Skip to main content

Development of Sensory Systems in Arthropods

  • Chapter
Development of Sensory Systems

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 9))

Abstract

The arthropods are equipped with a wide variety of receptors, each of which is produced by modified epidermal cells. Groups of these cells cooperate in the construction of a specialized sensory structure such as a lens, a bristle, or a strand, which is linked with the dendrites of a peripherally placed sensory neuron. The first receptors to differentiate appear during embryogenesis, new ones are added in subsequent larval life and in the imaginal discs of the holometabolous insects, and at each moult the cuticular parts of the existing receptors are replaced. Because the sense organs develop quite separately from the central nervous system, the type of receptors, their number, and their distribution are determined by mechanisms that operate at the surface and not by the central connections of the sensory neurons. On the contrary, the connections made by the ingrowing axon of an arthropod sense cell are dictated by the kind of receptor that it innervates and where it lies at the surface, so that new input elements are continually being added to the nervous system by an independent set of morphogenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrowicz, J.S., Whitear, M.: Receptor elements in the coxal region of Decapoda Crustacea. J. mar. Biol. Ass. U.K. 36, 603–628 (1957).

    Google Scholar 

  • Altman, J. S., Tyrer, N.M.: The Locust Wing Stretch Receptors I Primary sensory neurones with enormous central arborizations. J. Comp. Neur. 172, 409–430 (1977a)

    PubMed  CAS  Google Scholar 

  • Altman, J. S., Tyrer, N.M.: The Locust Wing Stretch Receptors II Variation, alternative pathways, and ‘mistakes’ in the central arborizations. J. Comp. Neur. 172, 431–440 (1977b)

    PubMed  CAS  Google Scholar 

  • Auerbach, C.: The development of the legs, wings and halteres in wild type and some mutant strains of Drosophila melanogaster.Trans. roy. Soc. Edin. 58, 787–815 (1936).

    Google Scholar 

  • Baden, V.: Embryology of the nervous system in the grasshopper Melanoplus differentialis.J. Morph. 60, 159–190 (1936).

    Google Scholar 

  • Ball, E., Young, D.: Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus(Walker). II. Postembryonic development. Z. Zellforsch. 147, 313–324 (1974).

    PubMed  CAS  Google Scholar 

  • Bate, C. M.: The mechanism of the pupal gin trap. I: Segmental gradients and the connections of the triggering sensilla. J. exp. Biol. 59, 95–107 (1973).

    Google Scholar 

  • Bate, C.M.: Embryogenesis of an insect nervous system. 1) A map of the thoracic and abdominal neuroblasts inLocusta migratoria.J. Embryol. exp. Morph. 35, 107–123 (1976a)

    PubMed  CAS  Google Scholar 

  • Bate, C.M.: Pioneer Neurones in an insect embryo. Nature 260, 54–56 (1976b)

    PubMed  CAS  Google Scholar 

  • Bate, C.M., Lawrence, P.A.: Gradients and the developing nervous system. In: Developmental Neurobiology of Arthropods (D. Young, Ed.). London: Cambridge University Press 1973.

    Google Scholar 

  • Becker, H.J.: Über Röntgenmosaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z. Vererbung 88, 333–373 (1957).

    CAS  Google Scholar 

  • Becker, H. J.: Genetic and variegation mosaics in the eye of Drosophila.Curr. Top. dev. Biol. 1, 155–171 (1966).

    PubMed  CAS  Google Scholar 

  • Bentley, D.: Single Gene Cricket Mutations: Effects on Behavior, Sensilla, Sensory Neurons and Identified Interneurons. Science 187, 760–764 (1975).

    PubMed  CAS  Google Scholar 

  • Berlese, A.: Gli Insetti. Milano (1909).

    Google Scholar 

  • Bernard, F.: Recherches sur la morphogenèse des yeux composés d’arthropodes. Développement, croissance, réduction. Bull. Biol. 66, 111–148 (1937).

    Google Scholar 

  • Bodenstein, D.: Postembryonic development. In: Insect Physiology (K. D. Roeder, Ed.). New York: Wiley 1953, pp. 822–865.

    Google Scholar 

  • Bolwig, N.: Senses and sense organs of the anterior end of the house fly larvae. Vidensk. Medd. dansk. naturh. Forenh Kbh. 109, 81–217 (1946).

    Google Scholar 

  • Bott, H.R.: Beiträge zur Kenntnis von Gyrinus natator substriatus.I: Lebensweise und Entwicklung. II: Der Sehapparat. Z. Morph. Ökol. Tiere 10, 207–306 (1928).

    Google Scholar 

  • Brakenberg, V.: Patterns of projection in the visual system of the fly I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).

    Google Scholar 

  • Brakenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7, 235–242 (1970).

    Google Scholar 

  • Bryant, P.J.: Cell lineage relationships in the imaginai wing disc ofDrosophila melanogaster.Dev. Biol. 22, 389–411 (1970).

    PubMed  CAS  Google Scholar 

  • Bryant, P. J., Schneiderman, H. A.: Cell lineage, growth and determination in the imaginai leg discs of Drosophila melanogaster. Dev. Biol. 20, 263–290 (1969).

    PubMed  CAS  Google Scholar 

  • Burrows, M.: Physiological and morphological properties of the metathoracic common inhibitory neuron of the locust. J. comp. Physiol. 82, 59–78 (1973a).

    Google Scholar 

  • Burrows, M.: The morphology of an elevator and a depressor motoneuron of the hindwing of a locust. J. comp. Physiol. 83, 165–178 (1973b).

    Google Scholar 

  • Burrows, M.: Monosynaptic connexions between wing stretch receptors and flight motoneurons of the locust. J. exp. Biol. 62, 189–219 (1975).

    PubMed  CAS  Google Scholar 

  • Busselmann, A.: Bau und Entwicklung der Raupenocellen der Mehlmotte Ephestia kühniella Zeller. Z. Morph. Ökol. Tiere 29, 218–228 (1935).

    Google Scholar 

  • Caesar, C.J.: Die Stirnaugen der Ameisen. Zool. Jb. (Anat.) 35, 161–242 (1913).

    Google Scholar 

  • Calabrese, R. L.: Crayfish Mechanoreceptive Interneurons: I The nature of ipsijateral excitatory inputs. J. comp. Physiol. 105, 83–102 (1976a).

    Google Scholar 

  • Calabrese, R.L.: Crayfish Mechanoreceptive Interneurons: II Bilateral interactions and inhibition. J. comp. Physiol. 105, 103–114 (1976b).

    Google Scholar 

  • Calabrese, R. L., Kennedy, D.: Multiple sites of spike initiation in a single dendritic system. Brain Res. 82, 316–321 (1974).

    PubMed  CAS  Google Scholar 

  • Campos Ortega, J. A., Gateff, E.A.: The development of ommatidial patterning in metamorphosed eye imaginai disc implants of Drosophila melanogaster.Wilhelm Roux’s Archiv 179, 373–392 (1976)

    Google Scholar 

  • Campos Ortega, J. A., Hofbauer, A.: Cell Clones and Pattern Formation: On the Lineage of Photoreceptor Cells in the Compound Eye ofDrosophila.Wilhelm Roux’s Archiv 181, 227–245 (1977).

    Google Scholar 

  • Campos Ortega, J. A., Strausfeld, N.J.: The columnar organisation of the second synaptic region of the visual system of Musca domestica L. Z. Zellforsch. 124, 561–585 (1972).

    PubMed  CAS  Google Scholar 

  • Camhi, J.: Locust wind receptors. II: Interneurones in the cervical connective. J. exp. Biol. 50, 349–362 (1969).

    PubMed  CAS  Google Scholar 

  • Caveney, S.: Stability of polarity in the epidermis of a beetle Tenebrio molitor L. Dev. Biol. 30, 321–335 (1973).

    PubMed  CAS  Google Scholar 

  • Chiarodo, A.J.: The effects of mesothoracic leg disc extirpation on the postembryonic development of the nervous system of the blowfly Sarcophaga bullata.J. exp. Zool. 153, 263–277 (1963).

    Google Scholar 

  • Child, C.M.: Ein bisher wenig beachtetes antennales Sinnesorgan der Insekten mit besonderer Berücksichtigung der Culiciden und Chironomiden. Z. wiss. Zool. 58, 475–528 (1894).

    Google Scholar 

  • Clever, U.: Untersuchungen zur Zelldifferenzierung und Musterbildung der Sinnesorgane und des Nervensystems im Wachsmottenflügel. Z. Morph. Ökol. Tiere 47, 201–248 (1958).

    Google Scholar 

  • Clever, U.: Über experimentelle Modifikationen des Geäders und die Beziehung zwischen den Versorgungssystemen im Schmetterlingsflügel an Galleria mellonella L. Wilhelm Roux’ Arch. Entw. Mech. Org. 151, 242–279 (1959).

    Google Scholar 

  • Clever, U.: Der Einfluß der Sinneszellen auf die Borstenentwicklung bei Galleria mellonella L. Wilhelm Roux’ Arch. Entw. Mech. Org. 152, 137–159 (1960).

    Google Scholar 

  • Corneli, W.: Von dem Aufbau des Sehorgans der Blattwespenlarven und der Entwicklung des Netzauges. Zool. Jb. (Anat.) 46, 573–608 (1924).

    Google Scholar 

  • Counce, S.J., Waddington, C.H. (Eds.): Developmental Systems: Insects, Vols. I and II. London-New York: Academic 1973.

    Google Scholar 

  • Deak, I.I.: Demonstration of sensory neurones in the ectopic cuticle of spineless-aristapedia, a homoeotic mutant of Drosophila.Nature 260, 252–254 (1976)

    PubMed  CAS  Google Scholar 

  • Debaisieux, P.: Les yeux de crustacés: Structure, développement, réactions à éclairement. Cellule 50, 9–122 (1944).

    Google Scholar 

  • Debaisieux, P.: Les poils sensoriels d’arthropodes et histologie nerveuse. I: Praunus flexuosus Müll, et Crangon crangon L. Cellule 52, 311–360 (1949).

    Google Scholar 

  • de Lattin, G.: Untersuchungen an Isopodenaugen. Zool. Jb. (Anat.) 65, 417–468 (1939).

    Google Scholar 

  • Dethier, V.G.: The antennae of lepidopterous larvae. Bull. Mus. comp. Zool. Harvard 87, 455–507 (1941).

    Google Scholar 

  • Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool. 92, 465–539 (1909).

    Google Scholar 

  • Drescher, W.: Regenerationsversuche am Gehirn von Periplaneta americana unter Berücksichtigung von Verhaltensänderung und Neurosekretion. Z. Morph. Ökol. Tiere 48, 576–649 (1960).

    Google Scholar 

  • Edwards, J.S.: Postembryonic development and regeneration of the insect nervous system. Adv. Insect Physiol. 6, 97–137 (1969).

    Google Scholar 

  • Edwards, J.S., Palka, J.: Neural regeneration: delayed formation of central contacts by insect sensory cells. Science 172, 591–594 (1971).

    PubMed  CAS  Google Scholar 

  • Edwards, J. S., Palka, J.: Neural specificity as a game of cricket: some rules for sensory regeneration in Acheta domesticus.In: Developmental Neurobiology of Arthropods (D. Young, Ed.). London: Cambridge University Press 1973.

    Google Scholar 

  • Edwards, J. S., Palka, J.: The cerci and abdominal giant fibres of the house cricket Acheta donesticus. I: Anatomy and physiology of normal adults. Proc. roy. Soc. B. 185, 83–103 (1974).

    CAS  Google Scholar 

  • Edwards, J.S., Palka, J.: Neural Generation and Regeneration in Insects. In: ‘Simpler Networks and Behavior’, John C. Fentress Ed., Sinauer Associates. Massachusetts (1976).

    Google Scholar 

  • Edwards, J. S., Sahota, T.S.: Regeneration of a sensory system: the formation of central connections by normal and transplanted cerci of the house cricket Acheta domesticus.J. exp. Zool. 166, 387–396 (1967).

    PubMed  CAS  Google Scholar 

  • Egelhaaf, A., Berndt, P., Küthe, H.-W.: Mitosenverteilung und 3H-Thymidin-Einbau in der proliferierenden Augenanlage von Ephestia kühniella Zeller. Wilhelm Roux’ Archiv Entw. Biol. 178, 185–202 (1975).

    Google Scholar 

  • Elofsson, R., Dahl, E.: The optic neuropiles and chiasmata of Crustacea. Z. Zellforsch. 107, 343–360 (1970).

    PubMed  CAS  Google Scholar 

  • El Shatoury, H.H.: Differentiation and metamorphosis of the imaginal optic glomeruli in Drosophila.J. Embryol. exp. Morph. 4, 240–247 (1956).

    Google Scholar 

  • Fielden, A., Hughes, G.M.: Unit activity in the abdominal nerve cord of a dragonfly nymph. J. exp. Biol. 39, 31–44 (1962).

    Google Scholar 

  • Franzl, W.: Die Cytogenese der bipolaren Sinneszellen bei der Larve von Dytiscus sp. Z. Zellforsch. 31, 54–59 (1941).

    Google Scholar 

  • Garcia Bellido, A.: Pattern reconstruction by dissociated imaginal disc cells of Drosophila melanogaster.Dev. Biol. 14, 278–306 (1966).

    PubMed  CAS  Google Scholar 

  • Gloor, H., Kobel, H.: Antennapedia (SS Anq) eine homoeotische Mutante bei Drosophila hydei Sturtevant. Rev. suisse Zool. 73, 229–252 (1966).

    Google Scholar 

  • Graber, V.: Die tympanalen Sinnesapparate der Orthopteren. Denkschr. Akad. Wien. Math.- Naturwiss. 36, 1–140 (1876).

    Google Scholar 

  • Green, S.M., Lawrence, P.A.: Recruitment of epidermal cells by the developing eye of Oncopeltus(Hemiptera). Wilhelm Roux’ Arch. Entw. Biol. 177, 61–65 (1975).

    Google Scholar 

  • Gymer, A., Edwards, J.S.: The development of the insect nervous system 1. An analysis of postembryonic growth in the terminal ganglion of Acheta domesticus.J. Morphol. 123, 191–197, (1967)

    PubMed  CAS  Google Scholar 

  • Haffer, O.: Bau und Funktion der Sternwarzen von Saturnia pyri Schiff, und die Haarentwicklung der Saturnid Raupen. Arch. Naturg. 87, 110–122 (1921).

    Google Scholar 

  • Hanson, T.E.: Neurogenesis in the eye and optic tracts of Drosophila.Ann. Rep. Div. Biol. Caltech., 1972, p. 41.

    Google Scholar 

  • Hanson, T.E., Jiang, Y.-H., Lee, J.Y.: Growth cone dynamics in the lamina of Drosophila.Ann. Rep. Div. Biol. Caltech., 1972, pp. 41–42.

    Google Scholar 

  • Hanson, T.E., Ready, D. F., Benzer, S.: Use of mosaics in the analysis of pattern formation in the retina of Drosophila.Ann. Rep. Div. Biol. Caltech., 1972, p. 40.

    Google Scholar 

  • Hassenfuss, I.: Vergleichend morphologische Untersuchung der sensorischen Innervierung der Rumpfwand der Larven von Rhyacophila nubila Zett. (Trichoptera) und Galleria mellonella L. (Lepidiptera). Zool. Jb. (Anat.) 90, 1–54; 175–253 (1973a).

    Google Scholar 

  • Hassenfuss, I.: Über die Beziehung zwischen sensorischer Innervierung und primären Segmentgrenzen bei Arthropoden. Verh. dtsch. zool. Ges. 66, 71–75 (1973b).

    Google Scholar 

  • Heller, R., Edwards, J.S.: Regeneration of the compound eye in Acheta domesticus.Amer. Zool. 8, 786(1968).

    Google Scholar 

  • Henke, K.: Über Zelldifferenzierung im Integument der Insekten und ihre Bedingungen. J. Embryol. exp. Morph. 1, 217–226 (1953).

    Google Scholar 

  • Henke, K., Rönsch, G.: Über Bildungsgleichheiten in der Entwicklung epidermaler Organe und die Entstehung des Nervensystems im Flügel der Insekten. Naturwissenschaften 14, 335–336 (1951).

    Google Scholar 

  • Heymons, R.: Die Embryonalentwicklung von Dermapteren und Orthopteren unter besonderer Berücksichtigung der Keimblätterbüdung. Jena: Fischer 1895.

    Google Scholar 

  • Hilton, W.A.: The body sense hairs of lepidopterons larvae. Amer. Nat. 36, 561–578 (1902).

    Google Scholar 

  • Hilton, W. A.: Afferent and efferent pathways in an abdominal segment of an insect. J. comp. Neurol. 36, 299–308 (1924).

    Google Scholar 

  • Hinke, W.: Das relative postembryonale Wachstum der Hirnteile von Culex pipiens, Drosophila melanogaster und Drosophila-Mutanten.Z. Morph. Ökol. Tiere 50, 81–118 (1961).

    Google Scholar 

  • Hofbauer, A., Campos Ortega, J.A.: Cell clones and pattern formation: Genetic eye mosaics in Drosophila melanogaster.Wilhelm Roux’s Archiv 179, 275–289 (1976).

    Google Scholar 

  • Holmgren, N.: Termitenstudien. K. svenska vetensk. Akad. Handl. 44, 1–215 (1909).

    Google Scholar 

  • Homann, H.: Die Augen der Araneae. Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida). Z. Morph. Ökol. Tiere 69, 201–272 (1971).

    Google Scholar 

  • Horridge, G. A.: In: Structure and Function in the Nervous Systems of Invertebrates. San Francisco and London: Freeman 1965.

    Google Scholar 

  • Horridge, G. A., Meinertzhagen, I. A.: The accuracy of the patterns of connexions of the first and second order neurons of the visual system of Calliphora.Proc. roy. Soc. B. 175, 69–82 (1970).

    CAS  Google Scholar 

  • Hughes, G.M., Wiersma, C. A.G.: Neuronal pathways and synaptic connexions in the abdominal cord of the crayfish. J. exp. Biol. 37, 291–307 (1960).

    Google Scholar 

  • Hunt, R.K., Jacobson, M.: Development and stability of positional information in Xenopus retinal ganglion cells. Proc. nat. Acad. Sci. (Wash.) 69, 780–783 (1972).

    CAS  Google Scholar 

  • Hunt, R.K., Jacobson, M.: Neuronal specificity revisited. Curr. Top. dev. Biol. 9, 203–259 (1974).

    Google Scholar 

  • Hyde, C. A.T.: Regeneration, postembryonic induction and cellular interaction in the eye of Periplaneta americana.J. Embryol. exp. Morph. 27, 367–379 (1972).

    PubMed  CAS  Google Scholar 

  • Imberski, R.B.: The effect of 5-fluorouracil on the development of the adult eye in Ephestia kühniella.J. exp. Zool. 166, 151–162 (1967).

    PubMed  CAS  Google Scholar 

  • Jägers-Röhr, E.: Untersuchungen zur Morphologie und Entwicklung der Scolopidialorgane bei der Stabheuschrecke Carausius morosus Br. Biol. Zbl. 87, 393–409 (1968).

    Google Scholar 

  • Jösting, E. A.: Die Innervierung des Skelettmuskelsystems des Mehlwurms (Tenebrio molitor L. Larve). Zool. Jb. (Anat.) 67, 381–460 (1942).

    Google Scholar 

  • Johannsen, O. A.: Eye structure in normal and eye mutant Drosophila.J. Morph. 39, 337–349 (1924).

    Google Scholar 

  • Kennedy, D.: The comparative physiology of invertebrate central neurones. Adv. comp. Physiol. Biochem. 2, 117–184 (1966).

    PubMed  CAS  Google Scholar 

  • Kennedy, D.: Crayfish interneurons. The Physiologist 14, 5–30 (1971).

    PubMed  CAS  Google Scholar 

  • Kennedy, D.: Connections among neurons of different types in crustacean nervous systems. In: The Neurosciences Third Study Program (F. O. Schmitt and F. G. Worden, Eds.). Cambridge Mass.: MIT Press 1974.

    Google Scholar 

  • Kennedy, D., Evoy, W.H., Fields, H.L.: The unit basis of some crustacean reflexes. Symp. Soc. exp. Biol. 20, 75–109 (1966).

    PubMed  CAS  Google Scholar 

  • Kim, C.W.: Development of the chordotonal organ, olfactory organ and their nerves in the labial palp ofPieris rapae.Bull. Dep. Biol. Korea Univ. 3, 1–8 (1961).

    Google Scholar 

  • Kirchhoffer, O.: Die Entwicklung des Komplexauges nebst Ganglion opticum von Dermestes vulpinus Arch. Naturg. 76, 1–27 (1910)

    Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca.Exp. Brain Res. 3, 248–270 (1967).

    PubMed  CAS  Google Scholar 

  • Kopec, S.: Untersuchungen über die Regeneration von Larvalorganen und Imaginalscheiben bei Schmetterlingen. Wilhelm Roux’ Arch. Entw. Mech. Org. 37, 440–472 (1913).

    Google Scholar 

  • Kopec, S.: Mutual relationship in the development of the brain and eyes of Lepidoptera. J. exp. Zool. 36, 459–468 (1922).

    Google Scholar 

  • Krafka, J.: Development of the compound eye of Drosophila melanogaster and its bar eyed mutant. Biol. Bull. 47, 143–146 (1924).

    Google Scholar 

  • Krumins, R.: Die Borstenentwicklung bei der Wachsmotte Galleria mellonella L. Biol. Zbl. 71, 183–210 (1957).

    Google Scholar 

  • Laschat, F.: Die Embryonale und postembryonale Entwicklung der Netzaugen und Ocellen von Rhodnius prolixus.Z. Morph. Ökol. Tiere 40, 314–347 (1944).

    Google Scholar 

  • Lawrence, P.A.: Gradients in the insect segment: the orientation of hairs in the milkweed bug, Oncopeltus fasciatus.J. exp. Biol. 44, 607–620 (1966a).

    Google Scholar 

  • Lawrence, P. A.: Development and determination of hairs and bristles in the milkweed bug, Oncopeltus fasciatus(Lygaeidae, Hemiptera). J. Cell. Sci. 1, 475–498 (1966b).

    PubMed  CAS  Google Scholar 

  • Lawrence, P. A.: Cellular differentiation and pattern formation during metamorphosis of the milkweed bugOncopeltus.Dev. Biol. 19, 12–40 (1969).

    PubMed  CAS  Google Scholar 

  • Lawrence, P. A.: Polarity and patterns in the postembryonic development of insects. Adv. Insect Physiol. 7, 197–260 (1970).

    Google Scholar 

  • Lawrence, P. A.: The development of spatial patterns in the integument of insects. In: Developmental Systems: Insects, Vol. 2 (S. J. Counce and C. H. Waddington, Eds.). London-New York: Academic 1973a.

    Google Scholar 

  • Lawrence, P. A.: A clonal analysis of segment development in Oncopeltus Hemiptera. J. Embryol. exp. Morph. 30, 681–699 (1973b).

    PubMed  CAS  Google Scholar 

  • Lawrence, P. A.: The structure and properties of a compartment border: the intersegmental boundary inOncopeltus.In: Cell Patterning. Ciba Symposium 29, 3–23 (1975).

    Google Scholar 

  • Lawrence, P. A., Crick, F. H. C., Munro, M.: A gradient of positional information in an insect Rhodnius.J. Cell. Sci. 11, 815–854 (1972)

    PubMed  CAS  Google Scholar 

  • Lawrence, P. A., Shelton, P.M.J.: The determination of polarity in the developing insect retina. J. Embryol. exp. Morph. 33, 471–486 (1975).

    PubMed  CAS  Google Scholar 

  • Lees, A.D., Waddington, C.H.: The development of the bristles in normal and some mutant types of Drosophila melanogaster.Proc. roy. Soc. B. 131, 87–110 (1942).

    Google Scholar 

  • Lerum, J.E.: The postembryonic development of the compound eye and optic ganglia in dragonflies. Proc. Iowa Acad. Sci. 75, 416–432 (1968).

    Google Scholar 

  • Letourneau, J.G.: Addition of sensory structures and associated neurons to the crayfish telson during development. J. comp. Physiol. 110, 13–23 (1976a).

    Google Scholar 

  • Letourneau, J. G.: Somatotopic organization of afferent axons in peripheral nerves. J. comp. Physiol. 110, 25–32 (1976b).

    Google Scholar 

  • Letourneau, P.C.: Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44, 92–101 (1975).

    PubMed  CAS  Google Scholar 

  • Lew, G.T.-W.: Head characters of the Odonata. Ent. Am. 14, 41–97 (1975).

    Google Scholar 

  • Lewerenz, G.: Untersuchungen über Wachstum und Structur der im Thoraxbereich liegenden Imaginalscheiben von Calliphora erythrocephala.Dtsch. Ent. Z. 8, 222–249 (1961).

    Google Scholar 

  • Lewis, E.: Genes and developmental pathways. Amer. Zool. 3, 33–56 (1963).

    Google Scholar 

  • Link, E.: Über die Stirnaugen einiger Lepidopteren und Neuropteren Zool. Anz. 33, 445–450 (1908).

    Google Scholar 

  • Link, E.: Über die Stirnaugen der hemimetabolen Insekten. Zool. Jb. (Anat.) 27, 281–376 (1909).

    Google Scholar 

  • Lissmann, H.W., Wolsky, A.: Funktion der an Stelle eines Auges regenerierten Antennule bei Potamobius leptodactylus Eschh. Z. vergi. Physiol. 19, 555–573 (1933).

    Google Scholar 

  • Locke, M.: The cuticular pattern in an insect Rhodnius prolixus Stai. J. exp. Biol. 36, 459–477 (1959).

    Google Scholar 

  • Lopresti, V. A., Macagno, E.R., Levinthal, C.: Structure and development of neuronal connections in isogenic organisms: Cellular interactions in the development of the optic lamina of Daphnia.Proc. nat. Acad Sci. (Wash.) 70, 433–437 (1973).

    CAS  Google Scholar 

  • Lopresti, V., Macagno, E.R., Levinthal, C.: Structure and development of neuronal connections in isogenic organisms: Transient gap junctions between growing optic axons and lamina neuroblasts. Proc. nat. Acad. Sci. (Wash.) 71, 1098–1102 (1974).

    CAS  Google Scholar 

  • Ludwig, C.E.: Embryology and morphology of the larval head of Calliphora erythrocephala(Meigen). Microent. 14, 73–111 (1949).

    Google Scholar 

  • Lukoschus, F.: Uber Bau und Entwicklung des Chordotonalorgans am Tibia-Tarsus Gelenk der Honigbiene. Z. Bienenforsch. 6, 48–52 (1962).

    Google Scholar 

  • Macagno, E.R., Lopresti, V., Levinthal, C.: Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna.Proc. nat. Acad. Sci. (Wash.) 70, 57–61 (1973).

    CAS  Google Scholar 

  • Malzacher, P.: Embryogenese des Gehirns von Carausius und Periplaneta.Z. Morph. Ökol. Tiere 62, 103–161 (1968).

    Google Scholar 

  • Marcus, W.: Untersuchungen über die Polarität der Rumpfhäut der Schmetterlinge. Wilhelm Roux’ Arch. Entw. Mech. Org. 154, 56–102 (1962).

    Google Scholar 

  • Maynard, D.M., Cohen, M.J.: The function of a hetermorph antennule in a spiny lobster Panulirus argus.J. exp. Biol. 43, 55–78 (1965).

    PubMed  CAS  Google Scholar 

  • Meinertzhagen, I. A.: Erroneous projection of retinula axons beneath a dislocation in the retinal equator ofCalliphora.Brain Res. 41, 39–49 (1972).

    PubMed  CAS  Google Scholar 

  • Meinertzhagen, I. A.: Development of the compound eye and optic lobe of insects. In: Developmental Neurobiology of Arthropods (D. Young, Ed.). London: Cambridge University Press 1973.

    Google Scholar 

  • Meinertzhagen, I. A.: The development of neuronal connection patterns in the visual systems of insects. In: Cell Patterning. Ciba Symposium 29, 265–288 (1974).

    Google Scholar 

  • Melamed, J., Trujillo Cenoz, O.: The fine structure of the eye imaginai discs in muscoid flies. J. ultrastruct. Res. 51, 79–93 (1975).

    PubMed  CAS  Google Scholar 

  • Miner, N.: Integumental specification of sensory fibres in the development of cutaneous local sign. J. comp. Neurol. 105, 161–170 (1956).

    PubMed  CAS  Google Scholar 

  • Mobbs, P.G.: Development of the locust ocellus. Nature 264, 269–271 (1976).

    PubMed  CAS  Google Scholar 

  • Moroff, T.: Entwicklung und phylogenetische Bedeutung des Medianauges bei Crustaceen. Zool. Anz. 40, 11–25 (1912).

    Google Scholar 

  • Mouze, M.: Etude expérimentale des facteurs morphogenetiques et hormonaux réglant la croissance oculaire des Aesehnidae (Odonates, Anisopteres). Odonat 1, 221–232 (1972a).

    Google Scholar 

  • Mouze, M.: Croissance et métamorphose de l’appareil visuel des Aesehnidae(Odonata). Internat. J. Insect Morphol. Embryol. 1, 181–200 (1972).

    Google Scholar 

  • Mouze, M.: Interactions de l’oeil et du lobe optique au cours de la croissance postembryonnaire des Insectes odonates. J. Embryol. exp. Morph. 31, 377–407 (1974).

    PubMed  CAS  Google Scholar 

  • Mouze, M.: Croissance et régénération de l’oeil de la larve d’Aesehna cyanea Müll. (Odonate, Anisoptère). Wilhelm Roux’ Arch. Entw. Mech. Org. 176, 267–283 (1975).

    Google Scholar 

  • Murphey, R.K., Mendenhall, B., Palka, J., Edwards, J. S.: Deafferentation slows the growth of specific dendrites of identified giant interneurons. J. comp. Neurol. 159, 407–418 (1975).

    PubMed  CAS  Google Scholar 

  • Murray, F. V., Tiegs, O.W.: The metamorphosis of Calandra oryzae.Quart. J. micr. Sci. 77, 405–495 (1935).

    Google Scholar 

  • Nordlander, R.H., Edwards, J.S.: Morphological cell death in the postembryonic development of the insect optic lobes. Nature 218, 780–781 (1968).

    PubMed  CAS  Google Scholar 

  • Nordlander, R.H., Edwards, J. S.: Postembryonic brain development in the Monarch Butterfly Danaus plexippus plexippus L. I: Cellular events during brain morphogenesis. Wilhelm Roux’ Arch. Entw. Mech. Org. 162, 197–217 (1969a).

    Google Scholar 

  • Nordlander, R.H., Edwards, J. S.: Postembryonic brain development in the Monarch Butterfly Danaus plexippus plexippus L. II: The optic lobes. Wilhelm Roux’ Arch. Entw. Mech. Org. 163, 197–220 (1969b).

    Google Scholar 

  • Nordlander, R.H., Edwards, J. S.: Postembryonic brain development in the monarch butterfly, Danaus plexippus plexippus.III Morphogenesis of centers other than the optic lobes. Wilhelm Roux’ Arch. Entw. Mech. Org. 164, 247–260 (1970).

    Google Scholar 

  • Nübler Jung, K.: Diplomarbeit. Universität Freiburg (1972).

    Google Scholar 

  • Nüesch, H.: Über den Einfluß der Nerven auf die Muskelentwicklung bei Telea polyphemus(Lepid.). Rev. suisse Zool. 59, 294–301 (1952).

    Google Scholar 

  • Nüesch, H.: The role of the nervous system in insect morphogenesis and regeneration. Ann. Rev. Entomol. 13, 27–14 (1968).

    Google Scholar 

  • O’Shea, M., Rowdl, C.H.F., Williams, J.L.D.: The anatomy of a locust visual interneurone-the descending contralateral movement detector. J. exp. Biol. 60, 1–12 (1974).

    Google Scholar 

  • Pabst, H., Kennedy, D.: Cutaneous mechanoreceptors influencing motor output in the crayfish abdomen. Z. vergl. Physiol. 57, 190–208 (1967).

    Google Scholar 

  • Palka, J., Edwards, J.S.: The cerci and abdominal giant fibres of the house cricket Acheta domesticus.II: Regeneration and effects of chronic deprivation. Proc. roy. Soc. B. 185, 105–121 (1974).

    CAS  Google Scholar 

  • Palka, J., Schubiger, M.: Central connections of receptors on rotated and exchanged cerci of crickets. Proc. nat. Acad. Sci. (Wash.) 72, 966–969 (1975).

    CAS  Google Scholar 

  • Panov, A.A.: Bau des Insektengehirns während der postembryonalen Entwicklung. Ent. Oboz. 36, 269–284 (1957).

    Google Scholar 

  • Panov, A. A.: The structure of the insect brain during successive stages of postembryonic development. III: Optic lobes. Ent. Oboz. 39, 55–68 (1960).

    Google Scholar 

  • Panov, A. A.: The structure of the insect brain at successive stages in postembryonic development. IV: The olfactory centre. Ent. Oboz. 40, 140–145 (1961).

    Google Scholar 

  • Panov, A. A.: Correlations in the ontogenetic development of the central nervous system in the house cricketGryllus domesticus L. and the house cricket Gryllotalpa gryllotalpa L. (Orthoptera, Grylloidea). Ent. Oboz. 45, 179–185 (1966).

    Google Scholar 

  • Parker, G.H.: The compound eyes of crustaceans. Bull. Mus. comp. Zool. Harvard 21, 45–140 (1891).

    Google Scholar 

  • Peabody, E.B.: Development of the eye of the isopod Idothea.J. Morph. 64, 519–553 (1939).

    Google Scholar 

  • Peters, W.: Die Sinnesorgane an den Labellen von Calliphora erythrocephala Mg. (Diptera). Z. Morph. Ökol. Tiere 55, 259–320 (1965).

    Google Scholar 

  • Pflugfelder, O.: Vergleichend anatomische, experimentelle und embryologische Untersuchungen über das Nervensystem und die Sinnesorgane der Rhynchoten. Zoologica 34(93), 1–102 (1936/7).

    Google Scholar 

  • Pflugfelder, O.: Die Entwicklung der optischen Ganglien von Culex pipiens.Zool. Anz. 117, 31–36 (1937).

    Google Scholar 

  • Pflugfelder, O.: Die Entwicklung embryonaler Teile von Carausius (Dixippus) morosus in der Kopfkapsel von Larven und Imagines. Biol. Zbl. 66, 372–387 (1947).

    CAS  Google Scholar 

  • Piepho, H.: Über die polare Orientierung der Bälge und Schuppen auf dem Schmetterlingsrumpf. Biol. Zbl. 74, 467–474 (1955).

    Google Scholar 

  • Pipa, R.L.: Proliferation, movement and regression of neurons during the postembryonic development of insects. Developmental Neurobiology of Arthropods (D. Young, Ed.). London: Cambridge University Press 1973.

    Google Scholar 

  • Postlethwait, J.H., Schneiderman, H. A.: Pattern formation and determination in the antenna of the homoeotic mutant Antennapedia of Drosophila melanogaster. Dev. Biol. 25, 606–640 (1971).

    PubMed  CAS  Google Scholar 

  • Power, M.E.: The effect of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster.J. exp. Zool. 94, 33–72 (1943).

    Google Scholar 

  • Prüffer, J.: Untersuchungen über die Innervierung der Fühler bei Saturnia pyri L. Zool. Jb. (Anat.) 51, 1–46 (1929).

    Google Scholar 

  • Ready, D. F., Hanson, T.E., Benzer, S.: Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53, 217–240 (1976).

    PubMed  CAS  Google Scholar 

  • Redikorzew, W.: Untersuchungen über der Bau der Ocellen der Insekten. Z. wiss. Zool. 68, 581–624 (1900).

    Google Scholar 

  • Reinhardt, C.A., Hodgkin, N.M., Bryant, P.J.: Wound healing in the imaginal discs ofDrosophila.I Scanning electron microscopy of normal and healing wing discs. Dev. Biol. 60, 238–257 (1977).

    PubMed  CAS  Google Scholar 

  • Rice, M.J.: Insect mechanoreceptor mechanisms. In: Sensory Physiology and Behaviour. New York-London: Plenum 1975.

    Google Scholar 

  • Roberts, M.J.: The structure of the mouth parts of some calypterate dipteran larvae in relation to their feeding habits. Acta zool. (Stockh.) 52, 171–188 (1971).

    Google Scholar 

  • Roberts, P.: Mosaics involving aristapedia a homoeotic mutant of Drosophila melanogaster.Genetics 49, 593–598 (1964).

    PubMed  CAS  Google Scholar 

  • Rönsch, G.: Entwicklungsgeschichtliche Untersuchungen zur Zelldifferenzierung am Flügel der Trichoptere Limnophilus flavicornis Fabr. Z. Morph. Ökol. Tiere 43, 1–62 (1954).

    Google Scholar 

  • Roth, L.M., Barth, R.H.: The sense organs employed by cockroaches in mating behavior. Behavior 28, 58–94 (1967).

    Google Scholar 

  • Sánchez, Y., Sánchez, D.: Sobre el desarrollo de los elementos nerviosos en la retina del Pieris brassicae L. Trab. Lab. Invest. Biol. 17, 1–63 (1919a).

    Google Scholar 

  • Sánchez, Y., Sánchez, D.: Sobre el desarrollo de los elementos nerviosos en la retina del Pieris brassicae L. Trab. Lab. Invest. Biol. 17, 117–180 (1919b).

    Google Scholar 

  • Sandeman, D.C, Luff, S.E.: Regeneration of the antennules in the Australian freshwater crayfish Cherax destructor.J. Neurobiol. 5, 475–188 (1974).

    PubMed  CAS  Google Scholar 

  • Sandeman, D.C., Okajima, A.: Statocyst induced eye movements in the crab Scylla serrata.III: The anatomical projections of sensory and motor neurons and the responses of the motor neurons. J. exp. Biol. 59, 17–38 (1973).

    Google Scholar 

  • Sanes, J. R., Hildebrand, J.G.: Nerves in the antennae of pupal Manduca sexta Johannsen (Lepidoptera: Sphingidae). Wilhelm Roux’ Arch. Entw. Mech. Org. 178, 71–78 (1975).

    Google Scholar 

  • Sanes, J. R., Hildebrand, J. G.: Origin and morphogenesis of sensory neurons in an insect antenna. Dev. Biol. 51, 300–319 (1976).

    PubMed  CAS  Google Scholar 

  • Sanes, J. R., Hildebrand, J. G., Prescott, D. J.: Differentiation of insect sensory neurons in the absence of their normal synaptic targets. Dev. Biol. 52, 121–127.

    Google Scholar 

  • Sbrenna, G.: Postembryonic growth of the ventral nerve cord in Schistocerca gregaria Forsk. (Orthoptera: Acrididae). Boll. Zool. 38, 49–74 (1971).

    Google Scholar 

  • Schafer, R.: Postembryonic development in the antenna of the cockroach Leucophaea maderae: Growth, regeneration and the development of the adult pattern of sense organs. J. exp. Zool. 183, 353–364 (1973).

    Google Scholar 

  • Schäfer, R., Sanchez, T.V.: Antennal sensory system of the cockroach Periplaneta americana: postembryonic development and morphology of the sense organs. J. comp. Neurol. 149, 335–354 (1973).

    PubMed  Google Scholar 

  • Schafer, R., Sanchez, T.V.: Juvenile hormone inhibits the differentiation of olfactory sense organs during the postembryonic development of cockroaches. J. Insect Physiol. 20, 965–974 (1974).

    PubMed  CAS  Google Scholar 

  • Schoeller, J.: Recherches descriptives et expérimentales sur la cephalogenèse de Calliphora erythrocephala(Meigen) au cours des développements embryonnaire et postembryonnaire. Arch. Zool. exp. Gén. 103, 1–216 (1964).

    Google Scholar 

  • Schön, A.: Bau und Entwicklung des tibialen Chordotonalorgans bei der Honigbiene und bei Ameisen. Zool. Jb. (Anat.) 31, 439–472 (1912).

    Google Scholar 

  • Schwabe, J.: Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 50, 1–154 (1906).

    Google Scholar 

  • Seidel, F.: Der Anlagenplan in Libellenei. Wilhelm Roux’ Arch. Entw. Mech. Org. 132, 671–751 (1935).

    Google Scholar 

  • Seiler, W.: Beiträge zur Kenntnis der Ocellen der Ephemeriden. Zool. Jb. (Anat.) 22, 1–40 (1905).

    Google Scholar 

  • Shelton, P.M. J.: The development of the compound eye. In ‘Insect Development’, (P. A. Lawrence, Ed.), Symp. Roy. Ent. Soc. 8, 152–169 (1976).

    Google Scholar 

  • Shelton, P.M. J., Anderson, H. J., Eley, S.: Cell lineage and cell determination in the developing compound eye of the cockroach Periplaneta americana.J. Embryol. exp. Morphol. 39, 235–252 (1977).

    PubMed  CAS  Google Scholar 

  • Shelton, P.M.J., Lawrence, P. A.: Structure and development of ommatidia in Oncopeltus fasciatus.J. Embryol. exp. Morph. 32, 337–353 (1974).

    PubMed  CAS  Google Scholar 

  • Shiraishi, A., Tanabe, Y.: The proboscis extension response and tarsal labellar chemosensory hairs in the blowfly. J. comp. Physiol. 92, 161–179 (1974).

    Google Scholar 

  • Slifer, E.H.: Morphology and development of the femoral chordotonal organs of Melanoplus differentialis(Orthoptera, Acrididae). J. Morph. 58, 615–637 (1935).

    Google Scholar 

  • Snodgrass, R. E.: The morphology of insect sense organs and the sensory nervous system. Smithson Misc. Coll. 77(8), 1–80 (1926).

    Google Scholar 

  • Sorokina Agafanowa, M.: Das Verhalten des peripheren Nervensystems der Insekten in der Metamorphose. Z. Anat. Entw. Gesch. 74, 318–337 (1924).

    Google Scholar 

  • Spreij, T.E.: Morphological and histochemical changes during the development of some of the imaginai discs ofCalliphora erythrocephala.Neth. J. Zool. 20, 253–275 (1970).

    Google Scholar 

  • Spreij, T.E., de Priester, W.: Myofilaments in the lemnoblast cells of the larval optic nerve in Calliphora erythrocephala.Neth. J. Zool. 21, 221–264 (1972).

    Google Scholar 

  • Steele, M.I.: Regeneration in compound eyes of crustacea. J. exp. Zool. 5, 163–243 (1907).

    Google Scholar 

  • Stern, C.: Two or three bristles. Amer. Sci. 42, 213–247 (1954).

    Google Scholar 

  • Stern, C.: Genetic Mosaics and Other Essays. Cambridge Mass.: Harvard University Press (1968).

    Google Scholar 

  • Stocker, R. F., Edwards, J. S., Palka, J., Schubiger, G.: Projection of sensory neurons from a homeotic mutant appendage Antennapedia in Drosophila melanogaster.Dev. Biol. 52, 210–220 (1976).

    PubMed  CAS  Google Scholar 

  • Stossberg, M.: Die Zellvorgänge bei der Entwicklung der Flügelschuppen von Ephestia kühniella Z. Z. Morph. Ökol. Tiere 34, 173–206 (1938).

    Google Scholar 

  • Stumpf, H.: Further studies on gradient dependent diversification in the pupal cuticle of Galleria mellonella.J. exp. Biol. 49, 49–60 (1968).

    Google Scholar 

  • Titschack, E.: Der Fühlernerv der Bettwanze, Cimes lectularius L. und sein zentrales Endgebiet. Zool. Jb. (allg. Zool.) 45, 437–462 (1928).

    Google Scholar 

  • Tokunaga, C., Stern, C.: The developmental autonomy of extra sex combs in Drosophila melanogaster.Dev. Biol. 11, 50–81 (1965).

    PubMed  CAS  Google Scholar 

  • Trujillo Cenoz, O., Melamed, J.: Compound Eye of Dipterans: anatomical basis for integration - an electron microscope study. J. Ultr. Res. 16, 395–398 (1966).

    CAS  Google Scholar 

  • Trujillenoz, O., Melamed, J.: The development of the retina-lamina complex in muscoid flies. J. ultrastruct. Res. 42, 554–581 (1973).

    Google Scholar 

  • Trujillenoz, O., Melamed, J.: Transplanted eyes of Dipterans. Some aspects of their structural organisation. Naturwissenschaften 62, 42 (1975).

    Google Scholar 

  • Umbach, W.: Entwicklung und Bau des Komplexauges der Mehlmotte Ephestia kühniella Zeller nebst einigen Bemerkungen über die Entstehung der optischen Ganglien. Z. Morph. Ökol. Tiere 28, 561–594 (1934).

    Google Scholar 

  • Van Ruiten, Spreij, T.E.: The ultrastructure of the developing leg disk of Calliphora erythrocephala.Z. Zellforsch. 147, 373–450 (1974).

    PubMed  Google Scholar 

  • Viallanes, H.: Le ganglion optique de quelques larves de Diptères (Musca, Eristalis, Stratiomys).Ann. Sci. nat. (Zool.) (6) 19, 2–34 (1885).

    Google Scholar 

  • Viallanes, H.: Sur quelques points de l’histoire du développement embryonnaire de la mante religieuse (Mantis religiosa).Ann. Sci. nat. (Zool.) (7) 11, 283–328 (1891).

    Google Scholar 

  • Vogel, R.: Über die Innervierung der Schmetterlingsflügel und über den Bau und die Verbreitung der Sinnesorgane auf denselben. Z. wiss. Zool. 98, 68–134 (1911).

    Google Scholar 

  • Vogel, R.: Zur Kenntnis des feineren Baues der Geruchsorgane der Wespen und Bienen. Z. wiss. Zool. 120, 281–324 (1923).

    Google Scholar 

  • Vogt, M.: Zur labilen Determination der Imaginalscheiben von Drosophila.I: Verhalten verschiedenartiger Imaginalanlagen bei operativer Defektsetzung. Biol. Zbl. 65, 223–238 (1946).

    Google Scholar 

  • Vom Rath, O.: Über die Hautsinnesorgane der Insekten. Z. wiss. Zool. 46, 413–454 (1888).

    Google Scholar 

  • Von Reizenstein, W.: Untersuchungen über die Entwicklung der Stirnaugen von Periplaneta orientalis und Cloeon.Zool. Jb. (Anat.) 21, 161–180 (1905).

    Google Scholar 

  • Wachmann, E.: Untersuchungen zur Entwicklungsphysiologie des Komplexauges der Wachsmotte Galleria mellonella L. Wilhelm Roux’ Arch. Entw. Mech. Org. 156, 145–183 (1965).

    Google Scholar 

  • Waddington, C. H., Perry, M. M.: The ultrastructure of the developing eye of Drosophila.Proc. roy. Soc. B 153, 155–178 (1960).

    Google Scholar 

  • Wahl, B.: Über die Entwicklung der hypodermalen Imaginalscheiben im Thorax und Abdomen der Larve von Eristalis Latr. Z. Wiss. Zool. 70, 171–191 (1901).

    Google Scholar 

  • Weber, H.: Grundriss der Insektenkunde. Jena: Fischer 1966.

    Google Scholar 

  • Wheeler, W.M.: A contribution to insect embryology. J. Morph. 8, 1–160 (1893).

    Google Scholar 

  • White, R. H.: Analysis of the development of the compound eye in the mosquito Aedes aegypti.J. exp. Zool. 148, 223–240 (1961).

    PubMed  CAS  Google Scholar 

  • White, R.H.: Evidence for the existence of a differentiation center in the developing eye of the mosquito. J. exp. Zool. 152, 139–148 (1963).

    PubMed  CAS  Google Scholar 

  • Wiersma, C. A.G.: On the functional connections of single units in the central nervous system of the crayfish Procambarus clarkii Girard. J. comp. Neurol. 110, 421–471 (1958).

    PubMed  CAS  Google Scholar 

  • Wiersma, C. A.G., Bush, B.M.H.: Functional neuronal connections between the thoracic and abdominal cords of the crayfish, Procambarus clarkii Girard. J. comp. Neurol. 121, 270–235 (1963).

    Google Scholar 

  • Wiersma, C. A.G., Hughes, G.M.: On the functional anatomy of neuronal units in the abdominal cord of the crayfish Procambarus clarkii Girard. J. comp. Neuron. 116, 209–228 (1961).

    CAS  Google Scholar 

  • Wiese, K.: Mechanoreceptors for near-field water displacements in crayfish. J. Neurophysiol. 39, 816–831 (1976).

    PubMed  CAS  Google Scholar 

  • Wiese, K., Calabrese, R. L., Kennedy, D.: Integration of directional mechanosensory input by crayfish interneurons. J. Neurophysiol. 39, 834–843 (1976).

    PubMed  CAS  Google Scholar 

  • Wigglesworth, V.B.: Local and general factors in the development of “pattern” in Rhodnius prolixus(Hemiptera). J. exp. Biol. 17, 180–200 (1940).

    Google Scholar 

  • Wigglesworth, V.B.: The origin of sensory neurones in an insect Rhodnius prolixus(Hemiptera). Quart. J. micr. Sci. 94, 93–112 (1953).

    Google Scholar 

  • Wigglesworth, V.B.: The Principles of Insect Physiology, 7th ed. London: Chapman and Hall 1972.

    Google Scholar 

  • Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. theoret. Biol. 25, 1–47 (1969).

    CAS  Google Scholar 

  • Wolpert, L.: Positional information and pattern formation. Curr. Top. dev. Biol. 6, 183–224 (1971).

    PubMed  CAS  Google Scholar 

  • Wolsky, A.: Experimentelle Untersuchungen über die Differenzierung der zusammengesetzten Augen des Seidenraupenspinners (Bombyx mori L.). Wilhelm Roux’s Archiv 138, 335–344 (19

    Google Scholar 

  • Wolsky, A.: The analysis of eye development in insects. Trans. N. Y. Acad. Sci. Ser. II 18, 592–596 (1956).

    CAS  Google Scholar 

  • Wolsky, A., Wolsky, M. de I.: Phase specific and regional differences in the development of the complex eye of the mulberry silkworm (Bombyx mori L.) after unilateral removal of the optic lobe of the brain in early pupal stages. Am. Zool. 11, 679 (1971).

    Google Scholar 

  • Young, D. (Ed.): Developmental Neurobiology of Arthropods. London: Cambridge University Press 1973.

    Google Scholar 

  • Young, D., Ball, E.: Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus(Walker). I: Adult structure. Z. Zellforsch. 147, 293–312 (1974a).

    PubMed  CAS  Google Scholar 

  • Young, D., Ball, E.: Structure and development of the tracheal organ in the mesothoracic leg of the cricket Teleogryllus commodus(Walker). Z. Zellforsch. 147, 325–334 (1974b).

    PubMed  CAS  Google Scholar 

  • Zawarzin, A.: Histologische Studien über Insekten. II: Das sensible Nervensystem der Aeschna Larven. Z. wiss. Zool. 100, 245–286 (1912).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Bate, C.M. (1978). Development of Sensory Systems in Arthropods. In: Jacobson, M. (eds) Development of Sensory Systems. Handbook of Sensory Physiology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66880-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66880-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66882-1

  • Online ISBN: 978-3-642-66880-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics