Skip to main content

Angiogenesis Factor(s)

  • Chapter
Tissue Growth Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 57))

Abstract

New formation of vessels occurs during embryonal development and throughout the lifespan of an organism following repair processes or under certain pathologic conditions. In particular, neoplastic cell populations can grow to form a clinically evident tumor only if the host produces a vascular network sufficient to sustain tumor growth (Folkman, 1974 a, 1975; Brem et al., 1976). The hypothesis that angiogenesis is due to the production of a factor(s) by cells involved in the process of neovascularization arose from several kinds of observations: During an inflammatory response, new formation of vessels appeared when certain types of cells invaded the area; a neoplastic cell population induced the formation of a vascular network even when the tumor fragment was separated from the host by a Millipore filter; (Greenblatt and Shubik, 1968); and cell-free fluid sampled in vivo from the extracellular compartment of a growing tumor elicited an angiogenic response (Gullino, unpublished observation), as does the media of cultured neoplastic cells (Folkman, 1974 b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht-Buehler, G.: The phagokinetic tracks of 3T3 cells. Cell 11, 395–404 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Algire, G.H.: An adaptation of the transparent chamber technique to the mouse. J. Natl. Cancer Inst. 4, 1–11 (1943).

    Google Scholar 

  • Aswanikumar, S., Schiffmann, E., Corcoran, B.A., Wahl, S.M.: Role of a peptidase in phagocyte Chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 73, 2439–2442 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Auerbach, R., Sidky, Y.A.: Nature of the stimulus leading to lymphocyte-induced angiogenesis. J. Immunol. 123, 751–754 (1979).

    PubMed  CAS  Google Scholar 

  • Auerbach, R., Kubai, L., Sidky, Y.: Angiogenesis induction by tumors, embryonic tissues, and lymphocytes. Cancer Res. 36, 3435–3440 (1976).

    PubMed  CAS  Google Scholar 

  • Ausprunk, D.H., Folkman, J.: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53–65 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Ben Ezra, D.: Neovasculogenic ability of Prostaglandins, growth factors, and synthetic chemoattractants. Am. J. Ophthalmol. 86, 455–461 (1978a).

    CAS  Google Scholar 

  • Ben Ezra, D.: Mediators of immunological reactions: Function as inducers of neovascularisation. Metab. Ophthalmol. 2, 2–4 (1978b).

    Google Scholar 

  • Bloom, W., Bartelmez, G.W.: Hematopoiesis in young human embryos. Am. J. Anat. 67, 21–53 (1940).

    Article  Google Scholar 

  • Brem, S., Brem, H., Folkman, J., Finkelstein, D., Patz, A.: Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res. 36, 2807–2812 (1976).

    PubMed  CAS  Google Scholar 

  • Brem, S., Preis, I., Langer, R., Brem, H., Folkman, J., Patz, A.: Inhibition of neovascularization by an extract derived from vitreous. Am. J. Ophthalmol. 84, 323–328 (1977a).

    PubMed  Google Scholar 

  • Brem, S.S., Gullino, P.M., Medina, D.: Angiogenesis: A marker for neoplastic transformation of mammary papillary hyperplasia. Science 195, 880–882 (1977b).

    Article  PubMed  CAS  Google Scholar 

  • Brem, S.S., Jensen, H.M., Gullino, P.M.: Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer 41, 239–244 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Clark, E.R.: Studies on the growth of blood vessels in the tail of the frog larva — by observation and experiment on the living animal. Am. J. Anat. 23, 37–88 (1918).

    Article  Google Scholar 

  • Clark, E.R., Clark, E.L.: Microscopic observations on the growth of blood capillaries in the living mammal. Am. J. Anat. 64, 251–301 (1939).

    Article  Google Scholar 

  • Clark, R.A., Stone, R.D., Leung, D.Y., Silver, I., Hohn, D.C., Hunt, T.K.: Role of macrophages in wound healing. Surg. Forum 27, 16–18 (1976).

    PubMed  CAS  Google Scholar 

  • Cliff, W.J.: Observations on healing tissue: A combined light and electron microscopic investigation. Philos. Trans. R. Soc. Lond. (B) 246, 305–325 (1963).

    Article  Google Scholar 

  • Cliff, W.J.: Kinetics of wound healing in rabbit ear chambers, a time lapse cinemicroscopic study. Q. J. Exp. Physiol. 50, 79–89 (1965).

    CAS  Google Scholar 

  • De Orne, K.B., Faulkin, L.J., Jr., Bern, H.A., Blair, P.B.: Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19, 515–520 (1959).

    Google Scholar 

  • Dumonde, D.C., Jose, P-J., Page, D.A., Williams, T.J.: Production of Prostaglandins by porcine endothelial cells in culture. Br. J. Pharmacol. 61, 504P–505P (1977).

    PubMed  CAS  Google Scholar 

  • Ehrmann, R.L., Knoth, M.: Choriocarcinoma: Transfilter stimulation of vasoproliferation in the hamster cheek pouch-studied by light and electron microscopy. J. Natl. Cancer Inst. 41, 1329–1341 (1968).

    PubMed  CAS  Google Scholar 

  • Eisenstein, R., Sorgente, N., Soble, L.W., Miller, A., Kuettner, K.E.: The resistance of certain tissues to invasion: Penetrability of explanted tissues by vascularized mesenchyme. Am. J. Pathol. 73, 165–114 (1973).

    Google Scholar 

  • Eisenstein, R., Kuettner, K.E., Neapolitan, C., Soble, L.W., Sorgente, N.: The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am. J. Pathol. 81, 337–347 (1975).

    PubMed  CAS  Google Scholar 

  • Endrich, B., Intaglietta, M., Reinhold, H.S., Gross, J.F.: Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res. 39, 17–23 (1979).

    PubMed  CAS  Google Scholar 

  • Eriksson, E., Zarem, H.A.: Growth and differentiation of blood vessels. in: Microcirculation. Kaley, G., Altura, B.M. (eds), vol. 1, pp. 393–419. Baltimore: University Park 1977.

    Google Scholar 

  • Finkelstein, D., Brem, S., Patz, A., Folkman, J., Miller, S., Ho-Chen, C.: Experimental retinal neovascularization induced by intravitreal tumors. Am. J. Ophthalmol. 83, 660–664 (1977).

    PubMed  CAS  Google Scholar 

  • Folkman, J.: Tumor angiogenesis. Advan. Cancer Res. 19, 331–358 (1974a).

    Article  CAS  Google Scholar 

  • Folkman, J.: Tumor angiogenesis factor. Cancer Res. 34, 2109–2113 (1974b).

    PubMed  CAS  Google Scholar 

  • Folkman, J.: Tumor angiogenesis. in: Biology of Tumors. Becker, F.F. (ed.), pp. 355–388. New York: Plenum Press 1975.

    Google Scholar 

  • Folkman, J., Cotran, R.S.: Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16, 207–248 (1976).

    PubMed  CAS  Google Scholar 

  • Folkman, J., Gimbrone, M.A., Jr.: Perfusion of the thyroid. Acta Endocrinol. Suppl. 158, 237–248 (1972).

    CAS  Google Scholar 

  • Folkman, J., Merler, E., Abernathy, C., Williams, G.: Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Foulds, L.: Neoplastic Development, Vol.2. New York: Academic Press 1975.

    Google Scholar 

  • Fromer, C.H., Klintworth, G.K.: An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. I. Comparison of experimental models of corneal vascularization. Am. J. Pathol. 79, 537–550 (1975 a).

    PubMed  CAS  Google Scholar 

  • Fromer, C.H., Klintworth, G.K.: An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. II. Studies on the effect of leukocytic elimination on corneal vascularization. Am. J. Pathol. 81, 531–544 (1975b).

    PubMed  CAS  Google Scholar 

  • Fromer, C.H., Klintworth, G.K.: An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. Am. J. Pathol. 82, 157–170 (1976).

    PubMed  CAS  Google Scholar 

  • Gimbrone, M.A., Jr., Alexander, R.W.: Angiotensin II stimulation of Prostaglandin production in cultured human vascular endothelium. Science 189, 219–220 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Gimbrone, M.A., Jr., Gullino, P.M.: Neovascularization induced by intraocular xenografts of normal, preneoplastic, and neoplastic mouse mammary tissues. J. Natl. Cancer Inst. 56, 305–318 (1976 a).

    PubMed  Google Scholar 

  • Gimbrone, M.A., Jr., Gullino, P.M.: Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res. 36, 2611–2620 (1976 b).

    PubMed  Google Scholar 

  • Gimbrone, M.A., Jr., Cotran, R.S., Folkman, J.: Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60, 673–684 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Glaser, B.M., D’Amore, P.A., Michels, R.G., Patz, A., Fenseleau, A.: Identification of vasoproliferative activity from mammalian retina. J. Cell Biol. 84, 298–304 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Goodall, C.M., Sanders, A.G., Shubik, P.: Studies of vascular patterns in living tumors with a transparent chamber inserted in hamster cheek pouch. J. Natl. Cancer Inst. 35, 497–521 (1965).

    PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Thakral, K.K.: Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum. Proc. Natl. Acad. Sci. U.S.A. 75, 847–851 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Moran, J., Braun, D., Birdwell, C.: Clonal growth of bovine vascular endothelial cells: Fibroblast growth factor as a survival agent. Proc. Natl. Acad. Sci. U.S.A. 73, 4120–4124 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Brown, K.D., Birdwell, C.R., Zetter, B.R.: Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J. Cell Biol. 77, 774–788 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Bialecki, H., Thakral, T.K.: The angiogenic activity of the fibroblast and epidermal growth factor. Exp. Eye Res. 28, 501–514 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, M., Shubik, P.: Tumor angiogenesis: Transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl. Cancer Inst. 41, 111–124 (1968).

    PubMed  CAS  Google Scholar 

  • Greenblatt, M., Choudari, K.V.R., Sanders, A.G., Shubik, P.: Mammalian microcirculation in the living animal: Methodologic considerations. Microvasc. Res. 1, 420–432 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Greenburg, G.B., Hunt, T.K.: The proliferate response in vitro of vascular endothelial and smooth muscle cells exposed to wound fluids and macrophages. J. Cell Physiol. 97, 353–360 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Greene, H.S.N.: Heterologous transplantation of mammalian tumors. I. The transfer of rabbit tumors to alien species. J. Exp. Med. 73, 461–473 (1941a).

    Article  PubMed  CAS  Google Scholar 

  • Greene, H.S.N.: Heterologous transplantation of mammalian tumors. II. The transfer of human tumors to alien species. J. Exp. Med. 73, 475–485 (1941b).

    Article  PubMed  CAS  Google Scholar 

  • Gullino, P.M.: Techniques for the study of tumor physiopathology. in: Methods in cancer research. Busch, H. (ed.), vol.5, pp. 45–91. New York: Academic Press 1970.

    Google Scholar 

  • Gullino, P.M.: Angiogenesis and oncogenesis. J. Natl. Cancer Inst. 61, 639–643 (1978).

    PubMed  CAS  Google Scholar 

  • Hauck, G.: Physiology of the microvascular system. Angiologica 8, 236–260 (1971).

    PubMed  CAS  Google Scholar 

  • Hoffman, H., McAuslan, B., Robertson, D., Burnett, E.: An endothelial growth-stimulating factor from salivary glands. Exp. Cell Res. 102, 269–275 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Howard, B.V., Macarak, E.J., Gunson, D., Kefalides, N.A.: Characterization of the collagen synthesized by endothelial cells in culture. Proc. Natl. Acad. Sci. U.S.A. 73, 2361–2364 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Humes, J.L., Bonney, R.J., Peius, L., Dahlgren, M.E., Sadowski, S.J., Kuehl, F.A., Jr., Davies, P.: Macrophages synthesize and release Prostaglandins in response to inflammatory stimuli. Nature 269, 149–151 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Huseby, R.A., Currie, C., Lagerborg, V.A., Garb, S.: Angiogenesis about and within grafts of normal testicular tissue: A comparison with transplanted neoplastic tissue. Microvasc. Res. 10, 396–413 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta, M., Myers, R.R., Gross, J.F., Reinhold, H.S.: Dynamics of microvascular flow in implanted mouse mammary tumours. Bibl. Anat. 15, 273–276 (1977).

    PubMed  Google Scholar 

  • Jaffee, B.M.: Prostaglandins and cancer: An update. Prostaglandins 6, 453–460 (1974).

    Article  Google Scholar 

  • Jaffee, E.A., Minick, C.R., Adelman, B., Becker, C.G., Nachman, R.: Synthesis of basement membrane collagen by cultured human endothelial cells. J. Exp. Med. 144, 209–225 (1976).

    Article  Google Scholar 

  • Jakob, W., Jentzsch, K.D., Mauersberger, B., Oehme, P.: Demonstration of angiogenesis activity in the corpus luteum of cattle. Exp. Pathol. 13, 231–236 (1977).

    CAS  Google Scholar 

  • Jakob, W., Jentzsch, K.D., Mauersberger, B., Heder, G.: The chick embryo chorioallantoic membrane as a bioassay for angiogenesis factors: Reactions induced by carried materials. Exp. Pathol. 75, 241–249 (1978).

    Google Scholar 

  • Joyner, W.L., Strand, J.C.: Differential release of Prostaglandin E-like and F-like substances by endothelial cells cultured from human umbilical arteries and veins. Microvasc. Res. 16, 119–131 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, M., Kaminska, G.: Inhibition of lymphocyte-induced angiogenesis by enzymatically isolated rabbit cornea cells. Arch. Immunol. Ther. Exp. 26, 1079–1082 (1978).

    CAS  Google Scholar 

  • Kaminski, M., Kaminska, G., Jakobisiak, M., Brzezinski, W.: Inhibition of lymphocyte-induced angiogenesis by isolated chondrocytes. Nature 268, 238–240 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, M., Kaminska, G., Majewski, S.: Local graft-versus-host reaction in mice evoked by Peyer’s patch and other lymphoid tissues cells tested in a lymphocyte-induced angiogenesis assay. Folia Biol. 24, 104–109 (1978a).

    CAS  Google Scholar 

  • Kaminski, M., Kaminska, G., Majewski, S.: Inhibition of new blood vessel formation in mice by systemic administration of human rib cartilage extract. Experientia 34, 490–491 (1978b).

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P.J., Suddith, R.L., Hutchison, H.T., Werbach, K., Haber, B.: Endothelial growth factor present in tissue culture of CNS tumors. J. Neurosurg. 44, 342–346 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Kessler, D.A., Langer, R.S., Pless, N.A., Folkman, J.: Mast cells and tumor angiogenesis. Int. J. Cancer 18, 703–709 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Kibbey, W.E., Bronn, D.G., Minton, J.P.: Prostaglandin synthetase and Prostaglandin E2 levels in human breast carcinoma. Prostaglandins Med. 2, 133–139 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, W.R., Wicha, M.S., Salomon, D., Liotta, L.A.: Differential recognition of basement membrane collagen by normal and neoplastic mammary cells. in: Systematics of Mammary Cell Transformation. McGrath, C., Nandi, S. (eds.), pp. 17–32. New York: Academic 1980.

    Google Scholar 

  • Klagsbrun, M., Knighton, D., Folkman, J.: Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 36, 110–114 (1976).

    PubMed  CAS  Google Scholar 

  • Kuettner, K.E., Croxen, R.L., Eisenstein, R., Sorgente, N.: Proteinase inhibitor activity in connective tissue. Experientia 30, 595–597 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kuettner, K.E., Hiti, J., Eisenstein, R., Harper, E.: Collagenase inhibition by cationic proteins derived from cartilage and aorta. Biochem. Biophys. Res. Commun. 72, 40–46 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Kuettner, K.E., Soble, N., Croxen, R.L., Marczynska, B., Hiti, J., Harper, E.: Tumor cell collagenase and its inhibition by a cartilage-derived protease inhibitor. Science 196, 653–654 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Langer, R., Folkman, J.: Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Langer, R., Conn, H., Vacanti, J., Haudenschild, C., Folkman, J.: Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc. Natl. Acad. Sci. U.S.A. 77, 4331–4335 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Loeb, J.: Ãœber die Entwicklung von Fischembryonen ohne Kreislauf. Pflügers Arch. Ges. Physiol. 54, 525–531 (1893).

    Article  Google Scholar 

  • Maiorana, A., Gullino, P.M.: Acquisition of angiogenic capacity and neoplastic transformation in the rat mammary gland. Cancer Res. 38, 4409–4414 (1978).

    PubMed  CAS  Google Scholar 

  • McAuslan, B.R.: A new theory of neovascularisation based on identification of an angiogenic factor and its effect on cultured endothelial cells. in: Control Mechanisms in Animal Cells. Jimenez de Asua, L., Shields, R., Levi-Montalcini, R., Iacobelli, S. (eds.), pp. 285–292. New York: Raven Press 1980.

    Google Scholar 

  • McAuslan, B.R., Hoffman, H.: Endothelium stimulating factor from Walker carcinoma cells. Relation to tumor angiogenic factor. Exp. Cell Res. 119, 181–190 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Medina, D.: Preneoplastic lesions in mouse mammary tumorigenesis. in: Methods in cancer research. Busch, H. (eds.), vol.7, pp. 3–53. New York: Academic Press 1973.

    Google Scholar 

  • Merwin, R.M., Algire, G.H.: The role of graft and host vessels in the vascularization of grafts of normal and neoplastic tissue. J. Natl. Cancer Inst. 17, 23–33 (1956).

    PubMed  CAS  Google Scholar 

  • Nalbandian, R.M., Henry, R.L.: Platelet-endothelial cell interactions. Metabolic maps of structures and actions of Prostaglandins, prostacyclin, thromboxane and cyclic AMP. Semin. Thromb. Hemostas. 5, 87–111 (1978).

    CAS  Google Scholar 

  • Nishioka, K., Ryan, T.J.: The influence of the epidermis and other tissues on blood vessel growth in the hamster cheek pouch. J. Invest. Dermatol. 58, 33–45 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Phillips, P., Kumar, S.: Tumour angiogenesis factor (TAF) and its neutralisation by a xenogeneic antiserum. Int. J. Cancer 23, 82–88 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Polverini, P.J., Cotran, R.S., Gimbrone, M.A., Jr., Unanue, E.R.: Activated macrophages induce vascular proliferation. Nature 269, 804–806 (1977 a).

    Article  PubMed  CAS  Google Scholar 

  • Polverini, J., Cotran, R.S., Sholley, M.M.: Endothelial proliferation in the delayed hypersensitivity reaction: An autoradiography study. J. Immunol. 118, 529–532 (1977 b).

    PubMed  CAS  Google Scholar 

  • Sade, R.M., Folkman, J., Cotran, R.S.: DNA synthesis in endothelium of aortic segments in vitro. Exp. Cell Res. 74, 297–306 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sandison, J.C.: A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit’s ear. Anat. Rec. 28, 281–287 (1924).

    Article  Google Scholar 

  • Schiffmann, E., Corcoran, B.A., Wahl, S.M.: N-Formylmethionyl peptides as chemoattractants for leucocytes. Proc. Natl. Acad. Sci. U.S.A. 72, 1059–1062 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Schoefl, G.I.: Studies on inflammation. III. Growing capillaries: Their structure and permeability. Virchows Arch. Pathol. Anat. 337, 97–141 (1963).

    Article  CAS  Google Scholar 

  • Schoefl, G.I.: Electron microscopic observations on the regeneration of blood vessels after injury. Ann. N.Y. Acad. Sci. 116, 789–802 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Sewell, I.A.: Studies of the microcirculation using transparent tissue observation chambers inserted in the hamster cheek pouch. J. Anat. 100, 839–856 (1966).

    PubMed  CAS  Google Scholar 

  • Sholley, M.M., Gimbrone, M.A., Jr., Cotran, R.S.: The effects of leukocyte depletion on corneal neovascularization. Lab. Invest. 38, 32–40 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Shubik, P., Feldman, R., Garcia, H., Warren, B.A.: Vascularization induced in the cheek pouch of the Syrian hamster by tumor and nontumor substances. J. Natl. Cancer Inst. 57, 769–774 (1976).

    PubMed  CAS  Google Scholar 

  • Sidky, Y.A., Auerbach, R.: Lymphocyte-induced angiogenesis: A quantitative and sensitive assay of the graft-vs.-host reaction. J. Exp. Med. 141, 1084–1100 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D.M., Ross, R.: The neutrophilic leukocyte in wound repair: A study with antineutrophil serum. J. Clin. Invest. 51, 2009–2023 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sorgente, H., Kuettner, K.E., Soble, L.W., Eisenstein, R.: The resistance of certain tissues to invasion. II. Evidence for extractable factors in cartilage which inhibit invasion by vascularized mesenchyme. Lab. Invest. 32, 217–222 (1975).

    PubMed  CAS  Google Scholar 

  • Stein, J.M., Levenson, S.M.: Effect of the inflammatory reaction on subsequent wound healing. Surg. Forum 17, 484–485 (1966).

    PubMed  CAS  Google Scholar 

  • Suddith, R.L., Kelly, P.J., Hutchison, H.T., Murray, E.A., Haber, B.: In vitro demonstration of an endothelial proliferative factor produced by neural cell lines. Science 190, 682–684 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Tannock, I.F.: Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res. 30, 2470–2476 (1970).

    PubMed  CAS  Google Scholar 

  • Tapper, D., Langer, R., Bellows, A.R., Folkman, J.: Angiogenesis capacity as a diagnostic marker for human eye tumors. Surgery 86, 36–40 (1979).

    PubMed  CAS  Google Scholar 

  • Thakral, K.K., Goodson, W.H., III, Hunt, T.K.: Stimulation of wound blood vessel growth by wound macrophages. J. Surg. Res. 26, 430–436 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Thoma, R.: Untersuchungen über die Histogenese und Histomechanik des Gefäßsystems. Stuttgart: Enke 1893.

    Google Scholar 

  • Tuan, D., Smith, S., Folkman, J., Merler, E.: Isolation of the nonhistone proteins of rat Walker carcinoma 256. Their association with tumor angiogenesis. Biochemistry 12, 3159–3165 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Warren, B.A., Greenblatt, M., Kommineni, V.R.C.: Tumor angiogenesis: Ultrastructure of endothelial cells in mitosis. Br. J. Exp. Pathol. 53, 216–224 (1972).

    PubMed  CAS  Google Scholar 

  • Weiss, J.B., Brown, R.A., Kumar, S., Phillips, P.: An angiogenic factor isolated from tumours: A potent low-molecular-weight compound. Br. J. Cancer 40, 493–496 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.G.: Experiments on the growth of blood vessels in thin tissue and in small autografts. Anat. Rec. 133, 465–485 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Wolf, J.E., jr., Harrison, R.G.: Demonstration and characterization of an epidermal angiogenic factor. J. Invest. Dermatol. 61, 130–141 (1973).

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gullino, P.M. (1981). Angiogenesis Factor(s). In: Baserga, R. (eds) Tissue Growth Factors. Handbook of Experimental Pharmacology, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67986-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67986-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67988-9

  • Online ISBN: 978-3-642-67986-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics