Skip to main content

Responses of Macrophytes to Temperature

  • Chapter
Physiological Plant Ecology I

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / A))

Abstract

Temperature is a major factor determining the natural distribution of plants, and the success and timing of agricultural crops. Habitats occupied by plants show dramatic differences in temperature during the period of active growth, ranging from just above freezing in polar or alpine areas to over 50 °C in the hottest deserts. Moreover, in many habitats the same individual plant is subjected to wide seasonal variations in temperature and even diurnal temperature fluctuations may be considerable.

CIW Publication number 747

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexandrov V Ya (1977) Cells, molecules and temperature, vol 21 Ecol Stud Springer, Berlin, Heidelberg, New York, pp 122–242

    Google Scholar 

  • Armond PA, Staehelin LA (1979) Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc Natl Acad Sci USA 76: 1901–1905

    PubMed  CAS  Google Scholar 

  • Armond PA, Badger MR, Bjorkman O ( 1978 a) Characteristics of the photo synthetic apparatus developed under different thermal regimes. In: Akoyunoglou G, JH Argysoudi-Akoyunoglou (eds) Chloroplast development. Proc Int Symp Chloroplast Dev. Elsevier North Holland Biomedical Press, Amsterdam, New York, pp 857–862

    Google Scholar 

  • Armond PA, Schreiber U, Bjorkman O ( 1978 b) Photosynthetic acclimation to temperature in the desert shrub Larrea divaricata. II. Light-harvesting efficiency and electron transport. Plant Physiol 61: 411–415

    PubMed  CAS  Google Scholar 

  • Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-l,5-bisphophate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst Washington Yearb 76: 355–361

    Google Scholar 

  • Bagnall DJ, Wolfe JA (1978) Chilling-sensitivity in plants. Do the activation energies of growth processes show abrupt change at a critical temperature? J Exp Bot 29: 1231–1242

    Google Scholar 

  • Barton LV, Crocker W (1948) Twenty years of seed research. Faber and Faber, London, 148 pp

    Google Scholar 

  • Beatle JC (1974) Phenological events and their environmental triggers in Mojave desert ecosystems. Ecology 55: 856–863

    Google Scholar 

  • Beevers H (1969) Respiration in plants and its regulation. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Pudoc, Wageningen, pp 209–214

    Google Scholar 

  • Bernstam VA (1978) Heat effects on protein synthesis. Ann Rev Plant Physiol 29: 25–46

    Google Scholar 

  • Berry JA, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491–543

    Google Scholar 

  • Berry JA, Downton WJS (1981) Environmental regulation of photosynthesis. In: Govindjee (ed) Photosynthesis vol II: CO2 assimilation and plant productivity. New York: Academic Press, pp. in press

    Google Scholar 

  • Berry J, Farquhar G (1978) The CO2 concentrating function of C4 photosynthesis. In: Hall DO, Goombs J, Goodwin TW (eds) Photosynthesis 77, Proc 4th Int Congr Photosynthesis. Biochemical Society, London, pp 119–131

    Google Scholar 

  • Bierhuizen JF (1973) The effect of temperature on plant growth development and yield. In: Slatyer RO (ed) Plant response to climatic factors. Unesco, Paris, pp 89–98

    Google Scholar 

  • Billings WD, Godfrey PJ, Chabot BF, Bourque DP (1971) Metabolic acclimation to temperature in artic and alpine ecotypes of Oxyria digyna. Arct Alp Res 3: 277–289

    Google Scholar 

  • Bixby JA, Brown GN (1975) Ribosomal changes during induction of cold hardiness in black locust seedlings. Plant Physiol 56: 617–621

    PubMed  CAS  Google Scholar 

  • Bjorkman O (1975) Photosynthetic response of plants from contrasting thermal environments. Thermal stability of the photosynthetic apparatus in intact leaves. Carnegie Inst Washington Yearb 74: 748–751

    Google Scholar 

  • Bjorkman O, Badger MR (1979) Time course of thermal acclimation of the photosynthetic apparatus in Nerium oleander. Carnegie Inst Washington Yearb 78: 145–148

    Google Scholar 

  • Bjorkman O, Berry J (1973) High-efficiency photosynthesis. Sci Am 229: 80–93

    CAS  Google Scholar 

  • Bjorkman O, Holmgren P (1961) Climatic ecotypes of higher plants. Leaf respiration in different populations of Solidago virgaurea. Ann R Ag Coll Sweden 27: 297–304

    Google Scholar 

  • Bjorkman O, Pearcy RW, Harrison AT, Mooney HA (1972) Photosynthetic adaptation to high temperatures: a field study in Death Valley, California. Science 175: 786–789

    PubMed  CAS  Google Scholar 

  • Bjorkman O, Nobs M, Mooney H, Troughton J, Berry J, Nicholson F, Ward W (1974a) Growth responses of plants from habitats with contrasting thermal environments: Transplant studies in the Death Valley and the Bodega Head experimental gardens. Carnegie Inst Washington Yearb 73: 748–757

    Google Scholar 

  • Bjorkman O, Mahall B, Nobs M, Ward W, Nicholson F, Mooney H (1974b) Growth response of plants from habitats with contrasting thermal environments: An analysis of the temperature dependence under controlled conditions. Carnegie Inst Washington Yearb 73: 757–767

    Google Scholar 

  • Bjorkman O, Mooney HA, Ehleringer J (1975) Photosynthetic responses of plants from habitats with contrasting thermal environments: Comparison of photosynthetic characteristics of intact plants. Carnegie Inst Washington Yearb 74: 743–748

    Google Scholar 

  • Bjorkman O, Boynton J, Berry J (1976) Comparison of the heat stability of photosynthesis, chloroplast membrane reactions, photosynthetic enzymes and soluble protein in leaves of heat-adapted and cold adapted C4 species. Carnegie Inst Washington Yearb 75: 400–407

    Google Scholar 

  • Bjorkman O, Badger MR, Armond PA (1978) Thermal acclimation of photosynthesis: Effect of growth temperature on photosynthetic characteristics and components of the photosynthetic apparatus in Nerium oleander Carnegie Inst Washington Yearb 77: 262–276

    Google Scholar 

  • Bjorkman O, Badger MR, Armond PA (1980) Response and adaptation of photosynthesis to high temperatures. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York, pp 233–249

    Google Scholar 

  • Block MC, van Deenen LLM, de Gier J (1976) Effect of the gel to liquid crystalline transition on the osmotic behavior of phosphatidylcholine liposomes. Biochim Biophys Acta 433: 1–12

    Google Scholar 

  • Bothwick HA, Parker MW, Heinze PH (1941) Influence of localized low temperature on Biloxi soybean during photoperiodic induction. Bot Gaz 102: 792–800

    Google Scholar 

  • Bramlage WJ, Leopold AC, Parrish DJ (1978) Chilling stress to soybeans during imbibition. Plant Physiol 61: 525–529

    PubMed  CAS  Google Scholar 

  • Brandt JF (1967) Heat effects on proteins and enzymes. In: Rose AH (ed) Thermobiology. Academic Press, London, New York, pp 25–72

    Google Scholar 

  • Brown RH (1978) A difference in the N use efficiency in C3 and C4 plants and its implication in adaptation and evolution. Crop Sci 18: 93–98

    CAS  Google Scholar 

  • Caldwell MM, Camp LB (1974) Below ground productivity of two cool desert communities. Oecologia 17: 123–130

    Google Scholar 

  • Caldwell MM, Osmond CB, Nott DL (1977 a) C4 Pathway Photosynthesis at low temperature in cold-tolerant A triplex species. Plant Physiol 60: 157–164

    Google Scholar 

  • Caldwell MM, White RS, Moore RT, Camp LB (1977 b) Carbon balance, productivity, and water use of coldwinter desert shrub communities dominated by C3 and C4 species. Oecologia 29: 275–300

    Google Scholar 

  • Carey RW, Berry JA (1978) Effects of low temperature on respiration and uptake of rubidium ions by excised barley and corn roots. Plant Physiol 61: 858–860

    PubMed  CAS  Google Scholar 

  • Chamberlin IS, Spanner DC (1978) The effect of low temperature on the phloem transport of radioactive assimilates in the stolon of Saxífraga sarmentosa L. Plant Cell Environ 1: 285–290

    Google Scholar 

  • Chapin FS (1974) Phosphate absorption capacity and acclimation potential along a latitudinal gradient. Science 183: 521–523

    PubMed  CAS  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11: 233–260

    CAS  Google Scholar 

  • Christiansen MN (1968) Induction and prevention of chilling injury to radicle tips in imbibing cottonseed. Plant Physiol 43: 743–746

    PubMed  CAS  Google Scholar 

  • Chu TM, Jusaitius M, Aspenall D, Paleg LG (1978) Accumulation of free proline at low temperature. Plant Physiol 43: 254–260

    CAS  Google Scholar 

  • Clarkson DT (1976) The influence of temperature on the exudation of xylem sap from detatched root systems of rye (Secale cereale) and barley (Hordeum vulgare). Planta 132: 297–304

    CAS  Google Scholar 

  • Clarkson DT, Hall KC, Roberts JKM (1980) Phospholipid composition and fatty acid desaturation in the roots of rye during acclimatization of low temperature. Positional analysis of fatty acids. Planta 149: 464–471

    Google Scholar 

  • Collatz GJ (1978) The interaction between photosynthesis and ribulose-P2 concentration — Effects of light, CO2 and O2. Carnegie Inst Washington Yearb 77: 248–251

    Google Scholar 

  • Cooper JP (1963) Species and population differences in climatic respose. In: Evans LT (ed) Environmental control of plant growth. Academic Press, London, New York, pp 381–404

    Google Scholar 

  • Coulson CL, Christy AL, Cataldo DA, Swanson CA (1972) Carbohydrate translocation in sugar beet petioles in relation to petiolar respiration and adenosine-S’-triphosphate. Plant Physiol 49: 919–923

    PubMed  CAS  Google Scholar 

  • Crocker W, Barton LV (1953) Physiology of seeds. An introduction to the experimental study of seed and germination problems. Chronica Botanica Co, Waltham Mass

    Google Scholar 

  • Davidson RL (1969 a) Effects of soil nutrients and moisture on root/shoot ratio in Lolium perenne and Trifolium repens. Ann Bot 33:571–577

    Google Scholar 

  • Davidson RL (1969 b) Effect of root002Fleaf temperature differentials on root002Fshoot ratios in some pasture grasses and clover. Ann Bot 33:561–569

    Google Scholar 

  • Davis RM, Lingle JC (1961) Basis of shoot response to root temperature in tomato. Plant Physiol 36: 153–162

    PubMed  CAS  Google Scholar 

  • Dodd JD (1968) Grassland Associations in North America. In: Gould FW (ed) Grass systematics. McGraw Hill, New York, pp 324–338

    Google Scholar 

  • Doliner LH, Jolliffe PA (1979) Ecological evidence concerning the adaptive significance of the C4 dicarboxylic acid pathway of photosynthesis. Oecologia 38: 23–34

    Google Scholar 

  • Downes RW (1970) Differences in transpiration rates between tropical and temperate grasses under controlled conditions. Planta 88: 261–273

    Google Scholar 

  • Duke SH, Schräder LE, Miller MG, Niece RL (1978) Low temperature effects on soybean (Glycine max [L] Merr. cv. Wells) free amino acid pools during germination. Plant Physiol 62: 642–647

    PubMed  CAS  Google Scholar 

  • Eaks IL, Morris LL (1956) Respiration of cucumber fruits associated with physiological injury at chilling temperature. Plant Physiol 31: 308–314

    PubMed  CAS  Google Scholar 

  • Edelhock H, Osborne JC (1976) The thermodymanic basis of the stability of proteins, nucleic acids and membranes. Adv Protein Chem 30: 183–250

    Google Scholar 

  • Ehleringer JR (1978) Implications of quantum yield differences on the distribution of C3 and C4 grasses. Oecologia 31: 255–267

    Google Scholar 

  • Ehleringer JR (1980) Leaf morphology and reflectance in relation to water and temperature stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York, pp 295–308

    Google Scholar 

  • Ehleringer JR, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2 and O2 concentration. Plant Physiol 59: 86–90

    PubMed  CAS  Google Scholar 

  • Ehleringer J, Forseth I (1980) Solar tracking by plants. Science 210: 1094–1098

    PubMed  CAS  Google Scholar 

  • Evans GC (1972) The quantitative analysis of plant growth. Univ of Calif Press, Berkeley, 734 pp

    Google Scholar 

  • Evans LT (1969) The nature of flower induction. In: Evans LT (ed) The induction of flowering. MacMillan, Melbourne, pp 457–480

    Google Scholar 

  • Evans LT, Wardlaw IF, Williams CN (1964) Environmental control of growth. In: Barnard C (ed) Grasses and grasslands. MacMillan, London, pp 102–125

    Google Scholar 

  • Fahn A, Klarman-Kislev N, Zin D (1961) The abnormal flower and fruit of May flowering, dwarf Cavandish bananas. Bot Gaz 123: 116–125

    Google Scholar 

  • Farquhar G, von Caemmerer S, Berry JA (1980) A biochemical model of photo synthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    CAS  Google Scholar 

  • Feierabend J, Mikus M (1977) Occurence of high temperature sensitivity of chloroplast ribosome formation in several higher plants. Plant Physiol 59: 863–867

    PubMed  CAS  Google Scholar 

  • Feierabend J, Wildner G (1978) Formation of the large subunit in the absence of the small subunit of ribulose 1,5-bisphosphate carboxylase in 70s ribosome-deficient rye leaves. Arch Biochim Biophys 186: 283–291

    CAS  Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zones. Annu Rev Plant Physiol 29: 277–317

    CAS  Google Scholar 

  • Flemion F, Prober PL (1960) Production of peach seedlings from unchilled seeds. I. Effects of nutrients in the absence of cotyledonary tissue. Contrib Boyce Thompson Inst 20: 409–419

    CAS  Google Scholar 

  • Forseth I, Ehleringer JR (1980) Solar tracking responses to drought in a desert annual. Oecologia 44: 159–163

    Google Scholar 

  • Forward DF (1960) Effects of temperature on respiration. In: Ruhland W (ed) Encyclopedia of plant physiology, vol XII (2). Springer, Berlin, Heidelberg, New York, pp 234–258

    Google Scholar 

  • Forward DF (1965) The respiration of bulky organs. In: Steward FC (ed) Plant physiology — A treatise, vol IVA. Academic Press, London, New York, pp 311–376

    Google Scholar 

  • Fralick JA, Lark KG (1973) Evidence for the involvement of unsaturated fatty acids in initiating chromosome replication in Escherichia coli. J Mol Biol 80: 459–475

    PubMed  CAS  Google Scholar 

  • Frankel R, Galun E (1977) Pollination mechanisms, reproduction and plant breeding. Springer, Berlin, Heidelberg, New York, pp 145–147

    Google Scholar 

  • Frankland B, Wareing PF (1966) Hormonal regulation of seed dormancy in hazel (Corylus avellana L.) and beech (Fagus sylvatica L.). J Exp Bot 17: 596

    CAS  Google Scholar 

  • Gates DM, Heisey WM, Milner HW, Nobs MA (1964) Temperature of Mimulus leaves in natural environments and in a controlled chamber. Carnegie Inst Washington Yearb 63: 418–430

    Google Scholar 

  • Geiger DR, Sovonick SA (1975) Effects of temperature, anoxia, and other metabolic inhibitors on translocation. In: Pirson A, Zimmermann MH (eds) Phloem transport, vol I. Encyclopedia of plant physiology. Springer, Berlin, Heidelberg, New York, pp 256–286

    Google Scholar 

  • Giaquinta RT, Geiger DR (1973) Mechanism of inhibition of translocation by localized chilling. Plant Physiol 51: 372–377

    PubMed  CAS  Google Scholar 

  • Graham D, Hockley G, Patterson BD (1979) Temperature effects on phosphoenol pyruvate carboxylase from chilling-sensitive and chilling-resistant plants. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants: The role of the membrane. Academic Press, London, New York, pp 453–461

    Google Scholar 

  • Gregory FG, Purvis ON (1947) Abnormal flower development in barley involving sex reversal. Nature (London) 160: 221–222

    Google Scholar 

  • Gusta LV, Weiser CJ (1972) Nucleic acid and protein changes in relation to cold acclimation and freezing injury of Korean boxwood leaves. Plant Physiol 49: 91–96

    PubMed  CAS  Google Scholar 

  • Hackenbrock CR (1976) Molecular organization and the fluid nature of the mitochondrial energy transducing membrane. In: Abrahamssen S, Pascher I (eds) Structure of biological membranes. Plenum Press, New York, London, pp 199–234

    Google Scholar 

  • Harssema H (1977) Root temperature and growth of young tomato plants. Meded Land-bouwhogesch. Wageningen 77 (19): 1–85

    Google Scholar 

  • Havsteen B (1973) The thermal dependence of the Michaelis Constant. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 310–314

    Google Scholar 

  • Heber U, Santarius KA (1973) Cell death by cold and heat, and resistance to extreme temperatures. Mechanisms of hardening and dehardening. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 232–262

    Google Scholar 

  • Hendricks SB, Taylorson RB (1976) Variation in germination and amino acid leakage of seeds with temperature related to membrane phase changes. Plant Physiol 58: 7–11

    PubMed  CAS  Google Scholar 

  • Hendricks SB, Taylorson RB (1978) Dependence of phytochrome action in seeds on membrane organization. Plant Physiol 61: 17–19

    PubMed  CAS  Google Scholar 

  • Hendricks SB, Taylorson RB (1979) Dependence of thermal responses of seeds on membrane transitions. Proc Natl Acad Sci USA 76: 778–781

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1959) The experimental modification of sex expression in flowering plants. Biol Rev 32: 38–90

    Google Scholar 

  • Heslop-Harrison J (1972) Sexuality in angiosperms. In: Steward FC (ed). Plant physiology — A treatise, vol VI (c). Academic Press, London, New York, pp 133–289

    Google Scholar 

  • Hiesey WM, Milner HW (1965) Physiology of ecological races and species. Annu Rev Plant Physiol 16: 527–540

    Google Scholar 

  • Hiesey WM, Nobs MA, Björkman O (1971) Experimental studies on the nature of species. V. Biosystematics, genetics and physiological ecology of the Erythranthe section of Mimulus. Carnegie Inst Washington Publ 628:

    Google Scholar 

  • Hochachka PW, Somero G (1973) Strategies of biochemical adaptation. WB Saunders, Philadelphia

    Google Scholar 

  • Hofstra G, Aksornkose S, Atmowidjojo S, Banaag JF, Santos-Sastrohoetomo RA, Thus LTN (1972) A study of the occurrence of plants with a low CO2 compensation point in different habitats in the tropics. Ann Biogr 5: 143–157

    Google Scholar 

  • Huner NPA, MacDowall FDH (1979 a) Changes in the net charge and subunit properties of ribulose carboxylase-oxygenase during cold hardening of Puma rye. Can J Biochem 57: 155–164

    PubMed  CAS  Google Scholar 

  • Huner NPA, MacDowall FDH (1979 b) The effects of low temperature acclimation of winter rye on catalytic properties of its ribulose bisphosphate carboxylase-oxygenase. Can J Biochem 57: 1036–1041

    PubMed  CAS  Google Scholar 

  • Hunter K, Rose AH (1972) Influence of growth temperature on the composition and physiology of microorganisms. J Appl Chem Biotechnol 22: 527–540

    CAS  Google Scholar 

  • Jain MK, White HB (1977) Long range order in biomembranes. Adv Lipid Res 15: 1–60

    PubMed  CAS  Google Scholar 

  • Johnson FH, Eyring H, Stover BJ (1974) The theory of rate processes in biology and medicine. Wiley-Interscience, New York

    Google Scholar 

  • Kavanau JL (1950) Enzyme kinetics and the rate of biological processes. J Gen Physiol 34: 193–209

    PubMed  CAS  Google Scholar 

  • Kinbacher EJ, Sullivan CY, Knüll HR (1967) Thermal stability of malic dehydrogenase from heat hardened Phaseolus acutifolius cv. Terpary Bluff. Crop Sci 7: 148–151

    CAS  Google Scholar 

  • Kleinendorst AK, Brouwer R (1970) The effect of temperature of the root medium and of the growing point of the shoot an growth, water content and sugar content of maize leaves. Neth J Agric Sci 18: 140–148

    Google Scholar 

  • Klikoff LG (1968) Temperature dependence of mitochondrial oxidative rates of several plant species of the Sierra Nevada. Bot Gaz 129: 227–230

    Google Scholar 

  • Knutson RM (1974) Heat production and temperature regulation in eastern skunk cabbage. Science 186: 745–747

    Google Scholar 

  • Koller D (1972) Environmental control of seed germination. In: Kozlowski TT (ed) Seed biology, vol II. Academic Press, London, New York, pp 1–101

    Google Scholar 

  • Ku LL, Romani RJ (1970) The ribosomes of pear fruit. Plant Physiol 45: 401–407

    PubMed  CAS  Google Scholar 

  • Ku SB, Edwards GE (1977) Oxygen inhibition of photosynthesis II. Kinetic characteristics as affected by temperature. Plant Physiol 59: 991–999

    PubMed  CAS  Google Scholar 

  • Kuiper PJC (1964) Water uptake of higher plants as effected by root temperature. Meded Landbouwhogesch. Wageningen 63: 1–11

    Google Scholar 

  • Kuiper PJC (1970) Lipids in alfalfa leaves in relationship to cold hardiness. Plant Physiol 45: 684–686

    PubMed  CAS  Google Scholar 

  • Kuiper PJC (1974) Role of lipids in water and ion transport. In: Recent advances in chemistry and biochemistry of plant lipids. Proc Phytochem Soc 12: 359–386

    Google Scholar 

  • Ladbrooke BD, Chapman D (1969) Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem Phys Lipids 3: 304–356

    PubMed  CAS  Google Scholar 

  • Laing WA, Orgen WL, Hageman RH (1974) Regulation of soybean net photosynthetic CO 2fixation by the interaction of CO2, O2, and ribulose-l,5-diphosphate carboxylase. Plant Physiol 54: 678–685

    PubMed  CAS  Google Scholar 

  • Lange OL (1959) Untersuchungen über Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten-und Savannenpflanzen. Flora 147: 595–651

    Google Scholar 

  • Laufer M (1975) Entropy driven processes in biology; Polymerization of tobacco mosaic virus protein and similar reactions. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Levitt J (1980) Response of plants to environmental stresses. Academic Press, London, New York, pp 347–349

    Google Scholar 

  • Livingston BE, Shereve F (1921) The distribution of vegetation in the United States, as related to climatic conditions. Carnegie Inst Washington Publ 284: 201–216

    Google Scholar 

  • Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis from cool temperate regions, with particular reference to Spartina townsendii. Nature (London) 257: 622–624

    CAS  Google Scholar 

  • Loomis RS, Williams WA, Hall AE (1971) Agricultural productivity. Annu Rev Plant Physiol 22: 431–468

    Google Scholar 

  • Lorimer GH (1981) The carboxylation and oxygenation of ribulose-l,5-bisphosphate: The primary events in photosynthesis and photorespiration. Annu Rev Plant Physiol 32: 349–83

    CAS  Google Scholar 

  • Lorimer GH, Woo KC, Berry JA, Osmond CB (1978) The C2 photorespiratory carbon oxidation cycle in leaves of higher plants: pathway and consequences. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77, Proc 4th Int Congr Photosynthesis. Biochemical Society, London, pp 311–322

    Google Scholar 

  • Lumry R, Rajender S (1970) Enthalpy-entropy compensation in water solution of proteins and small molecules: An ubiquitous property of water. Biopolymers 9: 1125–1227

    PubMed  CAS  Google Scholar 

  • Luzzati V, Husson F (1962) The structure of the liquid-crystalline phases of the lipid-water system. J Cell Biol 12: 207–219

    PubMed  CAS  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24: 445–466

    CAS  Google Scholar 

  • Lyons JM, Raison JK (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol 45: 386–389

    PubMed  CAS  Google Scholar 

  • Lyons JM, Graham D, Raison JK (1979) Low temperature stress in crop plants: The srole of the membrane. Academic Press, London, New York, 565 pp

    Google Scholar 

  • Mackenzie JM Jr, Coleman RA, Briggs WR, Pratt LH (1975) Reversible redistribution of phytochrome within cells upon conversion to its physiologically active form. Proc Natl Acad Sci USA 73: 799–803

    Google Scholar 

  • Markhart AH, Fiscus EL, Naylor AW, Kramer PJ (1979) Effect of temperature on water and ion transport in soybean and broccoli systems. Plant Physiol 64: 83–87

    PubMed  CAS  Google Scholar 

  • Marme D (1977) Phytochrome: Membranes as possible sites of primary action. Annu Rev Plant Physiol 28: 173–193

    CAS  Google Scholar 

  • Mayer AW, Poljakoff-Mayber (1974) The germination of seeds. Pergamon Press, Oxford, 192 pp

    Google Scholar 

  • Mazliak P (1979) Temperature regulation of plant fatty acyl desaturatases. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants: The role of the membrane. Academic Press, London, New York, pp 391–404

    Google Scholar 

  • McCree KJ (1970) An equation for the rate of respiration of white clover plants grown under controlled conditions. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Pudoc, Wageningen, pp 221–229

    Google Scholar 

  • McCree KJ (1976) The role of dark respiration in the carbon economy of a plant. In: Black CC, Burris RH (eds) C02 metabolism and plant productivity. Univ Park Press, Baltimore, pp 177–184

    Google Scholar 

  • McMurchie EJ, Raison JK (1979) Membrane lipid fluidity and its effect on the activation energy of membrane associated enzymes. Biochim Biophys Acta 554: 3654–374

    Google Scholar 

  • McWilliam JR, Naylor AW (1967) Temperature and plant adaptation I. Interaction of temperature and light in the synthesis of chlorophyll in corn. Plant Physiol 42: 1711–1715

    PubMed  CAS  Google Scholar 

  • McWilliam JR, Munokaran W, Kipnis T (1979) Adaptation to chilling stress in sorghum. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants: The role of the membrane. Academic Press, London, New York, pp 491–505

    Google Scholar 

  • Meeuse BJD (1975) Thermogenic respiration in aroids. Annu Rev Plant Physiol 25: 117–126

    Google Scholar 

  • Minchin PEH, Troughton JH (1980) Quantitative interpretation of phloem translocation data. Plant Physiol 31: 191–215

    Google Scholar 

  • Monsi N (1968) Mathematical models of plant communities. In: Eckhardt F (ed) Functioning of the terrestrial ecosystem at the primary production level. Unesco, Paris, pp 131–149

    Google Scholar 

  • Mooney HA (1980) Seasonality and gradients in the study of stress adaptation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley- Interscience, New York, pp 279–294

    Google Scholar 

  • Mooney HA, Troughton JH, Berry JA (1974) Arid climates and photosynthetic systems.Carnegie Inst Washington Yearb 73: 793–805

    Google Scholar 

  • Mooney HA, Bjorkman O, Berry JA (1975) Photosynthetic adaptation to high temperature. In: Hadley NF (ed) Environmental physiology of desert organisms. Halsted Press, New York, pp 138–151

    Google Scholar 

  • Mooney HA, Ehleringer J, Berry J (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194: 322–325

    PubMed  CAS  Google Scholar 

  • Mooney HA, Ehleringer JR, Bjorkman O (1977) The energy balance of leaves of the evergreen desert shrub A trip lex hymenelytra. Oecologia 29: 301–310

    Google Scholar 

  • Mooney HA, Bjorkman O, Collatz GJ (1978) Photosynthetic acclimation to high temperature in the desert shrub, Larrea divaricata I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiol 61: 406–410

    PubMed  CAS  Google Scholar 

  • Mulroy TW, Rundel PW (1977) Annual plants: adaptations to desert environments. Bioscience 27: 109–114

    Google Scholar 

  • Murata N, Fork DC (1976) Temperature dependence of the light-induced spectral shifts of carotenoids in Cyanidium caldarium and higher plant leaves. Evidence for the effect of the physical phase of chloroplast membrane lipids on the permeability of the membrane to ions. Biochim Biophys Acta 461: 365–378

    Google Scholar 

  • Murata T (1969) Physiological and biochemical studies of chilling injury in bananas. Physiol Plant 22: 401–411

    CAS  Google Scholar 

  • Nielsen KF, Halstead RL, MacLean AF (1960 a) Effects of soil temperature on the growth and chemical composition of lucerne. Proc 8th Int Grassl Congr, pp 287–292

    Google Scholar 

  • Nielsen KF, Halstead RL, MacLean AF (1960 b) The influence of soil temperature on the growth and mineral composition of oats. Can J Soil Sci 40: 255–263

    Google Scholar 

  • Nielsen KF, Halstead RL, MacLean A J (1961) The influence of soil temperature on the growth and mineral composition of corn, bromegrass and potatoes. Proc Soil Sci Soc Am 25: 369–372

    CAS  Google Scholar 

  • Nobel PS ( 1974 a) Introduction to biophysical plant physiology. Freeman, San Francisco

    Google Scholar 

  • Nobel PS (1974 b) Temperature dependence of the permeability of chloroplasts from chilling-sensitive and chilling-resistant plants. Planta 115:369–372

    Google Scholar 

  • Nobel PS (1978) Surface temperatures of cacti — Influences of environmental and morphological factors. Ecology 59: 986–996

    Google Scholar 

  • Nolan WG, Smillie RM (1976) Multi-temperature effects on Hill reaction activity of barley chloroplasts. Biochem Biophys Acta 440: 461–475

    PubMed  CAS  Google Scholar 

  • Olmsted JB, Borisy GG (1973) Microtubules. Annu Rev Biochem 42: 507–533

    PubMed  CAS  Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology: Toward a synthesis with A triplex. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Parker WM, Bothwick HA (1939) Effect of variation in temperature during photoperiodic induction upon initiation of flower primordia in Biloxi soybeans. Bot Gaz 101: 145–148

    CAS  Google Scholar 

  • Patterson BD, Graham D, Pauli R (1979) Adaptation to chilling: Survival, germination, respiration, and protoplasmic dynamics. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants: The role of the membrane. Academic Press, London, New York, pp 25–36

    Google Scholar 

  • Pearcy RW (1976) Temperature effects on growth and CO2 exchange rates of Atriplex lentiformis. Oecologia 26: 245–255

    Google Scholar 

  • Pearcy RW (1977) Acclimation of photo synthetic and respiratory CO2 to growth temperatures in Atriplex lentiformis (Torr.) Wats. Plant Physiol 59: 795–799

    PubMed  CAS  Google Scholar 

  • Pearcy RW (1978) Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr) Wats. Plant Physiol 61: 484–486

    PubMed  CAS  Google Scholar 

  • Pearcy RW, Berry JA, Bartholomew B (1974) Field photosynthetic performance and leaf temperatures of Phragmites communis under summer conditions in Death Valley, California. Photosynthetica 8: 104–108

    Google Scholar 

  • Penning de Vries FWT ( 1975 a) Use of assimilates in higher plants. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge Univ Press, London

    Google Scholar 

  • Penning de Vries FWT (1975 b) The cost of maintenance processes in plant cells. Ann Bot 39:77–92

    Google Scholar 

  • Pike CS, Berry JA (1979) Phase separation temperatures of phospholipids from warm and cool climate plants. Carnegie Inst Washington Yearb 78: 163–168

    Google Scholar 

  • Pike CS, Berry JA (1980) Membrane phospholipid phase separations in plants adapted to or acclimated to different thermal regimes. Plant Physiol 66: 238–241

    PubMed  CAS  Google Scholar 

  • Pike CS, Berry JA, Raison JK (1979) Fluorescence polarization studies of membrane phospholipid phase separations in warm season and cool season plants. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants: The role of the membrane. Academic Press, London, New York, pp 305–318

    Google Scholar 

  • Pollock BM, Olney HO (1959) Studies of the rest period. I. Growth, translocation and respiratory changes in the embryonic organs of the after ripening cherry seed. Plant Physiol 34: 131–142

    PubMed  CAS  Google Scholar 

  • Powles SB, Berry JA, Björkman O (1980) Interaction between light intensity and chilling temperature on inhibition of photosynthesis in chilling-sensitive plants. Carnegie Inst Washington Yearb 79: 157–160

    Google Scholar 

  • Raison JK (1974) A biochemical explanation of low-temperature stress in tropical and sub-tropical plants. In: Bieleski RL, Ferguson AR, Cresswell MN (eds) Mechanisms of regulation of plant growth. R Soc N Z Bull 12: 487–497

    Google Scholar 

  • Raison JK, Berry JA (1979) Viscotropic denaturation of chloroplast membranes and acclimation to temperature by adjustment of lipid viscosity. Carnegie Inst Washington Yearb 78: 149–152

    Google Scholar 

  • Raison JK, Chapman EA (1976) Membrane phase changes in chilling-sensitive Vigna radiate and their significance to growth. Aust J Plant Physiol 3: 291–299

    CAS  Google Scholar 

  • Raison JK, Lyons JM, Mehlhorn RJ, Keith AD (1971) Temperature-induced changes in mitochondrial membranes detected by spin labeling. J Biol Chem 246: 4036–4040

    PubMed  CAS  Google Scholar 

  • Raison JK, Chapman EA, Wright LC, Jacobs SWL (1979) Membrane lipid transitions. Their correlation with climatic distribution of plants. In: Lyons JM, Graham DJ, Raison JK (eds) Low temperature stress in crop plants: The role of the membrane. Academic Press, London, New York, pp 177–186

    Google Scholar 

  • Raison JK, Berry JA, Armond PA, Pike CS (1980) Membrane properties in relation to the adaptation of plants to high and low temperature stress. In: Turner NC, Kramer PJ (eds) Adaptations of plants to water and high temperature stress. Wiley-Interscience, New York, pp 261–273

    Google Scholar 

  • Regehr DL, Bazazz FA (1976) Low temperature photosynthesis in successional winter annuals. Ecology 57: 1297–1303

    CAS  Google Scholar 

  • Roberts JKM, Berry JA (1980) The changes in thylakoid acyl lipid composition of Nerium oleander accompanying acclimation to high temperature. Carnegie Inst Washington Yearb 79: 147–150

    Google Scholar 

  • Robertson GW (1973) Development of simplified agroclimatic procedures for assessing temperature effects on crop development. In: Slatyer RO (ed) Plant response to environmental factors. Unesco, Paris, pp 327–344

    Google Scholar 

  • Rochat E, Therrien HP ( 1975 a) Study of the proteins of resistant, Kharkov, and non-resistant, Selkirk, wheats during cold hardening. I. Soluble proteins. Can J Bot 53: 2411–2416

    CAS  Google Scholar 

  • Rochat E, Therrien HP ( 1975 b) Study of the proteins of resistant, Kharkov, and non- resistant, Selkirk, wheats during cold hardening. II. Soluble proteins and proteins of the chloroplasts and membranes. Can J Bot 53: 2417–2424

    CAS  Google Scholar 

  • Rundel PW (1980) The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia 45: 354–359

    Google Scholar 

  • Rylskki I (1973) The effect of night temperature on shape and size of sweet pepper (Capsicum annuum). J Am Soc Hortic Sci 98: 149–152

    Google Scholar 

  • Seemann JR, Berry JA, Downton WJS (1980) Seasonal changes in high-temperature acclimation of desert winter annuals. Carnegie Inst Washington Yearb 79: 141–143

    Google Scholar 

  • Sharpe PJ, de Michele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64: 649–670

    PubMed  CAS  Google Scholar 

  • Shreve F, Wiggins IL (1964) Vegetation and flora of the Sonoran Desert, vol I. Stanford Univ Press, Stanford California, pp 127–142

    Google Scholar 

  • Shneyour A, Raison JK, Smillie RM (1973) The effect of temperature on the rate of photo- synthetic electron transfer in chloroplasts of chilling-sensitive and chilling-resistant plants. Biochim Biophys Acta 292: 152–161

    PubMed  CAS  Google Scholar 

  • Siminovitch D, Rheaume B, Pomeroy K, Le Page M (1968) Phospholipid, protein and nucleic acid increases in protoplasm and membrane structures associated with development of extreme freezing resistance in black locust tree cells. Cryobiology 5: 202–225

    PubMed  CAS  Google Scholar 

  • Simon EW (1974) Phospholipids and plant membrane permeability. New Phytol 73: 377–420

    CAS  Google Scholar 

  • Simon EW, Minchin A, McMenamin MM, Smith JM (1976) The low temperature limit for seed germination. New Phytol 77: 301–311

    Google Scholar 

  • Simon JP (1979) Adaptation and acclimation of higher plants at the enzyme level: temperature-dependent substrate binding ability of NAD malate dehydrogenase in four populations of Lathyrus japonicus (Leguminosae). Plant Sci Lett 14: 113–120

    CAS  Google Scholar 

  • Singer SJ (1974) The molecular organization of membranes. Annu Rev Biochem 44: 805–833

    Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of the cell membranes. Science 175: 720–731

    PubMed  CAS  Google Scholar 

  • Slack CR, Roughan PG, Bassett HCM (1974) Selective inhibition of mesophyll chloroplast development in some C4 pathway species by low night temperature. Planta 118: 57–73

    CAS  Google Scholar 

  • Smillie RM (1976) Temperature control of chloroplast development. In: Bücher T (ed) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier, North Holland, pp 103–110

    Google Scholar 

  • Smillie RM, Critchley C, Bain JM, Nott R (1978) Effect of growth temperature on chloroplast structure and activity in barley. Plant Physiol 62: 191–196

    PubMed  CAS  Google Scholar 

  • Smith WK (1978) Temperature of desert plants: Another perspective on the adaptability of leaf size. Science 201: 614–616

    PubMed  CAS  Google Scholar 

  • Sofield I, Evans LT, Wardlaw IF (1977) The effect of temperature and light on grain filling in wheat. In: Bieleski RL, Furguson MM, Cresswell MN (eds) The mechanisms of regulation of plant growth. R Soc N Z Bull 12: 909–915

    Google Scholar 

  • Stewart J McD, Guinn G (1971) Chilling injury and nucleotide changes in young cotton plants. Plant Physiol 48: 166–170

    PubMed  CAS  Google Scholar 

  • Stout DG, Cotts RM, Steponkus PL (1977) The diffusional water permeability of Elodea leaf cells as measured by nuclear magnetic resonance. Can J Bot 55: 1623–1631

    Google Scholar 

  • Stowe LG, Teeri J A (1978) The geographic distribution of C4 species of the dicotyledonae in relation to climate. Am Nat 112: 609–623

    Google Scholar 

  • Tanford C (1980) The hydrophobic effect: formation of micells and biological membranes. Wiley-Interscience, New York

    Google Scholar 

  • Teeri J A (1980) Adaptation of kinetic properties of enzymes to temperature variablity. In: Turner NC, Kramer PK (eds) Adaptation of plants to water and high temperature stress. John Wiley and Sons, New York, pp 251–260

    Google Scholar 

  • Teeri JA, Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23: 1–12

    Google Scholar 

  • Thompson GA (1979) Molecular control of membrane fluidity. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants: The role of the membrane. Academic Press, London, New York, pp 347–364

    Google Scholar 

  • Thornley JH (1970) Respiration growth and maintenance in plants. Nature (London) 227: 304–305

    CAS  Google Scholar 

  • Thornley JHM (1977) Root: shoot interactions. In: Jennings DH (ed) Integration of activity in the higher plant. SEB Symposium, vol 31. Cambridge Univ Press, Cambridge, pp 367–387

    Google Scholar 

  • Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The Distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37: 337–350

    Google Scholar 

  • Toole EH, Toole VK, Borthwick HA, Hendricks SB (1955) Interaction of temperature and light in germination of seeds. Plant Physiol 30: 473–478

    PubMed  CAS  Google Scholar 

  • Topewalla H, Sinclair CG (1971) Temperature relationships in continuous culture. Biotechnol Bioeng 13:795–813

    Google Scholar 

  • Towers NR, Kellerman GM, Raison JK, Linnane AW (1973) The biogenesis of mitochondria. Effects of temperature-induced phase changes in membranes on protein synthesis by mitochondria. Biochim Biophys Acta 299: 153–161

    Google Scholar 

  • Tylor AO, Rowley YA (1971) Plants under climatic stress I. Low temperature, high light effects on photosynthesis. Plant Physiol 47: 713–718

    Google Scholar 

  • Walker JM (1969) One-degree increments in soil temperatures affects maize seedling behavior. Soil Sci Soc Am Proc 33: 729–736

    Google Scholar 

  • Wang JY (1960) A critique of the heat unit approach to plant response studies. Ecology 41: 785–790

    Google Scholar 

  • Wardlaw IF (1974) Temperature control of translocation. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. R Soc N Z Bull 12: 533–538

    Google Scholar 

  • Watada AE, Morris LL (1966) Effect of chilling and nonchilling temperatures on snap bean fruits. Proc Am Hort Soc 89: 368–374

    Google Scholar 

  • Watts WR (1971) Role of temperature in the regulation of leaf extension. Nature (London) 229: 46–17

    CAS  Google Scholar 

  • Watts WR (1972 a) Leaf extension in Zea mays. II. Leaf extension in response to independent variation of the temperature of the apical meristem of the air around the leaves, and of the root-zone. J Exp Bot 23:713–721

    Google Scholar 

  • Watts WR (1972b) Leaf extension in Zea mays. I. Leaf extension and water potential in relation to root zone and air temperatures. J Exp Bot 23: 704–712

    Google Scholar 

  • Webb JA (1967) Translocation of sugars in Cucurbita melopepo. IV. Effects of temperature change. Plant Physiol 42: 881–885

    PubMed  CAS  Google Scholar 

  • Webb JA (1970) The translocation of sugars in Cucurbita melopepo. V. The effect of leaf blade temperature on assimilation and transport. Can J Bot 48: 935–942

    CAS  Google Scholar 

  • Webb JA (1971) Translocation of sugars in Cucurbita melopepo. VI. Reversible low temperature inhibition of carbon-14 movement and cold acclimation of phloem tissue. Can J Bot 49: 717–733

    CAS  Google Scholar 

  • Webster BD, Leopold AC (1977) The ultrastructure of dry and imbibed cotyledons of soybean. Am J Bot 64: 1286–1293

    Google Scholar 

  • Weidner M, Ziemens C (1975) Preadaptation of protein synthesis in wheat seedlings to high temperature. Plant Physiol 56: 590–594

    PubMed  CAS  Google Scholar 

  • Went FW (1948) Ecology of desert plants. I. Observations on germination in the Joshua Tree National Monument, California. Ecology 29: 242–253

    Google Scholar 

  • Went FW (1949) Ecology of desert plants. II. The effect of rain and temperature on germination and growth. Ecology 30: 1–13

    Google Scholar 

  • Wilson JR, Ford CW (1971) Temperature influences of the growth, digestibility, and carbohydrate composition of two tropical grasses, Panicum maximum and Setaria sphacelata and two cultivars of the temperate grass Lolium. Aust J Agric Res 22: 563–571

    Google Scholar 

  • Wolfe J (1978) Chilling injury in plants — the role of membrane lipid fluidity. Plant Cell Environ 1: 241–247

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Berry, J.A., Raison, J.K. (1981). Responses of Macrophytes to Temperature. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology I. Encyclopedia of Plant Physiology, vol 12 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68090-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68090-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68092-2

  • Online ISBN: 978-3-642-68090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics