Skip to main content

Priming of Influenza Viral RNA Transcription by Capped Heterologous RNAs

  • Chapter
Initiation Signals in Viral Gene Expression

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 93))

Abstract

Influenza virus is a negative-stranded RNA virus, i.e., the viral messenger RNA (mRNA) is complementary to the genome RNA (which is segmented), and the virion contains the enzyme system which transcribes the genome RNA into the viral mRNA. This virus employs a unique mechanism for the initiation of the synthesis of its mRNA. Specifically, the virion-associated transcriptase system needs to cannibalize capped heterologous RNAs, i.e., eukaryotic cellular mRNAs and/or their precursors, in order to synthesize the viral mRNA. This process involves the clipping off by a virion-associated endonuclease of a small piece of the eukaryotic mRNA near its 5’-end, followed by the utilization of this RNA fragment as a primer to initiate the synthesis of the viral mRNA. The methylated cap structure (m7GpppNm, where Nm = 2’ -O-methylated nucleoside) found at the 5J -end of all mammalian cellular mRNAs is part of the RNA fragment that is used as primer and transferred from the cellular to the viral mRNA, and this cap structure is absolutely necessary for the viral nuclease and the priming reaction. In fact, the 5;-methylated cap structure is more stringently required for priming influenza viral mRNA synthesis than for the process in which it had previously been shown to play a role, the translation of mRNAs in cell-free systems. This mechanism for viral mRNA synthesis explains why influenza virus requires the functioning of the host-cell nuclear RNA polymerase II in order to replicate: newly synthesized host mRNAs and/or their precursors are needed as primers for viral mRNA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham G, Rhodes DP, Baneijee AK (1975) The 5’ terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus. Cell 5: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Baralle FE (1977) Structure-function relationship of 5’ non-coding sequence of rabbit a- and p- globin mRNA. Nature 267: 279–281

    Article  PubMed  CAS  Google Scholar 

  • Barrett J, Wolstenholme AJ, Mahy BWJ (1979) Transcription and replication of influenza virus RNA. Virology 98: 211–225

    Article  PubMed  CAS  Google Scholar 

  • Barry RD, Ives DR, Cruickshank JG (1962) Participation of deoxyribonucleic acid in the multiplication of influenza virus. Nature 194: 1139–1140

    Article  PubMed  CAS  Google Scholar 

  • Beemon K, Keith J (1977) Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol 113: 165–179

    Article  PubMed  CAS  Google Scholar 

  • Bishop DHL, Obijeski JF, Simpson RW (1971) Transcription of the influenza ribonucleic acid genome by a virion polymerase. I. Optimal conditions for in vitro activity of the ribonucleic acid dependent ribonucleic acid polymerase. J Virol 8: 66–73

    Google Scholar 

  • Bouloy M, Plotch SJ, Krug RM (1978) Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci USA 75: 4886–4890

    Article  PubMed  CAS  Google Scholar 

  • Bouloy M, Morgan MA, Shatkin AJ, Krug RM (1979) Cap and internal nucleotides of reovirus mRNA primers are incorporated into influenza viral complementary RNA during transcription in vitro. J Virol 32: 895–904

    PubMed  CAS  Google Scholar 

  • Bouloy M, Plotch SJ, Krug RM (1980) Both the 7-methyl and 2’0-methyl groups in the cap of a mRNA strongly influence its ability to act as a primer for influenza viral RNA transcription. Proc Natl Acad Sci USA 77: 3592–3596

    Article  Google Scholar 

  • Canaani D, Kahana C, Lavi S, Groner Y (1979) Identification N6-methyladenosine containing sequences in Simian Virus 40 RNA. Nucleic Acid Res 6: 2879–2899

    Article  PubMed  CAS  Google Scholar 

  • Caton AJ, Robertson JS (1980) Structure of the host-derived sequences present at the 5’ ends of influenza virus mRNA. Nucleic Acid Res 8: 2591–2603

    Article  PubMed  CAS  Google Scholar 

  • Chen-Kiang S, Nevins JR, Darnell JE (1979) N-6-Methyladenosine in adenovirus type 2 nuclear RNA is conserved in the formation of messenger RNA. J Mol Biol 135: 733–752

    Article  PubMed  CAS  Google Scholar 

  • Chow NL, Simpson RW (1971) RNA-dependent RNA polymerase activity associated with virions and subviral particles of myxoviruses. Proc Natl Acad Sci USA 68: 752–756

    Article  PubMed  CAS  Google Scholar 

  • Compans RW, Content J, Duesberg PH (1972) Structure of the ribonucleoprotein of influenza virus. J Virology 10: 795–800

    PubMed  CAS  Google Scholar 

  • Darnell JE Jr (1978) Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202: 1257–1260

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta R, Shih DS, Saris C, Kaesberg P (1975) Nucleotide sequence of a viral RNA fragment that binds to eukaryotic ribosomes. Nature 256: 624–628

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers RC, Friderici KH, Rottman FM (1975) Characterization of Novikoff hepatoma mRNA methylation and heterogeneity in the methylated 5’-terminus. Biochemistry 14: 4367–4374

    Article  PubMed  CAS  Google Scholar 

  • Dhar R, Chanock RM, Lai C-J (1980) Non-viral oligonucleotides at the 5’ terminus of cytoplasmic influenza viral mRNa deduced from cloned complete genomic sequences. Cell 21: 495–500

    Article  PubMed  CAS  Google Scholar 

  • Dimock K, Stoltzfus CM (1977) Sequence specificity of internal methylation in B77 avian sarcoma virus RNA subunits. Biochemistry 16: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Furuichi Y, Morgan M, Shatkin AJ, Jelinek W, Salditt-Georgieff M, Darnell JE (1975a) Methylated blocked 5’-termini in HeLa cell mRNA. Proc Natl Acad Sci USA 72: 1904–1908

    Article  PubMed  CAS  Google Scholar 

  • Furuichi Y, Morgan M, Muthukrishnan S, Shatkin AJ (1975b) Reovirus messenger RNA contains a methylated, blocked 5’-terminal structure: m7G(5’)pppGmpCp. Proc Natl Acad Sci USA 72: 362–366

    Article  PubMed  CAS  Google Scholar 

  • Furuichi Y, Muthukrishnan S, Tomasz J, Shatkin AJ (1976) Mechanism of formation of reovirus mRNA 5’-terminal blocked and methylated sequence, m7GpppGmpC. J Biol Chem 251: 5043–5053

    PubMed  CAS  Google Scholar 

  • Furuichi Y, La Fiandra A, Shatkin A J (1977) 5’ terminal structure and mRNA stability. Nature 266:235–239

    Google Scholar 

  • Hay AJ, Lomniczi B, Bellamy AR, Skehel JJ (1977a) Transcription of the influenza virus genome. Virology 83: 337–355

    Article  PubMed  CAS  Google Scholar 

  • Hay AJ, Abraham G, Skehel JJ, Smith JC, Fellner P (1977b) Influenza virus messenger RNAs are incomplete transcripts of the genome RNAs. Nucleic Acid Res 4: 4197–4209

    Article  PubMed  CAS  Google Scholar 

  • Hay A J, Skehel JJ, McCauley J (1980) Structure and synthesis of influenza virus complementary RNAs. Philos Trans R Soc Lond [Biol] 288: 341–348

    Article  CAS  Google Scholar 

  • Inglis SC, Carroll AR, Lamb RA, Mahy BWJ (1976) Polypeptides specified by the influenza virus genome. I. Evidence for eight distinct gene products specified by fowl plague virus. Virology 74: 489–503

    Google Scholar 

  • Koper-Zwarthoff EC, Lockard RE, Alzener-Deweerd B, RajBhandary UL, Bol JF (1977) Nucleotide sequence of 5’-terminus of alfalfa mosaic virus RNA 4 leading into coat protein cistron. Proc Natl Acad Sci USA 74: 5504–5508

    Article  PubMed  CAS  Google Scholar 

  • Krug RM, Ueda M, Palese P (1975) Temperature-sensitive mutants of influenza WSN virus defective in virus-specific RNA synthesis. J Virology 16: 790–796

    PubMed  CAS  Google Scholar 

  • Krug RM, Morgan MM, Shatkin AJ (1976) Influenza viral messenger RNA contains internal N6- methyladenosine and 5’-terminal 7-methyl guanosine in cap structures. J Virology 20: 45–53

    PubMed  CAS  Google Scholar 

  • Krug RM, Broni BB, Bouloy M (1979) Are the 5’ ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs? Cell 18: 329–334

    Article  PubMed  CAS  Google Scholar 

  • Krug RM, Broni BA, LaFiandra AJ, Morgan MA, Shatkin AJ (1980) Priming and inhibitory activities of RNAs for the influenza viral transcriptase do not require base-pairing with the virion RNA template. Proc Natl Acad Sci USA 77: 5874–5878

    Article  PubMed  CAS  Google Scholar 

  • Krug RM, Plotch SJ, Ulmanen I, Herz C, Bouloy M (1981) The mechanism of initiation of influenza viral RNA transcription by capped RNA primers. In: Compans R, Bishop DHL (eds) Negative strand viruses. Elsevier/North Holland, (in press) Lai C-J, Markoff LF, Zimmerman S, Cohen B, Berndt JA, Chanock RM (1980) Cloning DNA sequences from influenza viral RNA segments. Proc Natl Acad Sci USA 77:210–214

    Google Scholar 

  • Lamb RA, Choppin PW (1977) Synthesis of influenza virus polypeptides in cells resistant to alpha-amanitin: evidence for the involvement of cellular RNA polymerase II in virus replication. J Virol 23: 816–819

    PubMed  CAS  Google Scholar 

  • Lamb RA, Lai C-J (1980) Sequence of interrupted and uninterrupted mRNAs and cloned full- length DNA coding for the two overlapping nonstructural proteins of influenza virus. Cell 21: 475–485

    Article  PubMed  CAS  Google Scholar 

  • Lavi S, Shatkin AJ (1975) Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc Natl Acad Sci USA 72: 2012–2016

    Article  PubMed  CAS  Google Scholar 

  • Lockard RE, RajBhandary UL (1976) Nucleotide sequences at the 5’-terminal of rabbit and globin mRNA. Cell 9: 747–760

    Article  CAS  Google Scholar 

  • Mahy BWJ, Hastie ND, Armstrong SJ (1972) Inhibition of influenza virus replication by a-amanitin: mode of actioa Proc Natl Acad Sci USA 69: 1421–1424

    CAS  Google Scholar 

  • Mark GE, Taylor JM, Broni B, Krug RM (1979) Nuclear accumulation of influenza viral RNA transcripts and the effects of cycloheximide, actinomycin D, and a-amanitin. J Virol 29: 744–752

    PubMed  CAS  Google Scholar 

  • Martin SA, Moss B (1976) mRNA guanylyltransferase and mRNA (guanine-7)-methyltransferase from vaccinia virions. J Biol Chem 251:7313–7321

    Google Scholar 

  • McGeoch D, Kitron N (1975) Influenza virion RNA-dependent RNA polymerase: stimulation by guanosine and related compounds. J Virol 15: 686–695

    PubMed  CAS  Google Scholar 

  • Michelson AM, Massoulie J, Guschlbauer W (1967) Synthetic polynucleotides. Prog Nucleic Acid Res Mol Biol 6: 83–141

    Article  PubMed  CAS  Google Scholar 

  • Moss B, Koczot F (1976) Sequence of methylated nucleotides at the 5’ terminus of adenovirus- specific RNA. Virol 17: 385–392

    CAS  Google Scholar 

  • Moss B, Gershowitz A, Wei C-M, Boone R (1976) Formation of the guanylylated and methylated 5’ -terminus of vaccinia virus mRNA. Virology 75: 341–351

    Article  Google Scholar 

  • Muthukrishnan S, Morgan M, Baneijee AK, Shatkin A J (1976) Influence of 5’ terminal m7G and 2’ -O-methylated residues on messenger ribonucleic acid binding to ribosomes. Biochemistry 15: 5761–5768

    Article  PubMed  CAS  Google Scholar 

  • Muthukrishnan S, Moss B, Cooper JA, Maxwell ES (1978) Influence of 5’ -terminal cap structure on the initiation of translation of vaccinia virus mRNA. J Biol Chem 253: 1710–1715

    PubMed  CAS  Google Scholar 

  • Nevins JR, Winkler JJ (1980) Regulation of early adenovirus transcription: A protein product of early region 2 specifically represses region 4 transcription. Proc Natl Acad Sci USA 77: 1893–1897

    Article  PubMed  CAS  Google Scholar 

  • Palese P, Ritchey MB, Schulman JL (1977) PI and P3 proteins of influenza virus are required for complementary RNA synthesis. J Virol 21: 1187–1195

    PubMed  CAS  Google Scholar 

  • Penhoet E, Miller H, Doyle M, Blatti S (1971) RNA-dependent RNA polymerase activity in influenza virions. Proc Natl Acad Sci USA 68: 1369–1371

    Article  PubMed  CAS  Google Scholar 

  • Perry RP, Kelley DE, Friderici K, Rottman F (1975) The methylated constituents of L-cell messenger RNA: evidence for an unusual cluster at the 5’ terminus. Cell 4: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Plotch SJ, Krug RM (1977) Influenza virion transcriptase: the synthesis in vitro of large, poly- adenylic acid-containing complementary RNA. J Virol 21: 24–34

    PubMed  CAS  Google Scholar 

  • Plotch SJ, Krug RM (1978) Segments of influenza virus complementary RNA synthesized in vitro. J Virol 25: 579–586

    PubMed  CAS  Google Scholar 

  • Plotch SJ, Tomasz J, Krug RM (1978) Absence of detectable capping and methylating enzymes in influenza virions. J Virol 28: 75–83

    PubMed  CAS  Google Scholar 

  • Plotch SJ, Bouloy M, Krug RM (1979) Transfer of 5’ terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proc Natl Acad Sci USA 76: 1618–1622

    Article  PubMed  CAS  Google Scholar 

  • Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23: 847–858

    Article  PubMed  CAS  Google Scholar 

  • Robertson HD, Dickson E, Plotch SJ, Krug RM (1980) Identification of the RNA region transferred from a representative primer, p-globin mRNA, to influenza mRNA during in vitro transcriptioa Nucleic Acid Res 8: 925–942

    CAS  Google Scholar 

  • Robertson JS (1979) 5’ and 3’ terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acid Res 6:3745–3757

    Google Scholar 

  • Rochovansky O (1976) RNA synthesis by ribonucleoprotein-polymerase complexes isolated from influenza virus. Virology 73: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Rott R, Scholtissek C (1970) Specific inhibition of influenza replication by a-amamtin. Nature 228: 56

    Article  PubMed  CAS  Google Scholar 

  • Saenger W, Mazumdar SK, Suck D, Manor PC (1975) Parallel and antiparallel homopolymer nucleic acid double helices. In: Sundaralingam M, Rao SJ (eds) Structure and conformation of nucleic acids and protein-nucleic acid interactions. University Park Press, Baltimore, pp 537–555

    Google Scholar 

  • Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115: 695–714

    Article  PubMed  CAS  Google Scholar 

  • Shatkin AJ (1976) Capping of eukaryotic mRNA’s. Cell 9: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Shih DS, Kaesberg P (1973) Translation of brome mosaic viral ribonucleic acid in a cell-free system derived from wheat embryo. Proc Natl Acad Sci USA 70: 1799–1803

    Article  PubMed  CAS  Google Scholar 

  • Shimotohno K, Kodama Y, Hashimoto J, Miura K (1977) Importance of 5’ -terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc Natl Acad Sci USA 74: 2734–2738

    Article  PubMed  CAS  Google Scholar 

  • Skehel JJ, Hay AJ (1978) Nucleotide sequences at the 5’ termini of influenza viral RNAs and their transcripts. Nucleic Acids Res 4: 1207–1219

    Article  Google Scholar 

  • Smith JC, Raper RH, Bell LD, Stebbing N, McGeoch D (1980) Inhibition of influenza virion transcriptases by polynucleotides. Virology 103: 245–249

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Rupprecht K, Hecht S, Shatkin AJ (1979) Eukaryotic mRNA cap binding protein: purification by affinity chromatography on Sepharose-coupled m7GDP. Proc Natl Acad Sci USA 76: 4345–4349

    Article  PubMed  CAS  Google Scholar 

  • Spooner LLR, Barry RD (1977) Participation of DNA-dependent RNA polymerase II in replication of influenza viruses. Nature 268: 650–652

    Article  PubMed  CAS  Google Scholar 

  • Wei C-M, Moss B (1975) Methylated nucleosides block 5’ terminus of vaccinia messenger RNA. Proc Natl Acad Sci USA 72: 318–322

    Article  PubMed  CAS  Google Scholar 

  • Wei C-M, Moss B (1977) Nucleotide sequence at the N6-methyladenosine sites of He La cell messenger ribonucleic acid. Biochemistry 16: 1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Wei C-M, Gershowitz A, Moss B (1976) 5’ -terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 15:397–401

    Google Scholar 

  • Ziff EB (1980) Transcription and RNA processing by the DNA tumour viruses. Nature 287: 491–499

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krug, R.M. (1981). Priming of Influenza Viral RNA Transcription by Capped Heterologous RNAs. In: Shatkin, A.J. (eds) Initiation Signals in Viral Gene Expression. Current Topics in Microbiology and Immunology, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68123-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68123-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68125-7

  • Online ISBN: 978-3-642-68123-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics