Skip to main content

Responses to Different Quantum Flux Densities

  • Chapter
Physiological Plant Ecology I

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / A))

Abstract

Growth of autotrophic plants is directly and dramatically influenced by the intensity of light — the driving force of photosynthesis — which provides nearly all of the carbon and chemical energy needed for plant growth. Moreover, light intensity (quantum flux density) is perhaps the most conspicuous environmental variable with which plants must cope. Contrasting terrestrial habitats may differ by at least two orders of magnitude in the daily quantum flux available for photosynthesis. In any habitat the quantum flux density varies seasonally, diurnally, and spatially (such as within a canopy of a given plant stand).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberte RS, McClure PR, Thornber JP (1976) Photosynthesis in trees. Plant Physiol 58: 341–344

    Article  Google Scholar 

  • Armond PA, Mooney HA (1978) Correlation of photosynthetic unit size and density with photosynthetic capacity. Carnegie Inst Washington Yearb 77: 234–237

    Google Scholar 

  • Ballantine JEM, Forde BJ (1970) The effect of light intensity and temperature on plant growth and chloroplast ultra-structure in soybean. Am J Bot 57: 1150–1159

    Article  CAS  Google Scholar 

  • Batalin A (1874) Über die Zerstörung des Chlorophylls in lebenden Organen. Bot Ztg 32: 432–439

    Google Scholar 

  • Belay A, Fogg CE (1979) Photoinhibition of photosynthesis in Asterionella formosa (Bacilla- riophyceae) J Phycol 14: 341–347

    Article  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31: 491–543

    Article  Google Scholar 

  • Berzborn RJ, Roos P (1980) Abstr 5th Int Cong Photosynthesis p 61

    Google Scholar 

  • Björkman O (1968 a) Carboxydismutase activity in shade-adapted and sun-adapted species of higher plants. Carnegie Inst Washington Yearb 67: 487–488

    Google Scholar 

  • Björkman O (1968 b) Further studies on differentiation of photosynthetic properties in sun and shade ecotypes of Solidago virgaurea L. Physiol Plant 21: 84–89

    Article  Google Scholar 

  • Björkman O (1973) Comparative studies on photosynthesis in higher plants. In: Giese A (ed) Current topics in photobiology, photochemistry and photophysiology, Vol. 8. Academic Press, New York, pp 1–63

    Google Scholar 

  • Björkman O, Holmgren P (1963) Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats. Physiol Plant 16: 889–914

    Article  Google Scholar 

  • Björkman O, Ludlow MM, Morrow PA (1972a) Photosynthetic performance of two rainforest species in their native habitat and analysis of their gas exchange. Carnegie Inst Washington Yearb 71: 94–102

    Google Scholar 

  • Björkman O, Boardman NK, Anderson JM, Thorne SW, Goodchild DJ, Pyliotis NA (1972b) Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnegie Inst Washington Yearb 71: 115–135

    Google Scholar 

  • Björkman O, Badger M, Armond PA (1978) Thermal acclimation of photosynthesis: effect of growth temperature on photosynthetic characteristics and components of the photosynthetic apparatus in Nerium oleander. Carnegie Inst Washington Yearb 77: 262–282

    Google Scholar 

  • Blackman GE (1956) Influence of light and temperature on leaf growth. In: Milthorpe FL (ed) The growth of leaves. Buttersworth, London, pp 151–169

    Google Scholar 

  • Blackman GE (1968) The application of concept of growth analysis to the assessment of productivity. In: Eckardt F (ed) Functioning of terrestrial ecosystems at the primary productivity level. UNESCO, Paris, pp 243–260

    Google Scholar 

  • Blackman GE, Black JN (1959) Physiological and ecological studies in the analysis of plant environment. Ann Bot 23: 51–63

    Google Scholar 

  • Blenkinsop PG, Dale JE (1974) The effects of shade treatment and light intensity on ribulose-l,5-diphosphate carboxylase activity and fraction I protein level in the first leaf of barley. J Exp Bot 25: 899–914

    Article  CAS  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Ann Rev Plant Physiol 28: 355–377

    Article  CAS  Google Scholar 

  • Boardman NK, Anderson JM, Thorne SE, Björkman O (1972) Photochemical reactions of chloroplasts and components of the photosynthetic electron transport chain in two rainforest species. Carnegie Inst Washington Yearb 71: 107–114

    Google Scholar 

  • Boardman NK, Anderson JM, Björkman O, Goodchild DJ, Grimme LH, Thorne SW (1974) Chloroplast differentiation in sun and shade plants: Relationship between chlorophyll content, grana formation, photochemical activity and fractionation of the photosystems. Port Acta Biol Ser A 14: 13–236

    Google Scholar 

  • Boardman NK, Björkman O, Anderson JM, Goodchild DJ, Thorne SW (1975) Photosynthetic adaptation of higher plants to light intensity: Relationship between chloroplast structure, composition of the photosystems and photosynthetic rates. In: Avron A (ed) Proc 3rd Intern Congr on Photosynthesis, Elsevier, Amsterdam, pp 809–827

    Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1972) Light saturation photosynthesis rate, RuDP carboxylase activity, and specific leaf weight in soybeans grown under different light intensities. Crop Sci 12: 77–79

    Article  CAS  Google Scholar 

  • Bunce JA, Patterson DT, Peet MM (1977) Light acclimation during and after leaf expansion in soybean. Plant Physiol 60: 255–258

    Article  PubMed  CAS  Google Scholar 

  • Butler WL (1977) Chlorophyll fluorescence: A probe for electron transfer and energy transfer. In: Trebst A, Avron M (eds) Encyclopedia of Plant Physiology, New Series: Vol. 5 (Photosynthesis I ) Springer, Berlin, Heidelberg, New York pp 149–167

    Google Scholar 

  • Chabot BF, Chabot JF (1977) Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia 26: 363–377

    Article  Google Scholar 

  • Chabot BF, Jurik TW, Chabot JF (1979) Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynthesis. Am J Bot 66: 940–945

    Article  Google Scholar 

  • Charles-Edwards DA, Ludwig LJ (1975) The basis of expression of leaf photosynthetic activities. In: Marcelle R (ed) Environmental and biological control of photosynthesis. W Junk, The Hague, pp 37–43

    Google Scholar 

  • Clough JM, Terri JA, Alberte RS (1979) Photosynthetic adaptation of Solanum dulcamara L. to sun and shade environments I. A comparison of sun and shade populations. Oecologia 38: 13–21

    Article  Google Scholar 

  • Collatz GJ (1978) The interaction between photosynthesis and ribulose-P2 concentration —effect of light, C02 and 02. Carnegie Inst Washington Yearb 77: 248–251

    Google Scholar 

  • Cooper CS (1967) Relative growth of alfalfa and birdsfoot trefoil seedlings under low light intensities. Crop Sci 7: 176–178

    Article  Google Scholar 

  • Craig H (1953) The geochemistry of stable carbon isotopes. Geochim Cosmochim Acta 3: 53–92

    Article  CAS  Google Scholar 

  • Crookston RK, Treharne KJ, Ludford P, Ozbun JL (1975) Response of beans to shading. Crop Sci 15: 412–416

    Article  Google Scholar 

  • Doley D (1978) Effects of shade on gas exchange and growth in seedlings of Eucalyptus grandis Mill ex Maiden. Aust J Plant Physiol 5: 723–738

    Article  Google Scholar 

  • Egle K (1960) Menge und Verhältnis der Pigmente. In: Ruhland W (ed) Encyclopedia of plant physiol. Springer, Berlin, Göttingen, Heidelberg. Vol. V, pp 492–96

    Google Scholar 

  • Ehleringer J (1978) Implications of quantum yield differences on the distributions of C3 and C4 grasses. Oecologia 31: 255–267

    Article  Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for C02 uptake in C3 and C4 plants. Plant Physiol 59: 86–90

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer J, Björkman O (1978) A comparison of photosynthetic characteristics of Encelia species possessing glabrous and pubescent leaves. Plant Physiol 62: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer J, Björkman O, Mooney HA (1976) Leaf pubescence: effect on absorptance and photosynthesis in a desert shrub. Science 192: 376–377

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy M, Hesketh J (1965) Photosynthesis among species in relation to characteristics of leaf anatomy and C02 diffusion resistance. Crop Sci 5: 517–521

    Article  Google Scholar 

  • Emerson R, Arnold W (1932a) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391

    Article  PubMed  CAS  Google Scholar 

  • Emerson R, Arnold W (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  PubMed  CAS  Google Scholar 

  • Evans GD, Hughes AP (1961) Plant growth and the aerial environment. I. Effects of artificial shading on Impatiens parvtflora. New Phytol 60: 150–180

    Article  Google Scholar 

  • Fleischhacker PH, Senger H (1978) Adaptation of the photosynthetic apparatus of Scenedesmus obliquus to strong and weak light conditions. II. Differences in photochemical reactions, the photosynthetic electron transport and photosynthetic units. Physiol Plant 43: 43–51

    Google Scholar 

  • Foyer CH, Hall DO (1980) Oxygen metabolism in the active chloroplast. Trends in Biochemical Sciences 1980: 188–191

    Article  Google Scholar 

  • Friend DJC (1975) Adaptation and adjustment of photosynthetic characteristics of gameto- phytes and sporophytes of Hawaiian Tree-fern (Cibotium glaucum) grown at different irradiances. Photosynthetica 4: 48–57

    Google Scholar 

  • Gabrielsen EK (1948) Effects of different chlorophyll concentrations on photosynthesis in foliage leaves. Physiol Plant 1: 5–37

    Article  CAS  Google Scholar 

  • Gabrielsen EK (1960) Beleuchtungsstärke und Photosynthese. In: Ruhland W (ed) Encyclopedia of plant physiology. Springer, Berlin, Göttingen, Heidelberg. Vol. V/2, pp 27–47

    Google Scholar 

  • Gaffron H, Wohl K (1936) Zur Theorie der Assimilation. Naturwissenschaften 24: 81–90

    Article  CAS  Google Scholar 

  • Gauhl E (1969) Differential photosynthetic performance of Solanum dulcamara ecotypes from shaded and exposed habitats. Carnegie Inst Washington Yearb 67: 482–187

    Google Scholar 

  • Gauhl E (1970) Leaf factors affecting the rate of light-saturated photosynthesis in ecotypes of Solanum dulcamara. Carnegie Inst Washington Yearb 68: 633–636

    Google Scholar 

  • Gauhl E (1976) Photosynthetic response to varying light intensity in ecotypes of Solanum dulcamara L. from shaded and exposed environments. Oecologia 22: 275–286

    Article  Google Scholar 

  • Gauhl E (1979) Sun and shade ecotypes of Solanum dulcamara L.: Photosynthetic light-dependence characteristics in relation to mild water stress. Oecologia 39: 61–70

    Article  Google Scholar 

  • Goodchild DJ, Björkman O, Pyliotis NA (1972) Chloroplast ultrastructure, leaf anatomy, and content of chlorophyll and soluble protein in rainforest species. Carnegie Inst Washington Yearb 71: 102–107

    Google Scholar 

  • Grahl H, Wild A (1972) Die Variabilität der Photosyntheseeinheit bei Licht- und Schattenpflanzen. Untersuchungen zur Photosynthese von experimentell induzierten Licht- und Schattentypen von Sinapis alba. Z Pflanzenphysiol 67: 443–453

    Google Scholar 

  • Grahl H, Wild A (1973) Lichtinduzierte Veränderungen im Photosyntheseapparat von Sinapis alba. Ber Dtsch Bot Ges 86: 341–349

    CAS  Google Scholar 

  • Grahl H, Wild A (1975) Studies on the content of P-700 and cytochromes in Sinapis alba during growth under two different light intensities. In: Marcelle R (ed) Environmental and biological control of photosynthesis, W. Junk, The Hague, pp 107–113

    Google Scholar 

  • Hanson HC (1917) Leaf-structure as related to environment. Am J Bot 4: 533–560

    Article  Google Scholar 

  • Hariri M, Brangeon JL (1977) Light-induced adaptive responses under greenhouse and controlled conditions in the fern Pteris cretica var. ouvardii. I. Structural and infrastructural features. Physiol Plant 41: 280–288

    Google Scholar 

  • Hariri M, Prioul JL (1978) Light-induced adaptive responses under greenhouse and controlled conditions in the fern Pteris cretica var. ouvardii. II. Photosynthetic capacities. Physiol Plant 42: 97–102

    Article  CAS  Google Scholar 

  • Harvey G (1980) Seasonal alteration of photosynthetic unit sizes in three herb layer components of a deciduous forest community. Am J Bot 67: 293–299

    Article  CAS  Google Scholar 

  • Hatch MD, Slack CR, Bull TA (1969) Light-induced changes in the content of some enzymes of the C4 dicarboxylic acid pathway of photosynthesis and its effect on other characteristics of photosynthesis. Phytochemistry 8: 697–706

    Article  CAS  Google Scholar 

  • Hesselman H (1904) Zur Kenntnis des Pflanzenlebens schwedischer Laubwiesen. Eine physiologisch-biologische und pflanzengeographische Studie. Beih Bot Centralbl 17: 341–160

    Google Scholar 

  • Hiesey W, Nobs MA, Björkman O (1971) Experimental studies of the nature of species. V. Biosystematics, genetics and physiological ecology of the Erythranthe section of Mimulus, Publication No. 628, Carnegie Inst Wash, Washington, D.C.

    Google Scholar 

  • Hiroi T, Monsi M (1963) Physiological and ecological analyses of shade tolerance of plants. 3. Effect of shading on growth attributes of Helianthus annuus. Bot Mag 76: 121–129

    Google Scholar 

  • Hiroi T, Monsi M (1964) Physiological and ecological analyses of shade tolerance of plants. 4. Effect of shading and distribution of photosynthate in Helianthus annuus. Bot Mag 77: 1–9

    Google Scholar 

  • Hitz WD, Steward CR (1980) Oxygen and carbon dioxide effects on the pool size of some photosynthetic and photorespiratory intermediates in soybean (Glycine max [L]. Merr. ). Plant Physiol 65: 442–446

    Article  PubMed  CAS  Google Scholar 

  • Holman R (1930) On solarization of leaves. Univ Calif Publ Bot 16: 139–151

    CAS  Google Scholar 

  • Holmgren P (1968) Leaf factors affecting light-saturated photosynthesis in ecotypes from exposed and shaded habitats cultivated under two light regimes. Physiol Plant 21: 616–698

    Article  Google Scholar 

  • Hughes AP, Cockshull KE (1971) The effects of light intensity and carbon dioxide concentration on the growth of Chrysanthemum morifolium cv. Bright Golden Anne. Ann Bot 35: 899–914

    Google Scholar 

  • Jagels R (1970) Photosynthetic apparatus in Selaginella. I. Morphology and photosynthesis under different light and temperature regimes. Can J Bot 48: 1843–1852

    Article  CAS  Google Scholar 

  • Jones LW, Kok B (1966a) Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol 41: 1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Jones LW, Kok B (1966b) Photoinhibition of chloroplast reactions. II. Multiple effects. Plant Physiol 41: 1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Jurik TW, Chabot JF, Chabot BF (1979) Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes. Plant Physiol 63: 542–547

    Article  PubMed  CAS  Google Scholar 

  • Kandler O, Sironval C (1959) Photooxidation processes in normal green Chlorella cells. II. Effects on metabolism. Biochim Biophys Acta 33: 207–215

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21: 234–244

    Article  PubMed  CAS  Google Scholar 

  • Ku SB, Edwards GE (1978) Oxygen inhibition of photosynthesis. III. Temperature dependence of quantum yield and its relation to O2/CO2 solubility ratio. Planta 140: 1–6

    Article  CAS  Google Scholar 

  • Ledig FT, Borman FM, Wenger KF (1970) The distribution of dry matter growth between shoot and roots in Loblolly pine. Bot Gaz 131: 349–359

    Article  Google Scholar 

  • Lewandowska M, Hart JW, Jarvis PG (1976) Photosynthetic electron transport in plants of Sitka spruce subjected to different light environments during growth. Physiol Plant 37: 269–274

    Article  CAS  Google Scholar 

  • Lichtenthaler H (1971) The unequal synthesis of the lipophilic plastidquinones in sun and shade leaves of Fagus silvatica L. Z. Naturforsch 26b: 832–842

    CAS  Google Scholar 

  • Loach K (1970) Shade tolerance in tree seedlings. II. Growth analysis of plants raised under artificial shade. New Phytol 67: 273–286

    Article  Google Scholar 

  • Louwerse W, van der Zweerde W (1977) Photosynthesis, transpiration and leaf morphology of Phaseolus vulgaris and Zea mays grown at different irradiances in artificial and sunlight. Photosynthetica 11: 11–21

    CAS  Google Scholar 

  • Ludlow MM, Wilson GL (1971) Photosynthesis of tropical pasture plants. II. Photosynthesis and illuminance history. Aust J Biol Sci 24: 1065–1075

    Google Scholar 

  • Mache R, Loiseaux S (1973) Light saturation of growth and photosynthesis of the shade plant Marchantia polymorpha. Cell Sci 12: 391–401

    CAS  Google Scholar 

  • McClendon JH (1962) The relationship between the thickness of deciduous leaves and their maximum photosynthetic rate. Am J Bot 49: 320–322

    Article  Google Scholar 

  • McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9: 191–216

    Article  Google Scholar 

  • Medina E (1970) Relationship between nitrogen level, photosynthetic capacity and carboxydismutase activity in Atriplex patula leaves. Carnegie Inst Washington Yearb 69: 655– 662

    Google Scholar 

  • Medina E (1971) Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of leaves of Atriplex patula ssp. hastata. Carnegie Inst Washington Yearb 70: 551–559

    Google Scholar 

  • Melis A, Brown JS (1980 a) Spectrophotometric determination of system I and II reaction centers in different photosynthetic membranes. Proc Natl Acad Sci USA 77: 4712–4716

    Article  Google Scholar 

  • Melis A, Brown JS (1980 b) Stoichiometry of system I and II reaction centers in photosynthetic membranes. Carnegie Inst Washington Yearb 79: 172–175

    Google Scholar 

  • Mohanty P, Boyer JS (1976) Chloroplast response to low leaf water potentials. IV. Quantum yield is reduced. Plant Physiol 57: 704–709

    Article  PubMed  CAS  Google Scholar 

  • Montfort CL (1941) Lichtlähmung und Lichtbleichung bei Wasserpflanzen. Grundsätzliches zur physiologischen Gestalt der submersen Blütenpflanzen. Planta 32: 121–149

    Article  CAS  Google Scholar 

  • Mooney HA, Björkman O, Collatz GJ (1977) Photosynthetic acclimation to temperature and water stress in the desert shrub Larrea divaricata. Carnegie Inst Washington Yearb 76: 328–335

    Google Scholar 

  • Mooney HA, Björkman O, Collatz GJ (1978) Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. I. Carbon exchange characteristics of intact leaves. Plant Physiol 61: 406–410

    Article  PubMed  CAS  Google Scholar 

  • Mousseau M, Costes F, de Kouchkovski Y (1967) Influence de conditions d’éclairement pendant la croissance sur l’activité photosynthétique de feuilles entière et de chloroplastes isolées. CR Paris D 264: 1158–1161

    CAS  Google Scholar 

  • Myerscough PJ, Whitehead FH (1966) Comparative biology of Tussilago farfara, Chamaenerion angustifolium, Epilobium montanum and Epilobium adenocaulon. I. General biology and germination. New Phytol 65: 192–210

    Article  Google Scholar 

  • Neales TF, Treharne KJ, Wareing PF (1971) A relationship between net photosynthesis, diffusive resistance and carboxylating enzyme activity in bean leaves. In: Hatch MD, Osmond CB, Slatyer RO (eds) Photosynthesis and photorespiration, Wiley-Interscience, New York, pp 89–96

    Google Scholar 

  • Nobel PS (1976) Photosynthetic rates of sun versus shade leaves of Hyptis emoryi Torr. Plant Physiol 58: 218–223

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (1977) Internal leaf area and cellular CO2resistance: photosynthetic implications of variations with growth conditions and plant species. Physiol Plant 40: 137–144

    Article  CAS  Google Scholar 

  • Nobel PS (1980) Leaf anatomy and water-use efficiency. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress, Wiley-Interscience pp 43–55

    Google Scholar 

  • Nobel PS, Zaragosa LJ, Smith WK (1975) Relationship between mesophyll surface area, photosynthetic rate, and illumination level during development of leaves of Plectranthus parviflorus Henekel. Plant Physiol 55: 1067–1070

    Article  PubMed  CAS  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20: 553–567

    Article  Google Scholar 

  • Öquist G, Brunes L, Hällgren JE (1981) Photosynthetic efficiency of Betula verrucosa acclimated to different light intensities. Plant, Cell Environment (in press)

    Google Scholar 

  • Osmond CB, Björkman O (1972) Simultaneous measurements of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species. Carnegie Inst Washington Yearb 71: 141–148

    Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Park RB, Pon NG (1963) Chemical composition and substructure of lamellae isolated from spinach chloroplasts. J Mol Biol 6: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Patterson DT, Duke SO (1979) Effect of growth irradiance on the maximum photosynthetic capacity of water hyacinth [Eichhornia crassipes ( Mart.) Solms]. Plant Cell Physiol 20: 177–184

    CAS  Google Scholar 

  • Patterson DT, Bunce JA, Alberte RS, van Volkenburgh E (1977) Photosynthesis in relation to leaf characteristics of cotton from controlled and field environments. Plant Physiol 59: 384–387

    Article  PubMed  CAS  Google Scholar 

  • Patterson DT, Duke SO, Hoagland RE (1978) Effect of irradiance during growth on the adaptive photosynthetic characteristics of velvet leaf and cotton. Plant Physiol 61: 402–405

    Article  PubMed  CAS  Google Scholar 

  • Pearce RB, Lee DR (1969) Photosynthetic and morphological adaptation of alfalfa leaves to light intensity at different stages of maturity. Crop Sci 9: 791–794

    Article  Google Scholar 

  • Powles SB (1979) The role of carbon assimilation and photorespiratory carbon cycling in the avoidance of photoinhibition in intact leaves of C3 and C4 plants. PhD thesis, Aust Nat Univ Canberra

    Google Scholar 

  • Powles SB, Critchley C (1980) The effect of light intensity during growth on photoinhibition of intact attached bean leaflets. Plant Physiol 65: 1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Powles SB, Osmond CB (1978) Inhibition of the capacity and efficiency of photosynthesis in bean leaflets illuminated in the absence of CO2 at low O2 concentrations — a protective role for photorespiration. Aust J Plant Physiol 5: 619–629

    Article  CAS  Google Scholar 

  • Powles SB, Thorne SW (1981) Effect of high light treatments in inducing photoinhibition of photosynthesis in intact leaves of low-light grown Phaseolus vulgaris and Lastreopsis microsora. Planta 1981 (in press)

    Google Scholar 

  • Powles SB, Osmond CB, Thorne SW (1979) Photoinhibition of intact attached leaves of C3 plants illuminated in the absence of both carbon dioxide and of photorespiration. Plant Physiol 64: 982–988

    Article  PubMed  CAS  Google Scholar 

  • Powles SB, Berry JA, Björkman O (1980 a) Interaction between light intensity and chilling temperatures on inhibition of photosynthesis in chilling-sensitive plants. Carnegie Inst Washington Yearb 79: 157–160

    Google Scholar 

  • Powles SB, Chapman KSR, Osmond CB (1980b) Photoinhibition of intact attached leaves of C4 plants: Dependence of CO2 and O2 partial pressures. Aust J Plant Physiol 7: 737–747

    Article  CAS  Google Scholar 

  • Prioul JL (1973) Éclairement de croissance et infrastructure des chloroplastes de Lolium multiflorum Lam. Relation avec les resistances au transfert de CO2. Photosynthetica 7: 373–381

    Google Scholar 

  • Rabinowitch EI (1951) The light factor. Photosynthesis II. Wiley-Interscience, New York, pp 964–1191

    Google Scholar 

  • Radmer RJ, Kok B, Ollinger O (1978) Kinetics and apparent Km of oxygen cycle under conditions of limiting carbon dioxide fixation. Plant Physiol 61: 914–917

    Article  Google Scholar 

  • Reyss A, Prioul JL (1975) Carbonic anhydrase and carboxylase activities from plants (Lolium multiflorum) adapted to different light regimes. Plant Sci Lett 5: 189–195

    Article  CAS  Google Scholar 

  • Satoh K (1970 a) Mechanism of photoinactivation in photosynthetic system. I. The dark reaction in photoinactivation. Plant Cell Physiol 11: 15–27

    Google Scholar 

  • Satoh K (1970 b) Mechanism of photoinactivation in photosynthetic systems. II. The occurence and properties of two different types of photoinactivation. Plant Cell Physiol 11: 29–38

    CAS  Google Scholar 

  • Satoh K (1970 c) Mechanism of photoinactivation in photosynthetic systems. III. Site and mode of photoinactivation in photosystem I. Plant Cell Physiol 11: 187–197

    CAS  Google Scholar 

  • Senger H, Fleischhacker PH (1978) Adaptation of the photosynthetic apparatus of Scenedesmus obliquus to strong and weak light conditions. I. Differences in pigments, photosynthetic capacity, quantum yield and dark reactions. Physiol Plant 43: 35–42

    Article  CAS  Google Scholar 

  • Singh KD, Gopal B (1973) The effects of photoperiod and light intensity on the growth of some weeds of crop fields. In: Slayter RO (ed) Plant response to climatic factors. UNESCO, Paris, pp 73–75

    Google Scholar 

  • Singh M, Ogren WL, Widholm JM (1974) Photosynthetic characteristics of several C3 and C4 plant species grown under different light intensities. Crop Sci 14: 563–566

    Article  CAS  Google Scholar 

  • Skene DS (1974) Chloroplast structure in mature apple leaves grown under different levels of illumination and their response to illumination. Proc R Soc London Ser B 186: 75–78

    Article  Google Scholar 

  • Stahl E (1883) über den Einfluß des sonnigen und schattigen Standortes auf die Ausbildung der Laubblätter. Jena Z Naturwiss 16: 16–200

    Google Scholar 

  • Steemann Nielsen E (1942) Der Mechanismus der Photosynthese. Dansk Bot Ark 11 (2) PP 95

    Google Scholar 

  • Taylor AO, Craig S (1971) Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol 47: 719–725

    Article  PubMed  CAS  Google Scholar 

  • Taylor AO, Rowley JA (1971) Plants under climatic stress. I. Low temperature, high light effects on photosynthesis. Plant Physiol 47: 713–718

    Article  PubMed  CAS  Google Scholar 

  • Taylor AO, Jesper NM, Christeller JT (1972) Plants under climatic stress. III. Low temperature, high light effects on photosynthetic products. Plant Physiol 47: 798–802

    Article  Google Scholar 

  • Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Ann Rev Plant Physiol 26: 127–158

    Article  CAS  Google Scholar 

  • Tolbert NE, Ryan FJ (1976) Glycolate biosynthesis and metabolism during photorespiration. In: Burris RH, Black CC (eds) CO2 metabolism and plant productivity. University Park Press, pp 141–159

    Google Scholar 

  • Turrell FM (1936) The area of internal exposed surface of dicotyledon leaves. Am J Bot 23: 255–263

    Article  Google Scholar 

  • Ursprung A (1917) Über die Stärkebildung im Spectrum. Ber Dtsch Bot Ges 35: 44–82

    CAS  Google Scholar 

  • von Mohl H (1837) Untersuchungen über die winterliche Färbung der Blätter. Vermischte Schriften botanischen Inhalts. Ludwig Friedrich Fues, Tübingen, pp 375–392

    Google Scholar 

  • Whitehead FH (1969) Rational of physiological ecology. Intecol Bull (London) 1: 34–42

    Google Scholar 

  • Whitehead FH (1973) The relationship between light intensity and reproductive capacity. In: Slatyer RO (ed) Plant response to climatic factors. UNESCO, Paris, pp 73–75

    Google Scholar 

  • Wild A (1979) Physiologie der Photosynthese höherer Pflanzen. Die Anpassung an Lichtbedingungen. Ber Dtsch Bot Ges 92: 341–364

    Google Scholar 

  • Wild A, Höhler T (1978) Die Wirkung unterschiedlicher Lichtintensitäten während der Anzucht auf die CO2-Kompensationslage, die Glykolsäure-Oxidase- und Ribulosebi- phosphat-Carboxylase-Aktivitäten bei Sinapis alba. Pflanzenphysiol 87: 413–428

    CAS  Google Scholar 

  • Wild A, Grahl H, Zickler H-O (1972) Untersuchungen über den Ferredoxingehalt von experimentell induzierten Licht- und Schattentypen von Sinapis alba. Z Pflanzenphysiol 68: 283–285

    CAS  Google Scholar 

  • Wild A, Ke B, Shaw E (1973) The effect of light intensity during growth of Sinapis alba on the electron-transport components. Z Pflanzenphysiol 69: 344–350

    Google Scholar 

  • Wild A, Rühle W, Grahl H (1975) The effect of light intensity during growth of Sinapis alba on the electron-transport and the non-cyclic photophosphorylation. In: Marcelle R (ed) Environmental and biological control of photosynthesis. W Junk, The Hague, pp 115–121

    Google Scholar 

  • Willmot A, Moore PD (1973) Adaptation to light intensity in Silene alba and S. dioica. Oikos 24: 458–464

    Article  Google Scholar 

  • Willstätter R, Stoll A (1918) Untersuchung über die Assimilation der Kohlensäure. Julius Springer, Berlin

    Google Scholar 

  • Wilson D, Cooper JP (1967) Assimilation of Lolium in relation to leaf mesophyll. Nature 214: 989–992

    Article  Google Scholar 

  • Wilson D, Cooper JP (1969) Effect of light intensity during growth on leaf anatomy and subsequent light-saturated photosynthesis among contrasting Lolium genotypes. New Phytol 68: 1125–1135

    Article  CAS  Google Scholar 

  • Wilson D, Cooper JP (1970) Effect of selection for mesophyll cell size on growth and assimilation in Lolium perenne L. New Phytol 69: 233–245

    Article  Google Scholar 

  • Wong SC (1979) Stomatal behavior in relation to photosynthesis. PhD thesis, Aust Nat Univ, Canberra

    Google Scholar 

  • Woolhouse HW (1967) Leaf age and mesophyll resistance as factors in the rate of photosynthesis. Hilger J 11: 7–12

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Björkman, O. (1981). Responses to Different Quantum Flux Densities. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology I. Encyclopedia of Plant Physiology, vol 12 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68090-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68090-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68092-2

  • Online ISBN: 978-3-642-68090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics