Skip to main content

Quantitative Analysis of Plant Hormones

  • Chapter
Hormonal Regulation of Development I

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 9))

Abstract

Estimates of endogenous plant hormone levels are usually obtained from analyses of solvent extracts of plant tissues. The relevance of such estimates to the true hormonal status of the plant at the time of extraction is open to question and will undoubtedly be an area of much future investigation. However, in the absence of pertinent data the scope of this article will have to be confined to questions relating to the analysis of plant extracts. The typical extract is an exceedingly complex mixture containing trace amounts of hormones at concentrations rarely greater than one part in 106. Meaningful quantitative analysis is therefore a formidable technical problem, not only in terms of the requirement for methodology possessing low limits of detection, but also because of the absolute necessity of having to distinguish the hormone of interest from the overwhelming number of other compounds present. In the following article these considerations will be discussed from a theoretical viewpoint which is then used as a basis to assess the effectiveness of procedures currently employed in the quantitative analysis of plant hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addicott, F.T., Cams, H.R., Lyon, J.L., Smith, O.E., McMeans, J.L.: On the physiology of abscisins. In: Regulateurs naturels de la croissance vegetale. Nitsch, J.P. (ed.), pp 687–703. Paris: Centre National de la Recherche Scientifique 1964

    Google Scholar 

  • Arpino, P.J., Guiochon, G.: LC/MS coupling. Anal. Chem. 51, 682A–701A (1979)

    CAS  Google Scholar 

  • Audus, L.J., Thresh, R.: A method of plant growth substance assay for use in paper partition chromatography. Physiol. Plant. 6, 451–465 (1953)

    CAS  Google Scholar 

  • Bandurski, R.S., Schulze, A.: Concentrations of indole–3-acetic acid and its esters in Avena and Zea. Plant Physiol. 54, 257–262 (1974)

    PubMed  CAS  Google Scholar 

  • Bandurski, R.S., Schulze, A.: Concentration of indole–3-acetic acid and its derivatives in plants. Plant Physiol. 60, 211–213 (1977)

    PubMed  CAS  Google Scholar 

  • Berrie, A.M.M., Robertson, J.: Abscisic acid as an endogenous component in lettuce fruits, Lactuca sativa L. cv Grand Rapids. Does it control thermodormancy? Planta 131, 211–215 (1976)

    CAS  Google Scholar 

  • Beynon, J.E., Williams, A.E.: Mass and abundance tables for use in mass spectrometry. Amsterdam: Elsevier Publishing Company 1963

    Google Scholar 

  • Biddington, N.L., Thomas, T.H.: A modified Amaranthus betacyanin bioassay for the rapid determination of cytokinins in plant tissues. Planta 111, 183–186 (1973)

    CAS  Google Scholar 

  • Bigot, C.: Action d’adenines substitutes sur la synthese des betacyanines dans la plantule $ Amaranthus caudathus L. Possibility d’un test biologique de dosage des cytokinines. C.R. Acad. Sci. 266, 349–352 (1968)

    CAS  Google Scholar 

  • Bonner, J.: Limiting factors and growth inhibitors in the growth of the Avena coleoptile. Am. J. Bot. 36, 323–332 (1949)

    PubMed  CAS  Google Scholar 

  • Bowen, D.H., Crozier, A., MacMillan, J., Reid, D.M.: Characterization of gibberellins from light-grown Phaseolus coccineus seedlings by combined GC-MS. Phytochemistry 12, 2935–2941 (1973)

    CAS  Google Scholar 

  • Brandes, H., Kende, H.: Studies on cytokinin-controlled bud formation in moss protenemata. Plant Physiol. 43, 827–837 (1968)

    PubMed  CAS  Google Scholar 

  • Brian, P.W., Hemming, H.G., Lowe, D.: Comparative potency of nine gibberellins. Ann. Bot. (London) 28, 369–389 (1964)

    CAS  Google Scholar 

  • Bridges, I.G., Hillman, J.R., Wilkins, M.B.: Identification and localisation of auxin in primary roots of Zea mays by mass spectrometry. Planta 115, 189–192 (1973)

    CAS  Google Scholar 

  • Browning, G., Saunders, P.F.: Membrane localised gibberellins A9 and A4 in wheat chloroplasts. Nature (London) 265, 375–377 (1977)

    CAS  Google Scholar 

  • Caplin, S.M., Steward, F.C.: A technique for the controlled growth of excised plant tissue in liquid media under aseptic conditions. Nature (London) 163, 920–921 (1949)

    Google Scholar 

  • Chrispeels, M.J., Varner, J.E.: Inhibition of gibberellic acid-induced formation of a-amylase by abscisin II. Nature (London) 212, 1066–1067 (1966)

    CAS  Google Scholar 

  • Ciha, A J., Brenner, M., Brun, W.A.: Rapid separation and quantification of abscisic acid from plant tissues using high performance liquid chromatography. Plant Physiol. 59, 821–826 (1977)

    PubMed  CAS  Google Scholar 

  • Cummins, W.R., Kende, H., Raschke, K.: Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99, 347–351 (1971)

    CAS  Google Scholar 

  • Davis, L.A., Lyon, J.L., Addicott, F.T.: Phaseic acid; occurrence in cotton fruit; acceleration of abscission. Planta 102, 294–301 (1972)

    CAS  Google Scholar 

  • Durley, R.C., Kannangara, T., Simpson, G.: Analysis of abscisins and 3-indolylacetic acid in leaves of Sorghum bicolor by high performance liquid chromatography. Can. J. Bot. 56, 157–161 (1978)

    CAS  Google Scholar 

  • Eliasson, L., Stromquist, L.-H., Tillberg, E.: Reliability of the indolo-a-pyrone fluorescence method for indole–3-acetic acid determination in crude plant extracts. Physiol. Plant. 36, 16–19 (1976)

    CAS  Google Scholar 

  • Fletcher, R.A., McCullagh, D.: Cytokinin-induced chlorophyll formation in cucumber cotyledons. Planta 101, 88–90 (1971)

    CAS  Google Scholar 

  • Francis, A. W.: Numbers of isomeric alkylbenzenes. J. Am. Chem. Soc. 69, 1536–1537 (1947)

    CAS  Google Scholar 

  • Frankland, B., Wareing, P.F.: Effect of gibberellic acid on hypocotyl growth of lettuce seedlings. Nature (London) 185, 255–256 (1960)

    Google Scholar 

  • Frydman, V.M., Gaskin, P., MacMillan, J.: Qualitative and quantitative analyses of gibberellins throughout seed maturation in Pisum sativum cv. Progress No. 9. Planta 118, 123–132 (1974)

    CAS  Google Scholar 

  • Fuchs, S., Haimovich, J., Fuchs, Y.: Immunological studies of plant hormones. Detection and estimation by immunological assays. Eur. J. Biochem. 18, 384–390 (1971)

    PubMed  CAS  Google Scholar 

  • Fuchs, Y., Gertman, E.: Insoluble antibody column for isolation and quantitative determination of gibberellins. Plant Cell Physiol. 15, 629–633 (1974)

    CAS  Google Scholar 

  • Fuchs, Y., Mayak, S., Fuchs, S.: Detection and quantitative determination of abscisic acid by immunological assay. Planta 103, 117–125 (1972)

    CAS  Google Scholar 

  • Giddings, J.C.: Maximum number of components resolvable by gel filtration and other elution chromatographic methods. Anal. Chem. 39, 1027–1028 (1967)

    CAS  Google Scholar 

  • Grotch, S.L.: Matching of mass spectra when peak height is encoded to one bit. Anal. Chem. 42, 1214–1222 (1970)

    CAS  Google Scholar 

  • Hancock, R.C., Barlow, H.W.B., Lacey, H.J.: The East Mailing coleoptile straight-growth test method. J. Exp. Bot. 15, 166–176 (1964)

    Google Scholar 

  • Harrison, M.A., Saunders, P.F.: The abscisic acid content of dormant birch buds. Planta 123, 291–298 (1975)

    CAS  Google Scholar 

  • Henze, H., Blair, C.: Number of isomeric hydrocarbons of the methane series. J. Am. Chem. Soc. 53, 3077–3085 (1931)

    CAS  Google Scholar 

  • Henze, H., Blair, C.: The number of structural isomers of the more important types of aliphatic compound. J. Am. Chem. Soc. 56, 157 (1934)

    CAS  Google Scholar 

  • Hillman, J.R., Young, I., Knights, B.A.: Abscisic acid in leaves of Hedera helix L. Planta 119, 263–266 (1974)

    CAS  Google Scholar 

  • Hillman, W.S.: Nonphotosynthetic light requirement in Lemna minor and its partial satisfaction by kinetin. Science 126, 165–166 (1957)

    PubMed  CAS  Google Scholar 

  • Jamieson, W.D., Hutzinger, O.: Identification of simple naturally occurring indoles by mass spectrometry. Phytochemistry 9, 2029–2036 (1970)

    CAS  Google Scholar 

  • Jones, R.L., Varner, J.E.: The bioassay of gibberellins. Planta 72, 155–161 (1967)

    CAS  Google Scholar 

  • Kaldewey, H., Wakhloo, J.L., Weis, A., Jung, H.: The Avena geocurvature test. Planta 84,1- 10 (1969)

    Google Scholar 

  • Kende, H.: Kinetin-like factors in the root exudate of sunflowers. Proc. Natl. Acad. Sci. USA 53, 1302–1307 (1965)

    PubMed  CAS  Google Scholar 

  • Knock, B.A., Smith, I.C., Wright, D.E., Ridley, R.G., Kelly, W.: Compound identification by computer matching of low resolution mass spectra. Anal. Chem. 42, 1516–1520 (1970)

    CAS  Google Scholar 

  • Kohler, D., Lang, A.: Evidence for substances in higher plants interfering with response of dwarf peas to gibberellin. Plant Physiol. 38, 555–560 (1963)

    PubMed  CAS  Google Scholar 

  • Koshimizu, K., Fukui, H., Mitsui, T., Ogawa, Y.: Identity of lupin inhibitor with abscisin II and its biological activity on growth of rice seedlings. Agric. Biol. Chem. 30, 941–943 (1966)

    CAS  Google Scholar 

  • Lederberg, J., Sutherland, G.L., Buchanan, B.G., Feigenbaum, E.A., Robertson, A.V., Duffield, A.M., Djerassi, C.: Application of artificial intelligence for chemical inference. I. The number of possible organic compounds. Acyclic structures containing C, H, O, and N. J. Am. Chem. Soc. 91, 2973–2976 (1969)

    CAS  Google Scholar 

  • Lenton, J.R., Perry, V.M., Saunders, P.F.: The identification and quantitative analysis of abscisic acid in plant extracts by gas-liquid chromatography. Planta 96, 271–280 (1971)

    CAS  Google Scholar 

  • Lenton, J.R., Perry, V.M., Saunders, P.F.: Endogenous abscisic acid in relation to photoperiodically induced bud dormancy. Planta 106, 13–22 (1972)

    CAS  Google Scholar 

  • Letham, D.S.: Regulators of cell division in plant tissues. V. A comparison of the activities of zeatin and other cytokinins in five bioassays. Planta 74, 228–242 (1967)

    CAS  Google Scholar 

  • Letham, D.S.: A new cytokinin bioassay and the naturally occurring cytokinin complex. In: Biochemistry and physiology of plant growth substances. Wightman, F., Setterfield, G., (eds.), pp. 19–31. Ottawa: Runge Press 1968

    Google Scholar 

  • Lieberman, M., Knegt, E.: Influence of ethylene on indole–3-acetic acid concentration inetiolated pea epicotyl tissue. Plant Physiol. 60, 475–477 (1977)

    PubMed  CAS  Google Scholar 

  • Manos, P.J., Goldthwaite, J.: An improved cytokinin bioasay using cultured soybean hypocotyl sections. Plant Physiol. 57, 894–897 (1976)

    PubMed  CAS  Google Scholar 

  • Martin, G.C., Dennis, F.G., MacMillan, J., Gaskin, P.: Hormones in pear seeds. 1. Levels of gibberellins, abscisic acid, phaseic acid, dihydrophaseic acid and two metabolites of dihydrophaseic acid in immature seeds of Pyrus communis L. J. Am. Soc. Hortic. Sci. 102, 16–19 (1977)

    Google Scholar 

  • McFadden, W.H.: Interfacing chromatography and mass spectrometry. J. Chromatogr. Sci. 17, 2–17 (1979)

    CAS  Google Scholar 

  • McFadden, W.H., Bradford, D.C., Gaines, D.E., Gower, J.L.: Applications of combined liquid chromatography/mass spectrometry. Int. Laboratory, pp. 55–64 October (1977)

    Google Scholar 

  • McWha, J.A., Philipson, J.J., Hillman, J.R., Wilkins, M.B.: Molecular requirements for abscisic acid activity in two bioassay systems. Planta 109, 327–336 (1973)

    CAS  Google Scholar 

  • Milborrow, B.V.: The identification of (+)-abscisin II [(+)-dormin] in plants and measurement of its concentrations. Planta 76, 93–113 (1967)

    CAS  Google Scholar 

  • Miller, C.O.: Kinetin and kinetin-like compounds. In: Modern methods of plant analysis Linskens, H.F., Tracey, M.V. (eds.), Vol. VI, pp. 194–202. Berlin-Heidelberg-New York: Springer 1963

    Google Scholar 

  • Moewus, F.: Der Kressewurzeltest, ein neuer quantitativer Wuchsstofftest. Biol. Zentralbl. 68, 118–140 (1949)

    CAS  Google Scholar 

  • Moffat, A.C., Smalldon, K.W., Brown, C.: Optimum use of paper, thin layer and gas liquid hromatography for the identification of basic drugs 1) Determination of effectiveness of a series of chromatographic steps. J. Chromatogr. 90, 1–7 (1974)

    PubMed  CAS  Google Scholar 

  • Murakami, Y.: The microdrop method, a new rice seedling test for gibberellins and its use for testing extracts of rice and morning glory. Bot. Mag. 79, 33–43 (1968)

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962)

    CAS  Google Scholar 

  • Nicholls, P.B., Paleg, L.G.: A barley endosperm bioassay for gibberellins. Nature (London) 199, 823–824 (1963)

    Google Scholar 

  • Nitsch, J.P., Nitsch, C.: Studies on the growth of coleoptile and first internode sections: A new sensitive straight-growth test for auxins. Plant. Physiol. 31, 94–111 (1956)

    PubMed  CAS  Google Scholar 

  • Ockerse, R., Galston, A.W.: Gibberellin-auxin interaction in pea stem elongation. Plant Physiol. 42, 47–54 (1967)

    PubMed  CAS  Google Scholar 

  • Ogawa, Y.: Studies on the conditions for gibberellin assay using rice seedling. Plant Cell Physiol. 4, 227–237 (1963)

    CAS  Google Scholar 

  • Osborne, D.J., McCalla, D.R.: Rapid bioassay for kinetin and kinins using senescing leaf tissue. Plant Physiol. 36, 219–221 (1961)

    PubMed  CAS  Google Scholar 

  • Pengelly, W., Meins, F.: A specific radioimmunoassay for nanogram quantities of the auxin, indole–3-acetic acid. Planta 136, 173–180 (1977)

    CAS  Google Scholar 

  • Phinney, B.O.: Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc. Natl. Acad. Sci. USA 42, 185–189 (1956)

    PubMed  CAS  Google Scholar 

  • Powell, L.E., Tautvydas, K.J.: Chromatography of gibberellins on silica gel partition columns. Nature (London) 213, 292–293 (1967)

    CAS  Google Scholar 

  • Quebedaux, B., Sweetser, P.B., Rowell, J.C.: Abscisic acid levels in soybean reproductive structures during development. Plant Physiol. 58, 363–366 (1976)

    Google Scholar 

  • Railton, I.D., Reid, D.M., Gaskin, P., MacMillan, J.: Characterization of abscisic acid in chloroplasts of Pisum sativum cv. Alaska by combined gas chromatography-mass spectrometry. Planta 117, 179–182 (1974)

    CAS  Google Scholar 

  • Reeve, D.R., Crozier, A.: An assessment of gibberellin structure-activity relationships. J. Exp. Bot. 25, 431–445 (1974)

    CAS  Google Scholar 

  • Ridley, R.G.: Progress in the Mass Spectrometry Data Centre, 1966–70. In: Advances in mass spectrometry. Quayle, A. (ed.), Vol. V, pp. 307–313. Amsterdam: Elsevier Publishing Co. Ltd. 1971

    Google Scholar 

  • Rivier, L., Pilet, P.-E.: Indolyl–3-acetic acid in cap and apex of maize roots: identification and quantification by mass spectrometry. Planta 120, 107–112 (1974)

    CAS  Google Scholar 

  • Rivier, L, Milon, H., Pilet, P.-E.: Gas chromatography-mass spectrometric determinations of abscisic acid levels in the cap and the apex of maize roots. Planta 134, 23–27 (1977)

    CAS  Google Scholar 

  • Ross, J.D., Bradbeer, J.W.: Studies in seed dormancy V. The content of endogenous gibberellins in seeds of Corylus avellana L. Planta 100, 288–302 (1971)

    CAS  Google Scholar 

  • Rouvray, D.H.: Isomer enumeration methods. Chem. Soc. Rev. 3, 355–372 (1974)

    CAS  Google Scholar 

  • Sakurai, N., Shibata, K., Kamisaka, S.: Stimulation of cucumber hypocotyl elongation by dihydroconiferyl alcohol. Interactions between dihydroconiferyl alcohol and auxin or gibberellin. Plant Cell Physiol. 15, 709–716 (1974)

    CAS  Google Scholar 

  • Scott, R.P.W.: Liquid chromatography detectors. J. Chromatogr. Library VII. Amsterdam: Elsevier Scientific Publishing Company 1977

    Google Scholar 

  • Seeley, S.D., Powell, L.E.: Electron capture-gas chromatography for sensitive assay of abscisic acid. Anal. Biochem. 35, 530–533 (1970)

    PubMed  CAS  Google Scholar 

  • Sivori, E.M., Sonvico, V., Fernandez, N.O.: Determination of abscisic acid following Paleg’s method. Plant Cell Physiol. 12, 993–996 (1971)

    CAS  Google Scholar 

  • Stenhagen, E., Abrahamson, S., McLafferty, F.M.: Atlas of mass spectral data. New York: John Wiley and Sons 1969

    Google Scholar 

  • Stoessl, A., Venis, M.A.: Determination of submicrogram levels of indole–3-acetic: a new, highly specific method. Anal. Biochem. 34, 344–351 (1970)

    PubMed  CAS  Google Scholar 

  • Summons, R.E., MacLeod, J.K., Parker, C.W., Letham, D.S.: The occurrence of raphanatin as an endogenous cytokinin in radish seed. Identification and quantification by gas chromatographic-mass spectrometric analysis using deuterium-labelled standards. FEBS Lett. 82, 211–214 (1977)

    PubMed  CAS  Google Scholar 

  • Sweetser,P.B., Vatvars, A.: High-performance liquid chromatographic analysis of abscisic acid in plant extracts. Anal. Biochem. 71, 68–78 (1976)

    Google Scholar 

  • Taylor, H.F., Burden, R.S.: Xanthoxin, a recently discovered plant growth inhibitor. Proc. R. Soc. London Ser. B 180, 317–346 (1972)

    CAS  Google Scholar 

  • Thimann, K.V., Schneider, C.L.: The relative activities of different auxins. Am. J. Bot. 26, 328–333 (1939)

    CAS  Google Scholar 

  • Thompson, A.G., Horgan, R., Heald, J.K.: A quantitative analysis of cytokinin using single-ion-current-monitoring. Planta 124, 207–210 (1975)

    CAS  Google Scholar 

  • Tillberg, E.: An abscisic acid-like substance in dry and soaked Phaseolus vulgaris seeds determined by the Lemna growth bioassay. Physiol. Plant. 34, 192–195 (1975)

    CAS  Google Scholar 

  • Tucker, D.J., Mansfield, T.A.: A simple bioassay for detecting “antitranspirant” activity of naturally occurring compounds such as abscisic acid. Planta 98, 157–163 (1971)

    CAS  Google Scholar 

  • Van Onckelen, H.A., Verbeek, R.: Isolation and assay of a cytokinin from barley. Phytochemistry 11, 1677–1680 (1972)

    Google Scholar 

  • Van Overbeek, J., Went, F.W.: Mechanism and quantitative application of the pea test. Bot. Gaz. 99, 22–41 (1937)

    Google Scholar 

  • Van Staden, J., Bornman, C.H.: Spirodela growth test: a possible bioassay for abscisic acid. J.S. Afr. Bot. 36, 9–12 (1970)

    Google Scholar 

  • Vogel, A.I.: A text-book of quantitative inorganic analysis. London: Longmans, Green and Co. Ltd, 1st Ed. 1939, 3rd Ed. 1961

    Google Scholar 

  • Wangen, L.E, Woodward, W.S, Isenhour, T.L.: Small computer, magnetic tape oriented, rapid search system applied to mass spectrometry. Anal. Chem. 43, 1605–1614 (1971)

    CAS  Google Scholar 

  • Went, F.W.: Wuchsstoff und Wachstum. Reel. Trav. Bot. Neerl. 25, 1–116 (1928)

    Google Scholar 

  • Went, F.W.: On the pea test method for auxin, plant growth hormone. Proc. K. Ned. Akad. Wet. 37, 547–555 (1934)

    CAS  Google Scholar 

  • Whyte, P, Luckwill, L.C.: A sensitive bioassay for gibberellins based on retardation of leaf senescence in Rumex obtusifolius (L.). Nature (London) 210, 1360 (1966)

    CAS  Google Scholar 

  • Williams, P.M., Bradbeer, J.W, Gaskin, P, MacMillan, J.: Studies in seed dormancy VIII. The identification and determination of gibberellins Ax and A9 in seeds of Corylus avellana L. Planta 117, 101–108 (1974)

    CAS  Google Scholar 

Selected Bibliography

  1. Jeffreys, H.: Scientific inference, 2nd. Ed. Cambridge: Cambridge University Press 1957

    Google Scholar 

  2. Smart, J.C.C.: Between science and philosophy. New York: Random House 1968

    Google Scholar 

  3. Calvin, M.: Chemical evolution. Oxford: Clarendon Press 1969

    Google Scholar 

  4. Cairns-Smith, A.G.: The life puzzle. Edinburgh: Oliver and Boyd 1971

    Google Scholar 

  5. Brillouin, L.: Science and information theory 2nd. Ed. New York: Academic Press 1957

    Google Scholar 

  6. Shannon, C.E., Weaver, W.: The mathematical theory of communication. Urbana: The University of Illinois Press 1949

    Google Scholar 

  7. Kaiser, H.: Quantitation in elemental analysis. Anal. Chem. 42 (2) 24A-41A (1971)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Reeve, D.R., Crozier, A. (1980). Quantitative Analysis of Plant Hormones. In: MacMillan, J. (eds) Hormonal Regulation of Development I. Encyclopedia of Plant Physiology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67704-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67704-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67706-9

  • Online ISBN: 978-3-642-67704-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics