: Role of cyclic hydroxamic acids in monogenic resistance of maize to Helminthosporium turcicum. Physiol. Plant Pathol. 1, 515–521 (1971).

    CAS  Google Scholar 

  • Davis, D.: Host fungitoxicity in selective pathogenicity of Fusarium oxysporum. Phytopathology 54, 290–293 (1964).

    CAS  Google Scholar 

  • Dourmashkin, R.R., Dougherty, R.M., Harris, R.J.C.: Elektronmicroscopic observations on Rous sarcoma virus and cell membranes. Nature 194, 1116–1119 (1962).

    PubMed  CAS  Google Scholar 

  • Durbin, R.D., Uchytil, T.F.: Purification and properties of a fungal glucosidase acting on α-tomatine. Biochim. Biophys. Acta 191, 176–178 (1969).

    PubMed  CAS  Google Scholar 

  • Durbin, R.D., Uchytin, T.F.: The role of allicin in the resistance of garlic to Penicillium pp. Phytopathol. Medit. 10, 227–230 (1971a).

    CAS  Google Scholar 

  • Durbin, R.D., Uchytil, T.F.: Purification and properties of alliin lyase from the fungus Penicillium corymbiferum. Biochim. Biophys. Acta 229, 518–520 (1971b).

    Google Scholar 

  • Eyjolfsson, R.: Cyanogenic glycosides in nature, chemistry and distribution, a review. Thesis. p. 1–103. Copenhagen: The Royal Danish School of Pharmacy 1968.

    Google Scholar 

  • Eyjolfsson, R.: Recent advances in the chemistry of cyanogenic glycosides. Fortschr. Chem. Org. Naturstoffe 28, 74–108 (1970).

    CAS  Google Scholar 

  • Farkas, G.L., Kiraly, Z.: Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopathol. Z. 44, 105–150 (1962).

    CAS  Google Scholar 

  • Gäumann, E.: Weitere Untersuchungen ĂĽber die chemische Infektabwehr der Orchideen. Phytopathol. Z. 49, 211–232 (1964).

    Google Scholar 

  • Gäumann, E., NĂĽesch, J., Rimpau, R.H.: Weitere Untersuchungen ĂĽber die chemischen Abwehrreaktionen der Orchideen. Phytopathol. Z. 38, 274–308 (1960).

    Google Scholar 

  • Gaines, R.D., Goering, K.J.: Myrosinase. II. The specificity of the myrosinase system. Arch. Biochem. Biophys. 96, 13–19 (1962).

    PubMed  CAS  Google Scholar 

  • Gmelin, R., Virtanen, A.I.: A new type of enzymatic cleavage of mustard oil glucosides. Formation of allylthiocyanate in Thlaspi arvense L. and Benzylthiocyanate in Lepidum ruderale L. and Lepidum sativum L. Acta Chem. Scand. 13, 1474 (1959).

    CAS  Google Scholar 

  • Gubanov, I.A., Libizov, N.J., Gladkikh, A.S.: Search for saponin containing plants among the flora of Central Asia and Southern Kazakhstan. Farmatsiya (Moscow) 19, 23 (1970); Chem. Abstr. 73, 95408 (1970).

    CAS  Google Scholar 

  • Harley, J.L.: The Biology of Mycorrhiza. London: Hill 1972.

    Google Scholar 

  • Haynes, L.J.: Physiologically active unsaturated lactones. Quart. Rev. Chem. Soc. 2, 46–72 (1948).

    Google Scholar 

  • Haynes, L.J.: Lactones. In: Modern Methods of Plant Analysis, vol. II, p. 583–594, (K. Peach, M.V. Tracey, eds.). Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Hegnauer, R.: Chemotaxonomie der Pflanzen, vol. II, p. 315–322. Basel-Stuttgart: Birkhäuser 1963.

    Google Scholar 

  • Hegnauer, R.: Chemotaxonomie der Pflanzen, vol. III, p. 587–592. Basel-Stuttgart: Birkhäuser 1964.

    Google Scholar 

  • Hendrix, J.W.: Influence of sterols on growth and reproduction of Pythium and Phytophthora spp. Phytopathology 55, 790–797 (1965).

    CAS  Google Scholar 

  • Hendrix, J.W.: Inability of Pythium aphanidermatum and Phytophthora palmivora to incorporate acetate into digitonin precipitable sterols. Mycologia (N.Y.) 58, 307–312 (1966).

    CAS  Google Scholar 

  • Hill, R., van Heyningen, R.: Ranunculin: The precursor of the vesicant substance of the buttercup. Biochem. J. 49, 332–335 (1951).

    PubMed  CAS  Google Scholar 

  • Hillis, W.E., Ishikura, N.: The extractives of mycorrhizas and roots of Pinus radiata and Pseudotsuga menziesii. Australian. J. Biol. Sci. 22, 1425–1436 (1969).

    Google Scholar 

  • Hooker, W.J., Walker, J.C., Link, K.P.: Effects of two mustard oils on Plasmodiophora brassicae and their relation to clubroot. J. Agr. Res. 70, 63–78 (1945).

    CAS  Google Scholar 

  • Kämmerer, F.J.: Ăśber die antibiotischen Substanzen aus der Tulpe (Tulipa hybrida), Diss. Bonn 1967.

    Google Scholar 

  • Karrer, W.: Konstitution und Vorkommen der organischen Pflanzenstoffe. Basel: Birkhäuser 1958.

    Google Scholar 

  • Kern, H.: Ăśber die Beziehungen zwischen dem Alkaloidgehalt verschiedener Tomatensorten und ihrer Resistenz gegen Fusarium oxysporum. Phytopathol. Z. 19, 351–382 (1952).

    Google Scholar 

  • Keyworth, W.G., Milne, L.J.R.: Induced tolerance of Sclerotium cepivorum to antibiotics in the presence of onion exudates. Ann. Appl. Biol. 63, 415–424 (1969).

    CAS  Google Scholar 

  • Kjaer, A.: Naturally derived isothiocyanates (mustard oils) and their parent glucosides. Fortschr. Chem. Org. Naturstoffe 18, 122–176 (1960).

    CAS  Google Scholar 

  • Kosuge, T.: The role of phenolics in host response to infection. Ann. Rev. Phytopathol. 7, 195–222 (1969).

    CAS  Google Scholar 

  • Krupa, S., Fries, N.: Studies on ectomycorrhiza of pine. I. Production of volatile organic compounds. Canad. J. Botany. 49, 1425–1431 (1971).

    CAS  Google Scholar 

  • Kuhn, R., Jerchei, D., Moewus, F., Möller, E.F.: Ăśber die chemische Natur der Blastokoline und ihre Einwirkung auf keimende Samen, Pollenkörner, Hefen, Bakterien, Epithelgewebe und Fibroblasten. Naturwissenschaften 31, 468 (1943).

    CAS  Google Scholar 

  • Langcake, P., Drysdale, R.B., Smith, H.: Post-infectional production of an inhibitor of Fusarium oxysporum f. lycopersici by tomato plants. Physiol. Plant Pathol. 2, 17–25 (1972).

    CAS  Google Scholar 

  • Locci, R., Kuc, J.: Steroid alkaloids as compounds produced by potato tubers under stress. Phytopathology 57, 1272–1274 (1969).

    Google Scholar 

  • Ludwig, R.A., Spencer, E.Y., Unwin, C.H.: An antifungal factor from barley of possible significance in disease resistance. Canad. J. Botany. 38, 21–29 (1960).

    CAS  Google Scholar 

  • LĂĽdtke, M.: Ăśber das Linamarin des Leinsamens und seine Bestimmung. Biochem. Z. 322, 310–319 (1952).

    PubMed  Google Scholar 

  • LĂĽdtke, M.: Ăśber das Linamarin des Flachsstengels. Biochem. Z. 323, 428–436 (1953).

    PubMed  Google Scholar 

  • LĂĽdtke, M., Hahn, H.: Ăśber den Linamaringehalt gesunder und von Colletotrichum lini befallener jungen Leinpflanzen. Biochem. Z. 324, 433–442 (1953).

    PubMed  Google Scholar 

  • LĂĽning, H.U., Schlösser, E.: Role of saponins in antifungal resistance. V. Enzymatic activation of avenacosides. Z. Pflanzenkrankh. Pflanzenschutz 82, 699–703 (1975a). VI. Interactions Avena sativa-Drechslera avenacea. Z. Pflanzenkrankh. Pflanzenschutz (in print, 1975b). VIII. Interactions Avena sativa-Fusarium avenaceum (in preparation, 1975c).

    Google Scholar 

  • LĂĽning, H.U., Schlösser, E.: Saponine in Avena sativa. Angew. Botanik (in print, 1975d).

    Google Scholar 

  • Luzzati, V., Husson, F.: The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12, 207–219 (1962).

    PubMed  CAS  Google Scholar 

  • Maizel, J.V., Burkhardt, H.J., Mitchell, H.K.: Avenacin, an antimicrobial substance isolated from Avena sativa. I. Isolation and antimicrobial activity. Biochem. 3, 424–426 (1964).

    CAS  Google Scholar 

  • Marx, D.H.: Ectomycorrhizae as biological deterrents to pathogenic root infections. Ann. Rev. Phytopathol. 10, 429–454 (1972).

    CAS  Google Scholar 

  • Marx, D.H.: Role of ectomycorrhizae in the protection of pine from root infection by Phytophthora cinnamomi. 2nd Int. Cong. Plant Pathol. Abstract. 0660, Minneapolis (1973).

    Google Scholar 

  • Marx, D.H., Davey, C.B.: The influence of the ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. III. Resistance of aseptically formed mycorrhizae to infection by Phytophthora cinnamomi. Phytopathology 59, 549–558 (1969).

    Google Scholar 

  • Mazelis, M., Crews, L.: Purification of alliin lyase of garlic, Allium sativum L. Biochem. J. 108, 725–730 (1968).

    PubMed  CAS  Google Scholar 

  • McKay, A.F., Garmaise, R., Gaudry, Baker, H.A., Paris, G.Y., Kay, R.W., Just, G.E., Schwartz, R.: Bacteriostats. II. The chemical and bacteriostatic properties of isothiocyanates and their derivatives. J. Am. Chem. Soc. 81, 4328–335 (1959).

    CAS  Google Scholar 

  • McKee, R.K.: Dry-rot disease of the potato. VIII. A study of the pathogenicity of Fusarium caerulum (Lib.) Sacc. and Fusarium avenaceum (Fr.) Sacc. Ann. Appl. Biol. 341, 417–434 (1954).

    Google Scholar 

  • Mohanakumaran, N., Gilbert, J.C., Buddenhagen, I.W.: Relationship between tornatine and bacterial wilt resistance in tomato. Phytopathology 59, 14 (1969) Abstr.

    Google Scholar 

  • Mukherjee, N., Kundu, B.: Antifungal activities of some phenolics and related compounds to three fungal plant pathogens. Phytopathol. Z. 78, 89–92 (1973).

    CAS  Google Scholar 

  • Patil, S.S., Dimond, A.E.: Inhibition of Verticillium polygalacturonase by oxidation products of polyphenols. Phytopathology 57, 492–496 (1967).

    PubMed  CAS  Google Scholar 

  • Powell, C.C., Hildebrand, D.C.: Fire-blight resistance in Pyrus: Involvement of arbutin oxidation. Phytopathology 60, 337–340 (1970).

    CAS  Google Scholar 

  • Pridham, J.B.: Low molecular weight phenols in higher plants. Ann. Rev. Plant Physiol. 16, 13–36 (1965).

    CAS  Google Scholar 

  • Pridham, J.B. (ed.): Phenolics in Plants in Health and Disease. Oxford: Pergamon 1960.

    Google Scholar 

  • Pryor, D.E., Walker, J.C., Stahmann, M.A.: Toxicity of allyl-isothiocyanate vapor to certain fungi. Am. J. Botany 27, 30–38 (1940).

    CAS  Google Scholar 

  • Reynolds, E.S.: Studies on the physiology of plant disease. Ann. Missouri Botan. Garden 18, 57–95 (1931).

    Google Scholar 

  • Rochlin, E.: Zur Frage der Widerstandsfähigkeit der Cruciferen gegen die Kohlhernie (Plasmo-diophora brassicae Wor.). Phytopathol. Z. 5, 381–406 (1933).

    CAS  Google Scholar 

  • Rohringer, R., Samborski, D.J.: Aromatic compounds in the host parasite interaction. Ann. Rev. Phytopathol. 5, 77–86 (1967).

    CAS  Google Scholar 

  • Scheuer, P.J.: Toxins from marine invertebrates. Naturwissenschaften 58, 549–554 (1971).

    PubMed  CAS  Google Scholar 

  • Schlösser, E.: Interaction of saponins with cholesterol, lecithin and albumin. Canad. J. Physiol. Pharmacol. 47, 487–490 (1969).

    Google Scholar 

  • Schlösser, E.: Saponine, ihr Wirkungsmechanismus und ihre Bedeutung als fungizide Resistenzfaktoren in Pflanzen. Habil. Schr., Bonn (1971a).

    Google Scholar 

  • Schlösser, E.: Cyclamin, an antifungal resistance factor in Cyclamen species. Acta Phytopathol. 6, 85–95 (1971b).

    Google Scholar 

  • Schlösser, E.: Sterol dependent membranelytic action of saponins. Phytopathol. Z. 74, 91–94 (1972).

    Google Scholar 

  • Schlösser, E.: Role of saponins in antifungal resistance. I. Increased cyclamin contents in leaves of Cyclamen persicum as a response to microorganisms? Phytopathol. Z. 77, 184–186 (1973 a).

    Google Scholar 

  • Schlösser, E.: Role of saponins in antifungal resistance. II. The hederasaponins in leaves of English ivy (Hedera helix L.). Z. Pflanzenkrankh. Pflanzenschutz 80, 704–710 (1973 b).

    Google Scholar 

  • Schlösser, E.: Role of saponins in antifungal resistance. III. Tomatin dependent development of fruit rot organisms on tomato fruits. Z. Pflanzenkrankh. Pflanzenschutz 82, 476–484 (1975a) IV. Tomatin dependent development of species of Alternaria on tomato fruits. Acta Phytopathol. (in print). (1975 b).

    Google Scholar 

  • Schlösser, E., Gottlieb, D.: Sterols and the sensivity of Pythium species to filipin. J. Bacteriol. 91, 1080–1084(1966).

    PubMed  Google Scholar 

  • Schlösser, E., Shaw, P.D., Gottlieb, D.: Sterols in species of Pythium. Arch. Mikrobiol. 66, 147–153 (1969).

    PubMed  Google Scholar 

  • Schlösser, E., Wulff, G.: Ăśber die Strukturspezifität der Saponinhämolyse. I. Triterpensapo-nine und -aglykone. Z. Naturforsch. 24b, 1284–1290 (1969).

    Google Scholar 

  • Schönbeck, F.: Untersuchungen ĂĽber BlĂĽteninfektionen. V. Untersuchungen an Tulpen. Phytopathol. Z. 59, 205–224 (1967).

    Google Scholar 

  • Schönbeck, F.: Untersuchungen zur Bedeutung von Hemmstoffen im Boden. I. Originäre Pflanzenstoffe. Z. Pflanzenkrankh. Pflanzenschutz 75, 193–213 (1968).

    Google Scholar 

  • Schönbeck, F., Schroeder, C.: Role of antimicrobial substances (tuliposides) in tulips attacked by Botrytis spp. Physiol. Plant Pathol. 2, 91–99 (1972).

    Google Scholar 

  • Schroeder, C.: Untersuchungen ĂĽber Tuliposide als Resistenzfaktoren bei Botrytis-Befall der Tulpe. Diss. Bonn (1971).

    Google Scholar 

  • Schroeder, C.: Die Bedeutung der Îł-Hydroxysäuren fĂĽr das Wirt-Parasit-Verhältnis von Tulpe und Botrytis spp. Phytopathol. Z. 74, 175–181 (1972).

    CAS  Google Scholar 

  • Schwimmer, S., Mazelis, M.: Characterization of alliinase of Allium cepa (onion). Arch. Biochem. Biophys. 100, 66–73 (1963).

    CAS  Google Scholar 

  • Schwinn, F.J.: Untersuchungen zum Wirt-Parasit-Verhältnis bei der Kragenfaule des Apfelbaumes (Phytophthora cactorum) und ihre Bekämpfung. III. Die Eignung verschiedener GrĂĽndĂĽngungspflanzen zur Bekämpfung des Erregers im Boden. Phytopathol. Z. 54, 258–274(1965).

    Google Scholar 

  • Segal, R., Schlösser, E.: Role of Glycosidases in the membranelytic, antifungal action of saponins. Arch. Microbiol. 104, 147–150 (1975).

    PubMed  CAS  Google Scholar 

  • Segal, R., Shatkovsky, P., Milo-Goldzweig, I.: On the mechanism of saponin hemolysis. I. Hydrolysis of the glycosidic bond. Biochem. Pharmacol. 23, 978–981 (1974).

    Google Scholar 

  • Sinden, S.L., Goth, R.W., O’Brien, M.J.: Effects of potato alkaloids on the growth of Alternarla solarti and their possible role as resistance factors in potatoes. Phytopathology 63, 303–307 (1973).

    CAS  Google Scholar 

  • Smalley, E.B., Hansen, H.N.: Penicillium decay of garlic. Phytopathology 52, 666–678 (1962).

    Google Scholar 

  • Stoeckenius, W.: Some electron microscopial observations on liquid-crystalline phases in lipid-water systems. J. Cell. Biol. 12, 221–229 (1962).

    PubMed  CAS  Google Scholar 

  • Stoessl, A.: The antifungal factors in barley. IV. Isolation structure and synthesis of the hordatines. Canad. J. Chem. 45, 1745–1760 (1967).

    CAS  Google Scholar 

  • Stoessel, A., Unwin, C.H.: The antifungal factors in barley. V. Antifungal activity of the hordatines. Canad. J. Botany 48, 465–470 (1970).

    Google Scholar 

  • Stoll, A., Jucker, E.: Thioäther, aliphatische Di- und Polysulfide und Sulfoxyde (Lauchöle). In: Modern Methods of Plant Analysis, vol. IV, p. 692–702, (K. Paech, M.V. Tracey, eds.). Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Stoll, A., Jucker, E.: Senföle und Senfölgly ko side. In: Modern Methods of Plant Analysis, vol. IV, p. 703–718, (K. Paech, M.V. Tracey, eds.). Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Stoll, A., Seebeck, E.: Chemical investigations on alliin, the specific principle of garlic. Advan. Enzymol. 11, 377–400 (1951).

    CAS  Google Scholar 

  • Timonin, M.I.: The interaction of higher plants and soil microorganisms. III. Effects of byproducts of plant growth on activity of fungi and actinomycetes. Soil Sci. 52, 395–413 (1941).

    Google Scholar 

  • Tomiyama, K.: Physiology and biochemistry of disease resistance of plants. Ann. Rev. Phytopathol. 1, 295–324 (1963).

    CAS  Google Scholar 

  • Trione, E.J.: The HCN content of flax in relation to flax wilt resistance. Phytopathology 50, 482–486 (1960).

    CAS  Google Scholar 

  • Tschesche, R., Hoppe, H.J.: Ăśber Narthesid A und B, zwei diastereomere Lacton-Glucoside und ihr antibiotisch wirksames Aglykon aus Beinbrech (Narthecium ossifragum Hud.). Chem. Ber. 104, 3573–3581 (1971).

    PubMed  CAS  Google Scholar 

  • Tschesche, R., Kämmerer, J., Wulff, G.: Ăśber die Struktur der antibiotisch aktiven Substanzen der Tulpe (Tulipa gesneriana L.). Chem. Ber. 102, 2057–2071 (1969).

    CAS  Google Scholar 

  • Tschesche, R., Kämmerer, F.J., Wulff, G., Schönbeck, F.: Ăśber die antibiotisch wirksamen Substanzen der Tulpe (Tulipa gesneriana). Tetrahedron Letters 6, 701–706 (1968).

    PubMed  CAS  Google Scholar 

  • Tschesche, R., Lauven, P.: Avenacosid B, ein zweites bisdesmosidisches Steroidsaponin aus Avena saliva. Chem. Ber. 104, 3549–3555 (1971).

    CAS  Google Scholar 

  • Tschesche, R., Struckmeyer, K., Wulff, G.: Ăśber Mevalorid, das Glucosid des (-) (R)-Mevalonsäurelactons aus den Blättern der Mispel und eine einfache Gewinnung von (-) (R)-Mevalonsäurelacton. Chem. Ber. 104, 3567–3572 (1971).

    PubMed  CAS  Google Scholar 

  • Tschesche, R., Tauscher, M., Fehlhaber, H.W., Wulff, G.: Avenacosid A, ein bisdesmosidisches Steroidsaponin aus Avena sativa. Chem. Ber. 102, 2072–2082 (1969).

    CAS  Google Scholar 

  • Tschesche, R., Wulff, G.: Ăśber die antimikrobielle Wirksamkeit von Saponinen. Z. Naturfsch. 20b, 543–546 (1965).

    CAS  Google Scholar 

  • Tschesche, R., Wulff, G.: Chemie und Biologie der Saponine. Fortschr. Chem. Org. Naturstoffe 30, 462–606(1973).

    Google Scholar 

  • Turner, E.M.C.: An enzymic basis for pathogenic specificity in Ophiobolus graminis. J. Exptl. Botany 12, 169–175 (1961).

    CAS  Google Scholar 

  • Virtanen, A.I., Hietala, P.K.: 2(3)-Benzoxazolinone, an anti-Fusarium factor in rye seedlings. Acta Chem. Scand. 9, 1543–1544 (1955).

    CAS  Google Scholar 

  • Virtanen, A.I., Hietala, P.K., Wahlroos, O.: An anti-fungal factor in maize and wheat plants. Suomen Kemistilehti 29, B, 143 (1956).

    Google Scholar 

  • Walker, J.C., Morell, C.S., Foster, H.H.: Toxicity of mustard oils and related compounds to certain fungi. Am. J. Botany 24, 536–541 (1937).

    CAS  Google Scholar 

  • Walker, J.C., Stahmann, M.A.: Chemical nature of disease resistance in plants. Ann. Rev. Plant Physiol. 6, 351–366 (1955).

    CAS  Google Scholar 

  • Welmar, K.: Untersuchungen zur Isolierung und Strukturaufklärung des genuinen Vorläufers des Ranunculins und möglicher Zwischenprodukte aus HahnenfuĂźpflanzen (Ranunculus repens und Helleborus foeticus). Diss. Bonn 1970.

    Google Scholar 

  • Williams, E.B., Kuc, J.: Resistance in Malus to Venturia inaequalis. Ann. Rev. Phytopathol. 7, 223–246 (1969).

    CAS  Google Scholar 

  • Winter, A.G.: Antibiotische Therapie auf diätischer Grundlage. 1. Der Meerrettich (Cochlearia armoracia) als Träger antibiotischer, in vivo wirksamer Substanzen. Madaus- Jahresber. 1953, p. 21–42. Köln 1954.

    Google Scholar 

  • Wolf, K.L.: Physik und Chemie der Grenzflächen. Vol. II. Die Phänomene im Besonderen. Berlin-Göttingen-Heidelberg: Springer 1959.

    Google Scholar 

  • Wolters, B.: Saponine als pflanzliche Pilzabwehrstoffe. Planta 79, 77–83 (1968).

    CAS  Google Scholar 

  • Wood, R.K.S.: Physiological Plant Pathology. Oxford-Edinburgh: Blackwell 1967.

    Google Scholar 

  • Wulff, G.: Neuere Entwicklungen auf dem Saponingebiet. Deutsch. Apotheker-Z. 108, 797–808 (1968).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Schönbeck, F., Schlösser, E. (1976). Preformed Substances as Potential Protectants. In: Heitefuss, R., Williams, P.H. (eds) Physiological Plant Pathology. Encyclopedia of Plant Physiology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66279-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66279-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66281-2

  • Online ISBN: 978-3-642-66279-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics