Skip to main content

Numerical Computation of Tidal Friction for Present and Ancient Oceans

  • Chapter
Tidal Friction and the Earth’s Rotation

Abstract

The Earth loses rotational energy. This is evident from astronomic and paleontologic data for present as well as for ancient times. For the present state the estimates for the loss of rotational energy Ėrot range within the interval of 4–7 1019 erg/s, according to Rochester (1973), Muller and Stephenson (1975), and Kagan (1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bogdanov, K.T., Magarik, V.: Numerical solutions to the problem of distribution of semidiurnal tides M2 and S2 in the world ocean (transl.). Dokl. Adad. Nauk. SSSR 172, 1315–1317 (1967)

    Google Scholar 

  • Brosche, P., Sündermann, J.: Die Gezeiten des Meeres und die Rotation der Erde. Pure Appl. Geophys. 86, 95–117 (1971)

    Article  Google Scholar 

  • Brosche, P., Sündermann, J.: On the torques due to tidal friction of the oceans and adjacent seas. In: Rotation of the Earth. Melchior, P., Yumi, S. (eds.). Dordrecht: D. Reidel, 1972, pp. 235–239

    Google Scholar 

  • Brosche, P., Sündermann, J.: Effects of oceanic tides on the rotation of the Earth. In: Scientific Applications of Lunar Laser Ranging. Mulholland, J.D. (ed.). Dordrecht-Boston: D. Reidel, 1977, pp. 133–141

    Chapter  Google Scholar 

  • Dietz, R.S., Holden, J.C.: Reconstruction of Pangaea: Breakup and dispersion of continents, Permian to present. J. Geophys. Res. 75, 4939–4956 (1970)

    Article  Google Scholar 

  • Gerstenkorn, H.: Über Gezeitenreibung beim Zweikörperproblem. Z. Astrophys. 36, 245–274 (1955)

    Google Scholar 

  • Hansen, W.: Gezeiten und Gezeitenströme der halbtägigen Hauptmondtide M2 in der Nordsee. Dtsch. Hydrogr. Z., Ergänzungsheft I, 1–46 (1952)

    Google Scholar 

  • Hendershott, M.C.: The effects of solid Earth deformation on global ocean tides. Geophys. R. Astron. Soc. 29, 389–403 (1972)

    Google Scholar 

  • Hendershott, M.C.: Ocean Tides, EOS, Trans. Am. Geophys. Union. 54, 76–86 (1973)

    Article  Google Scholar 

  • Hendershott, M.C., Munk, W.H.: Tides. Ann. Rev. Fluid Mech. 2, 205–224 (1970)

    Article  Google Scholar 

  • Jeffreys, H.: Tidal friction in shallow seas. Philos. Trans. R. Soc. London, Series A, 221, 239–264 (1920)

    Article  Google Scholar 

  • Kagan, B.A.: Global Interaction of Ocean and Earth Tides (in Russian). Leningrad: Gidrometeoizdat, 1977, p. 48

    Google Scholar 

  • Klein, G.: A sedimentary model for determining paleotidal range. Geol. Soc. Am. Bull. 82, 539–546 (1971)

    Google Scholar 

  • MacDonald, G.J.F.: Origin of the Moon: dynamical considerations. In: The Earth-Moon System. Marsden, B.G., Cameron, A.G.W. (eds.). New York: Plenum Press, 1966, pp. 165–209

    Google Scholar 

  • Miller, G.R.: The flux of tidal energy out of the deep oceans. Journ. Geophys. Res. 71, 2485–2489 (1966)

    Google Scholar 

  • Morrison, L.V.: Tidal deceleration of the Earth’s rotation deduced from astronomical observations in the period A.D. 1600 to the present. In: Tidal Friction and the Earth’s Rotation. Brosche, P., Sündermann, J. (eds.). Berlin-Heidelberg-New York: Springer, 1978, pp. 22–27

    Google Scholar 

  • Muller, P.M., Stephenson, F.R.: The acceleration of the Earth and Moon from early astronomical observations. In: Growth Rhythms and History of the Earth’s Rotation. Rosenberg, G.D., Runcorn, S.K. (eds.). London: J. Wiley, 1975, pp. 459–534

    Google Scholar 

  • Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth. Cambridge: Cambridge University Press, 1960, p. 323

    Google Scholar 

  • Panella, G.: Tidal Growth Patterns in recent and fossil mollusc bivalve shells: a tool for the reconstruction of paleotides. Naturwissenschaften 63, 539–543 (1976)

    Article  Google Scholar 

  • Pariiskii, N.N., Kuznetsov, M.V., Kusnetsova, L.V.: On the influence of ocean tides on the secular deceleration of the Earth’s rotation (in Russian). Fiz. Zemli 2, 3–12 (1972)

    Google Scholar 

  • Pekeris, C.L., Accad, Y.: Solution of Laplace’s equation for the M2~tide in the world oceans. Philos. Trans. R. Soc. Lond., Series A, 265, 413–436 (1969)

    Article  Google Scholar 

  • Piper, J.D.A.: Geological and geophysical evidence relating to continental growth and dynamics and the hydrosphere in Precambrian Times: a review and analysis. In: Tidal Friction and the Earth’s Rotation. Brosche, P., Sündermann, J. (eds.). Berlin-Heidelberg-New York: Springer, 1978, pp. 197–241

    Google Scholar 

  • Rochester, M.G.: The Earth’s rotation. EOS, Trans. Am. Geophys. Union 54, 769–780 (1973)

    Article  Google Scholar 

  • Schott, F.: On the energetics of baroclinic tides in the North Atlantic. Ann. Geophys. 33, 41–62 (1977)

    Google Scholar 

  • Scrutton, C.T.: Periodic growth features in fossil organisms and the length of the day and month. In: Tidal Friction and the Earth’s Rotation. Brosche, P., Sündermann, J. (eds.). Berlin-Heidelberg-New York: Springer, 1978, pp. 154–196

    Google Scholar 

  • Smith, A.G., Briden, J.C.: Mesozoic and Cenozoic Paleo-Continental Maps. Cambridge: Cambridge University Press, 1977, p. 64

    Google Scholar 

  • Stephenson, F.R.: Pre-telescopic astronomical observations. In: Tidal Friction and the Earth’s Rotation. Brosche, P., Sündermann, J. (eds.). Berlin-Heidelberg-New York: Springer, 1978, pp. 5–21

    Google Scholar 

  • Tarling, D.H.: Principles and Applications of Paleo-Magnetism. London: Chapman and Hall, 1971, p. 164

    Google Scholar 

  • Wunsch, C.: Internal tides in the ocean. Rev. Geophys. Space Phys. 13, 167–182 (1975)

    Article  Google Scholar 

  • Zahel, W.: Die Reproduktion gezeitenbedingter Bewegungsvorgänge im Weltozean mittels des hydrodynamisch-numerischen Verfahrens. Mitt. Inst. Meereskd. Univ. 17, 1–50 (1970)

    Google Scholar 

  • Zahel, W.: The diurnal K1-tide in the world ocean – a numerical investigation. Pure Appl. Geophys. 109, 1819–1825 (1973)

    Article  Google Scholar 

  • Zahel, W.: A global hydrodynamical-numerical lO-model of the ocean tides; the oscillation system of the M2-tide and its distribution of energy dissipation. Ann. Geophys. 33, 31–40 (1977)

    Google Scholar 

  • Zahel, W.: The Influence of Solid Earth Deformations on Semi-Diurnal and Diurnal Oceanic Tides. In: Tidal Friction and the Earth’s Rotation. Brosche, P., Sündermann, J. (eds.). Berlin-Heidelberg-New York: Springer, 1978, pp. 98–124

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sündermann, J., Brosche, P. (1978). Numerical Computation of Tidal Friction for Present and Ancient Oceans. In: Brosche, P., Sündermann, J. (eds) Tidal Friction and the Earth’s Rotation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67097-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67097-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09046-5

  • Online ISBN: 978-3-642-67097-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics