Skip to main content

Non-methane Organics in the Remote Troposphere

  • Conference paper
Atmospheric Chemistry

Part of the book series: Dahlem Workshop Reports Physical and Chemical Sciences Research Report ((DAHLEM PHYSICAL,volume 4))

Abstract

The atmosphere is now understood to contain many gaseous species at concentrations varying by many orders of magnitude. At one end of the concentration scale, gases such as oxygen are vital to sustaining animal respiration, whilst at the other end, trace species such as nitrogen oxides control fundamental geochemical phenomena such as the earth’s ozone shield and the level of hydroxyl radicals present in the troposphere. The most numerous trace gases present are organic molecules which have a variety of sources including combustion processes, biogenic decay on land and in the ocean, solvent usage, natural gas leakage, etc. The measurement of these many compounds at concentration levels down to parts in 1012 and below has presented atmospheric scientists with severe analytical problems. These are now being solved by using a variety of modern techniques based upon spectroscopy and gas chromatography. Data on the distribution of many compounds is still exceedingly scarce. This is urgently needed to quantify major sources and to test current theories of atmospheric oxidation leading to the creation of soluble molecules capable of being removed by rain. Some of the limited amount of concentration data available is discussed by compound type: namely, halocarbons, hydrocarbons, oxygenated compounds, and sulfur compounds. The main object of this discussion is an attempt to find some consistent indicators for the degree of chemical reaction which can be attributed to attack by hydroxyl radicals in the troposphere. It appears that the level of oxidation indicated by the latitudinal distribution of molecules such as perchloroethylene and acetylene, and possibly benzene, toluene, and some other compounds, is considerably less than that predicted from a study of the carbon monoxide cycle. However, much more data on the distribution of these molecules throughout the troposphere are needed before final conclusions can be drawn. A low oxidation rate for many molecules tends to lower the amounts that can be removed each year by natural processes occurring in the atmosphere. This makes pollution more of a problem, of course, and at the same time it affects the current assessments of the efficiency of the biosphere for producing trace gases in the atmosphere, including those involved in the creation of condensation nuclei by direct gas to particle conversion processes. Finally, there are indications from a comparison of the concentration distribution of acetylene and sulfur dioxide, both of which are largely pollution derived, that oxidation of soluble species in atmospheric droplets may be a very efficient process, possibly by reaction with hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adel, A. 1949. Selected topics in the infrared spectroscopy of the solar system. In The Atmospheres of the Earth and Planets, ed. G.P. Kuiper, p. 269. Chicago: University of Chicago Press.

    Google Scholar 

  2. Andreae, M.O.; Bernard, W.R.; and Ammons, J.M. 1981. The Biological Production of Dimethylsulfide in the Ocean and its Role in the Global Sulfur Budget. 5th International Symposium on Environmental Biogeochemistry, Stockholm.

    Google Scholar 

  3. Atkinson, R.; Darnall, K.R.; Lloyd, A.C.; Winer, A.M.; and Pitts, J.N. 1979. Kinetics and mechanisms of the reactions of the hydroxyl radical with organic compounds in the gas phase. Adv. Photochem. 11: 1975.

    Google Scholar 

  4. Bandy, A.R.; Maroulis, P.J.; Shalaby, L.; and Wilner, L.A. 1981. Evidence for a short tropospheric residence time for carbon disulfide. Geophys. Res. Lett. 8: 1180.

    Article  CAS  Google Scholar 

  5. Chameides, W.L., and Davis, D.D. 1980. Iodine: its possible role in tropospheric photochemistry. J. Geophys. Res. 85: 7383.

    Article  CAS  Google Scholar 

  6. Chapman, S. 1930. A theory of upper atmospheric ozone. Mem. Roy. Meteor. Soc. 3: 103.

    Google Scholar 

  7. Cicerone, R.J. 1979. Atmospheric carbon tetrafluoride: A nearly inert gas. Science 206; 59.

    Article  PubMed  CAS  Google Scholar 

  8. Coffey, M.J.; Mankin, W.G.; and Cicerone, R.J. 1981. Spectroscopic detection of stratospheric hydrogen cyanide. Science 214: 333.

    Google Scholar 

  9. Cox, R.A., and Sheppard, D. 1980. Reactions of OH radicals with gaseous sulfur compounds. Nature 284: 330.

    Article  CAS  Google Scholar 

  10. Crutzen, P.J. 1979. The role of NO and N02 in the chemistry of the troposphere and the stratosphere. Ann. Rev. Earth Planet Sci. 7: 443.

    Article  CAS  Google Scholar 

  11. Crutzen, P.J.; Heidt, L.E.; Krasnec, J.P.; Pollock, W.H.; and Seiler, W. 1979. Biomass burning as a source of atmospheric gases CO, H2, N20, NO, CH3C1 and COS. Nature 282: 253.

    Article  CAS  Google Scholar 

  12. Duce, R.A. 1978. Speculations on the budget of particulate and vapor phase non-methane organic carbon in the global troposphere. In Influence of the Biosphere on the Atmosphere, ed. H.E. Dutsch, p. 244. Basel and Stuttgart Birkhauser Verlag.

    Google Scholar 

  13. Glueckauf, E. 1951. The Composition of Atmospheric Air. Compendium of Meteorology, p. 3. Boston, MA: American Meteorology Society.

    Google Scholar 

  14. Glueckauf, E., and Kitt, G.P. 1957. The hydrogen content of atmospheric air at ground level. Quart. J. Roy. Meteor. Soc. 83: 522.

    Article  Google Scholar 

  15. Haagen-Smit, A.J. 1952. Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem. 44: 1342.

    Article  CAS  Google Scholar 

  16. Hanst, P.C.; Spiller, L.L.; Watts, D.M.; Spence, J.W.; and Miller, M.F. 1975. Infrared measurements of fluorocarbons, carbon tetrachloride, carbonyl sulfide and other trace gases. J. Air Polln. Contr. Ass. 25: 1220

    CAS  Google Scholar 

  17. Holdren, M.W.; Westberg, H.H.; and Zimmerman, P.R. 1979. Analysis of monoterpene hydrocarbons in rural atmospheres J. Geophys. Res. 84: 5083.

    Article  CAS  Google Scholar 

  18. Iyer, R.S., and Rowland, F.S. 1980. A significant upper limit for the rate of formation of OCS from the reaction of OH with CS2. Geophys. Res. Lett. 1: 797.

    Article  Google Scholar 

  19. Jaenicke, R. 1978. The role of organic material in atmospheric aerosols. In Influence of the Biosphere on the Atmosphere, ed. H.U. Dutsch, p. 283. Basel and Stuttgart Birkhauser Verlag.

    Google Scholar 

  20. Johnson, J.E. 1981. The lifetime of carbonyl sulfide in the troposphere. Geophys. Res. Lett. 8: 938.

    Article  CAS  Google Scholar 

  21. Jones, B.M.R.; Burrows, J.; Cox, R.A.; and Penkett, S.A.1982. OCS formation in the reaction of OH with CS2. Chem. Phys. Lett. 88: 372.

    Article  CAS  Google Scholar 

  22. Jones, B.M.R.; Burrows, J.; Cox, R.A.; and Penkett, S.A.1983. The role of CS2 in atmospheric sulfur chemistry. Atmos. Env., in press.

    Google Scholar 

  23. Lamontagne, R.A.; Swinnerton, J.W.; and Linnenbom, V.J. 1974. C-1-C4 hydrocarbons in the North and South Pacific. Tellus 26: 72.

    Article  Google Scholar 

  24. Levy, H. 1971. Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173: 141.

    Article  PubMed  CAS  Google Scholar 

  25. Liss, P.S., and Slater, P.G. 1974. Flux of gases across the air-sea interface. Nature 247: 181.

    Article  CAS  Google Scholar 

  26. Logan, J.A.; Prather, M.J.; Wofsy, S.C.; and Mlroy, M.B. 1981. Tropospheric chemistry: a global perspective. J. Geophys. Res. 86: 7210.

    Article  CAS  Google Scholar 

  27. Lovelock, J.E. 1961. Ionization methods for the analysis of gases and vapors. Anal. Chem. 33.: 162.

    Article  CAS  Google Scholar 

  28. Lovelock, J.E. 1974. CS2 and the natural sulfur cycle. Nature 248: 625.

    CAS  Google Scholar 

  29. Lovelock, J.E. 1975. Natural halocarbons in the air and in the sea. Nature 256: 193.

    Article  PubMed  CAS  Google Scholar 

  30. Lovelock, J.E. 1977. Methyl chloroform in the troposphere as an indicator of the OH radical abundance. Nature 267: 32.

    Article  CAS  Google Scholar 

  31. Lovelock, J.E.; Maggs, R.J.; and Rasmussen, R.A. 1972. Atmospheric dimethyl sulfide and the natural sulfur cycle. Nature 237: 452.

    Article  CAS  Google Scholar 

  32. Lovelock, J.E., and Penkett, S.A. 1974. PAN over the Atlantic and the smell of clean linen. Nature 249: 434.

    Article  CAS  Google Scholar 

  33. Lowe, D.C.; Schmidt, U.; and Ehhalt, D.H. 1981. The tropospheric distribution of formaldehyde. Berichte der Kernforschungsanlage, Nr. 1756, JĂ¼lich, FRG.

    Google Scholar 

  34. Maroulis, P.J.; Torres, A.L.; Goldberg, A.B.; and Bandy, A.R. 1980. Atmospheric SO2 measurements on project GAMETAG. J. Geophys. Res. 85: 7345.

    Article  CAS  Google Scholar 

  35. Migeotte, M.V. 1949. On the presence of CH4, N20, and NH3 in the earth’s atmosphere. In The Atmospheres of the Earth and Planets, ed. G.P. Kuiper, p. 284. Chicago: University of Chicago Press.

    Google Scholar 

  36. Molina, M.J., and Rowland, F.S. 1974. Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature 249; 810.

    Article  CAS  Google Scholar 

  37. Penkett, S.A. 1981. The application of analytical techniques to the understanding of chemical processes occurring in the atmosphere. Toxicol. Env. Chem. 3: 291.

    Article  CAS  Google Scholar 

  38. Rasmussen, R.A. 1972. What do hydrocarbons from trees contribute to air pollution? J. Air Polln. Contr. Ass. 22: 537.

    CAS  Google Scholar 

  39. Rasmussen, R.A., and Khalil, M.A.K. 1982. Latitudinal distributions of trace gases in and above the boundary layer. J. Geophys. Res., in press.

    Google Scholar 

  40. Rowland, F.S. 1979. The atmospheric and oceanic sinks for carbonyl sulfide. 4th International Conference of the Commission on Atmospheric Chemistry and Global Pollution, Boulder, Colorado.

    Google Scholar 

  41. Rudolph, J., and Ehhalt, D.H. 1981. Measurements of C2-C5 hydrocarbons over the north Atlantic. J. Geophys. Res. 86: 11959.

    Google Scholar 

  42. Sandalls, F.J., and Penkett, S.A. 1977. Measurements of carbonyl sulfide and carbon disulfide in the atmosphere. Atmos. Env. 11: 197.

    Article  CAS  Google Scholar 

  43. Seiler, W. 1976. The cycle of atmospheric CO. Tellus 26: 46.

    Google Scholar 

  44. Singh, H.B. 1977. Atmospheric halocarbons: evidence in favor of a reduced average hydroxyl radical concentration in the troposphere. Geophys. Res. Lett. 4: 101.

    Article  CAS  Google Scholar 

  45. Singh, H.B., and Hanst, P.L. 1981. Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere: an important reservoir for nitrogen oxides. Geophys. Res. Lett. 8: 941.

    Article  CAS  Google Scholar 

  46. Singh, H.B.; Salas, L.J.; Shigeishi, H.; Smith, A.J.; Scribner, E.; and Cavanagh, L.A. 1979. Atmospheric distributions, sources and sinks of selected halocarbons, hydrocarbons, SF6 and N20. Stanford Research Institute Project Report No. 4487.

    Google Scholar 

  47. Slatt, B.J.; Natusch, D.F.S.; Prospero, J.M.; and Savoie, D.L. 1978. Hydorgen sulfide in the atmosphere of the northern equatorial Atlantic ocean and its relation to the global sulfur cycle. Atmos. Env. 12: 981.

    Article  CAS  Google Scholar 

  48. Torres, A.L.; Maroulis, P.J.; Goldberg, A.B.; and Bandy, A.R. 1980. Atmospheric OCS measurements on project GAMETAG. J. Geophys. Res. 85: 7357.

    Article  CAS  Google Scholar 

  49. Volz, A.; Ehhalt, D.H.; and Derwent, R.G. 1981. Seasonal and latitudinal variation of 14C0 and the tropospheric concentration of OH radicals. J. Geophys. Res. 86: 5163.

    Article  CAS  Google Scholar 

  50. Weinstock, B., and Niki, H. 1972. Carbon monoxide balance in nature. Science 176: 290.

    Article  PubMed  CAS  Google Scholar 

  51. Wine, P.H.; Chameides, W.L.; and Ravishankara, A.R. 1980. Potential role of CS2 photooxidation in tropospheric sulfur chemistry. J. Phys. Chem. 84: 2499.

    Article  CAS  Google Scholar 

  52. Wine, P.H.; Shah, R.C.; and Ravishankara, A.R. 1981. Rate of reaction of OH with CS2. Geophys. Res. Lett. 8: 543.

    Article  CAS  Google Scholar 

  53. Wofsy, S.C.; Monnell, J.C.; and Mlroy, M.B. 1972. Atmospheric CH4, CO and CO2. J. Geophys. Res. 77 4477.

    Article  CAS  Google Scholar 

  54. Zimmerman, P.R.; Chatfield, R.B.; Fishman, J.; Crutzen, P.J.; and Hanst, P.C. 1978. Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation. Geophys. Res. Lett. 5: 679.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. D. Goldberg

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Penkett, S.A. (1982). Non-methane Organics in the Remote Troposphere. In: Goldberg, E.D. (eds) Atmospheric Chemistry. Dahlem Workshop Reports Physical and Chemical Sciences Research Report, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68638-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68638-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68640-5

  • Online ISBN: 978-3-642-68638-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics