Skip to main content

Physiological Interactions Between the Partners of the Lichen Symbiosis

  • Chapter
Cellular Interactions

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 17))

Abstract

Lichens are a symbiotic association comprised of two unrelated organisms, a fungus and an alga; usually one type of alga (the phycobiont) combines with one type of fungus (the mycobiont). When fully integrated they form a new biological entity with no resemblance to either of the components. There are to date about 20,000 lichen species known, which account for about 25% of all the fungi known in the world (lichens are incorporated in fungal classification).

“Two are better than one; because they have a good reward for their labour. For if they fall, the one will lift up to his fellow: but woe to him that is alone when he falleth; for he hath not another to help him up. Again, if two lie together, then they have heat: but how can one be warm alone? And if one prevail against him, two shall withstand him; and a three-fold cord is not quickly broken.” Ecclesiastes, Chapter 4 Verses9–12: (King James’ Version)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadjian V (1967a) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6: 127–160

    CAS  Google Scholar 

  • Ahmadjian V ( 1967 b) The lichen symbiosis. Blaisdell, Waltham

    Google Scholar 

  • Ahmadjian V ( 1973 a) Methods of isolating and culturing lichen symbionts and thalli. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London New York, pp 653–659

    Google Scholar 

  • Ahmadjian V (1973b) Resynthesis of lichens. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London New York, pp 565–579

    Google Scholar 

  • Ahmadjian V (1977) Qualitative requirements and utilization of nutrients: lichens. In: Rechcigl M Jr (ed) CRC handbook series in nutrition and food, Sec D/Vol 1. CRC Press, Cleveland, pp 203–215

    Google Scholar 

  • Ahmadjian V (1982) Algal/fungal symbioses. In: Round F, Chapman DJ (eds) Progress in phycological research, Vol 1. Elsevier/North–Holland Biomedical Press, Amsterdam New York, pp 179–233

    Google Scholar 

  • Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289: 169–172

    Google Scholar 

  • Ahmadjian V, Russell LA, Hildreth KC (1980) Artificial reestablishment of lichens I. Morphological interactions between the phycobiont of different lichens and the myco– bionts of Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72: 73–89

    Google Scholar 

  • Archibald PA (1975) Trebouxia de Puymaly (Chlorophyceae, Chlorococcales) and Pseudotrebouxia gen. nov. (Chlorophyceae, Chlorosarcinales). Phycologia 14: 125–137

    Google Scholar 

  • Archibald PA (1977) Physiological characteristics of Trebouxia (Chlorophyceae, Chlorococcales) and Pseudotrebouxia (Chlorophyceae, Chlorosarcinales). Phycologia 16: 295–300

    Google Scholar 

  • Ascaso C (1980) A rapid method for the quantitative isolation of green algae from lichens. Ann Bot 45: 483

    Google Scholar 

  • Barrett JT, Howe ML (1968) Hemagglutination and hemolysis by lichen extracts. Appl Microbiol 16: 1137–1139

    PubMed  CAS  Google Scholar 

  • DeBary A (1879) Die Erscheinung der Symbiose. Trübner, Straßburg Bernard T, Goas G (1968) Contribution à l’étude du métabolisme azoté des lichens: charactérisation et dosages des méthylamines de quelques espèces de la famille des Strictacées. CR Acad Sei 267: 622–624

    Google Scholar 

  • Bernard T, Goas G (1969) Contribution à l’étude du métabolisme azoté des lichens. Mise en évidence de quelques transaminases; activité de la glutamate oxalacétate transaminase dans cinq espèces de la famille des Stictacées. CR Acad Sei 269: 1657–1659

    Google Scholar 

  • Bernard T, Lahrer F (1971) Contribution à l’étude du métabolisme azoté des lichens: rôle de la glycine 14C–2 dans la formation des methylamines chez Lobaria laetevirens Zahlbr. CR Acad Sei 272: 568–571

    CAS  Google Scholar 

  • Bernheimer AW, Farkas ME (1953) Hemagglutinins among higher fungi. J Immunol 70: 197–198

    PubMed  CAS  Google Scholar 

  • Bhuvaneswari TV (1981) Recognition mechanisms and infection process in legumes. Econ Bot 35: 204–223

    CAS  Google Scholar 

  • Boissière JC (1977) Présence d’haustoriums chez le lichen Lichina pygmaea (Light) A.C. A.. et role de la paroi des gonidies dans le contact entre les symbiontes des lichens à cyanophytes. Rev Bryol Lichenol 43: 176–182

    Google Scholar 

  • Boissière M–C (1972) Mise en évidence cytochimique en microscopie électronique de polyglucosides de réserve chez des Nostoc libes et lichénisés. CR Acad Sei 274:2643– 2646

    Google Scholar 

  • Boissière M-C (1973) Activité phosphatasique neutre chez le phycobionte de Peltigera canina comparée à celle d’un Nostoc libre. CR Acad Sei 277:16949–1651 Boissière M–C (1982) Cytochemical ultrastructure of Peltigera canina: Some features related to its symbiosis. Lichenologist 14: 1–27

    Google Scholar 

  • Bold HC (1973) Morphology of plants, 3rd edn. Harper and Row, New York Bond G, Scott GD (1955) An examination of some symbiotic systems for fixation of nitrogen. Ann Bot 19: 67–77

    Google Scholar 

  • Bousfield J, Peat A (1976) The ultrastructure of Collema tenax, with particular reference to micro tubule–like inclusions and vesicle production by the phycobiont. New Phytol 76: 121–128

    Google Scholar 

  • Brodo IM, Richardson DHS (1978) Chimeroid associations in the genus Peltigera. Lichenologist 10: 157–170

    Google Scholar 

  • Bubrick P (1978) Studies on the phycobionts of desert cyanolichens. MSc Thesis. Florida

    Google Scholar 

  • Bubrick P, Galun M ( 1980 a) Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Correlation between binding patterns and cell–wall cytochemistry. Protoplasma 104: 167–173

    Google Scholar 

  • Bubrick P, Galun M (1980b) Symbiosis in lichens: differences in cell wall properties of freshly isolated and cultured phycobionts. FEMS Microbiol Lett 7: 311–313

    Google Scholar 

  • Bubrick P, Galun M, Frensdorff A (1981a) Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Localization in the intact lichen and cultured mycobiont. Protoplasma 105: 207–211

    Google Scholar 

  • Bubrick P, Frensdorff A, Galun M (1981 b) Differences in the cell wall properties between freshly isolated and cultured phycobionts from the lichen, Xanthoria parietina. XIII Int Bot Congr, Sydney Bubrick P, Galun M, Ben–Yaacov M, Frensdorff A (1982) Antigenic similarities and differences between symbiotic and cultured phycobionts from the lichen, Xanthoria parietina. FEMS Microbiol Lett 13: 435–348

    Google Scholar 

  • Butler RD, Allsopp A (1972) Ultrastructural investigations in the Stigonemataceae ( Cyanophyta ). Arch Mikrobiol 82: 283–299

    Google Scholar 

  • Chervin RE, Baker GE, Hohl HR (1968) The ultrastructure of phycobiont and mycobiont in two species of Usnea. Can J Bot 46: 241–245

    Google Scholar 

  • Collins CR, Farrar JF (1978) Structural resistance to mass transfer in the lichen Xanthoria parietina. New Phytol 81: 71–83

    Google Scholar 

  • Cowan DA, Green TGA, Wilson AT (1979) Lichen metabolism 1. The use of tritium– labelled water in studies of anhydrobiotic metabolism in Ramalina celastri and Peltigera polydactyla. New Phytol 82: 489–503

    Google Scholar 

  • Crittenden PD, Kershaw KA (1978) Discovering the role of lichens in the nitrogen cycle in boreal–arctic ecosystems. Bryologist 81: 258–267

    CAS  Google Scholar 

  • Culberson CF (1969) Chemical and botanical guide to lichen products. Univ of North Carolina Press, Chapel Hill

    Google Scholar 

  • Culberson CF, Ahmadjian V (1980) Artificial reestablishment of lichens II. Secondary products of resynthesized Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72: 90–109

    Google Scholar 

  • Dazzo FB (1981) Bacterial attachment as related to cellular recognition in the Rhizobiumlegume symbiosis. J Supramol Struct Cell Biochem 16: 29–41

    PubMed  CAS  Google Scholar 

  • Dazzo FB, Hubbell DH (1975) Cross–reactive antigens and lectins as determinants of symbiotic specificity in the Rhizobium–clovQT association. Appl Microbiol 30: 1017–1033

    PubMed  CAS  Google Scholar 

  • Drew EA, Smith DC (1967) Studies on the physiology of lichens. VIII. Movement of glucose from alga to fungus during photosynthesis in the thallus of Peltigera polydactyla. New Phytol 66:389–400 Ejiri H, Shibata S (1975) Squamatic acid from the mycobiont of Cladonia crispata. Phyto– chemistry 14: 2505

    Google Scholar 

  • Englund B (1977) The physiology of the lichen Peltigera aphthosa, with special reference to the blue–green phycobiont (Nostoc sp). Physiol Plant 41: 298–304

    CAS  Google Scholar 

  • Englund B, Meyerson H (1974) In situ measurement of nitrogen fixation at low temperatures. Oikos 25: 283–287

    Google Scholar 

  • Estola E, Vartia KO (1955) Phytoagglutinins in lichens. Ann Med Exp Biol Fenn 33: 392–395

    PubMed  CAS  Google Scholar 

  • Feige GB (1970) Untersuchungen zur Stoffwechselphysiologie der Flechten unter Verwen–dung radioaktiver Isotope. Ber Dtsch Ges NF 4: 35–44

    Google Scholar 

  • Feige GB (1975) Untersuchungen zur Ökologie und Physiologie der marinen Blaualgenflechte Lichinapygmaea. III. Einige Aspekte der photosynthetischen C–Fixierung unter osmoregulatorischen Bedingungen. Z Pflanzenphysiol 77: 1–15

    CAS  Google Scholar 

  • Feige GB (1976 a) Untersuchungen zur Physiologie der Cephalodien der Flechte Peltigera aphthosa (L.) Willd. I. Die photosynthetische 14C–Markierung der Lipidfraktion. Z Pflanzenphysiol 80: 377–385

    Google Scholar 

  • Feige GB (1976 b) Untersuchungen zur Physiologie der Cephalodien der Flechte Peltigera aphthosa (L.) Willd. II. Das photosynthetische 14C–Markierungsmuster und der Koh– lenhydrattransfer zwischen Phycobiont und Mycobiont. Z Pflanzenphysiol 80:386–394

    CAS  Google Scholar 

  • Fisher KA, Lang NJ (1971 a) Comparative ultrastructure of cultured species of Trebouxia. J Phycol 7: 155–165

    Google Scholar 

  • Fisher KA, Lang NJ (1971b) Ultrastructure of the pyrenoid of Trebouxia in Ramalina menziesii Tuck. J Phycol 7: 25–27

    Google Scholar 

  • Forman RTT (1975) Canopy lichens with blue–green algae: a nitrogen source in a Colombian rain forest. Ecology 56: 1176–1184

    Google Scholar 

  • Forman RTT, Dowden DL (1977) Nitrogen–fixing lichen roles from desert to alpine in the Sangre de Cristo Mountains, New Mexcio. Bryologist 80: 561–570

    Google Scholar 

  • Gallon JR (1980) Nitrogen fixation by photoautotrophs. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic Press, London New York, pp 197–238

    Google Scholar 

  • Galun M, Paran N, Ben–Shaul Y (1970 a) The fungus–alga association in the Lecanoraceae: an ultrastructural study. New Phytol 69: 599–603

    Google Scholar 

  • Galun M, Paran N, Ben–Shaul Y (1970 b) Structural modifications of the phycobiont in the lichen thallus. Protoplasma 69: 85–96

    Google Scholar 

  • Galun M, Ben–Shaul Y, Paran N (1971a) Fungus–alga association in lichens of the Teloschistaceae: an ultrastructural study. New Phytol 70: 837–839

    Google Scholar 

  • Galun M, Ben–Shaul Y, Paran N (1971 b) The fungus–alga association in the Lecideaceae: an ultrastructural study. New Phytol 70: 483–485

    Google Scholar 

  • Galun M, Behr L, Ben–Shaul Y (1974) Evidence for protein content in concentric bodies

    Google Scholar 

  • Galun M, Braun A, Frensdorff A, Galun E (1976) Hyphal walls of isolated lichen fungi– autoradiographic localization of precursor incorporation and binding of fluorescein– conjugated lectin. Arch Microbiol 108: 9–16

    PubMed  CAS  Google Scholar 

  • Garrod DR, Nicol A (1981) Cell behavior and molecular mechanisms of cell–cell adhesion. Biol Rev 56: 199–242

    PubMed  CAS  Google Scholar 

  • Geitler L (1934) Beiträge zur Kenntis der Flechtensymbiose IV–V. Arch Protistenkd 82: 51–85

    Google Scholar 

  • Goas G, Bernard T (1967) Contribution à l’étude du metabolisme azoté des lichens: les différentes formes d’azote de quelques espèces de la famille des Stictacées. CR Acad Sei 265: 1187–1190

    CAS  Google Scholar 

  • Green TGA, Horstmann J, Bonnett H, Wilins A, Silvester WB (1980) Nitrogen fixation by members of the Stictaceae (lichenes) of New Zealand. New Phytol 84: 339–348

    CAS  Google Scholar 

  • Griffiths HB, Greenwood AD (1972) The concentric bodies of lichenized fungi. Arch Mikrobiol 87: 285–302

    Google Scholar 

  • Griffiths HB, Greenwood AD, Millbank JW (1972) The frequency of heterocysts in the Nostoc phycobiont of the lichen Peltigera canina Willd. New Phytol 71: 11–13

    Google Scholar 

  • Gunning BES, Pate JS (1969) Transfer cells–plant cells with wall ingrowths specialised in relation to short distance transport of solutes, their occurrence, structure and development. Protoplasma 68: 107 — 133

    Google Scholar 

  • Hawksworth DL (1973) Some advances in the study of lichens since the time of E.M. Holmes. Bot J Linn Soc 67: 3–31

    Google Scholar 

  • Henssen A (1981) Hyphomorpha als Phycobiont in Flechten. Plant Syst Evol 137:139– 143

    Google Scholar 

  • Hildreth KC, Ahmadjian V (1981) A study of Trebouxia and Pseudotrebouxia isolates from different lichens. Lichenologist 13: 65–86

    Google Scholar 

  • Hill DJ (1972) The movement of carbohydrate from the alga to the fungus in the lichen Peltigera polydactyla. New Phytol 71: 31–39

    CAS  Google Scholar 

  • Hill DJ, Ahmadjian V (1972) Relationship between carbohydrate movement and the symbiosis in lichens with green algae. Planta 103: 267–277

    CAS  Google Scholar 

  • Hitch CJB, Milbank JW ( 1975 a) Nitrogen metabolism in lichens VI. The blue–green phycobiont content, heterocyst frequency and nitro genäse activity in Peltigera species. New Phytol 74: 473–476

    Google Scholar 

  • Hitch CJB, Milbank JW ( 1975 b) Nitrogen metabolism in lichens VII. Nitrogenase activity and heterocyst frequency in lichens with blue–green phycobionts. New Phytol 75: 239–244

    Google Scholar 

  • Hitch CJB, Stewart WDP (1973) Nitrogen fixation by lichens in Scotland. New Phytol 72: 509–524

    CAS  Google Scholar 

  • Honegger R, Brunner U (1981) Sporopollenin in the cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigation. Can J Bot 59: 2713–2734

    CAS  Google Scholar 

  • Howe ML, Barrett JT (1970) Studies on a hemagglutinin from the lichen Parmelia michauxiana. Biochim Biophys Acta 215: 97–104

    PubMed  CAS  Google Scholar 

  • Huneck S (1973) Nature of lichen substances. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London New York, pp 495–522

    Google Scholar 

  • Huss–Danell K (1977) Nitrogen fixation by Stereocaulon paschale under field conditions. Can J Bot 55: 585–592

    Google Scholar 

  • Jacobs JB, Ahmadjian V (1973) The ultrastructure of lichens. V. Hydrothyra venosa a fresh water lichen. New Phytol 72: 155–160

    Google Scholar 

  • Jäger H-J, Weigel H-J (1978) Amino acid metabolism in lichens. Bryologist 81: 107–113

    Google Scholar 

  • Jahns HM (1972) Die Entwicklung von Flechten–Cephalodien aus Stigonema–Algen. Ber Dtsch Bot Ges 85: 615–622

    Google Scholar 

  • Jahns HM, Mollenhauer D, Jenninger M, Schönborg D (1979) Die Neubesiedlung von Baumrinde durch Flechten I. Nat Mus 109: 40–51

    Google Scholar 

  • James PW, Henssen A (1976) The morphological and taxonomic significance of cephalo– dia. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London New York, pp 27–77

    Google Scholar 

  • Jolley E, Smith DC (1978) The green Hydra symbiosis I. Isolation, culture and characteristics of the Chlorella symbiont of “European” Hydra viridis. New Phytol 81: 637–645

    Google Scholar 

  • Jordan WP (1970) The internal cephalodia of the genus Lobaria. Bryologist 73: 669–681

    Google Scholar 

  • Jordan WP, Rickson FR (1971) Cyanophyte cephalodia in the liehen genus Nephroma. Am J Bot 58: 562–568

    Google Scholar 

  • Kallio P, Suhonen S, Kallio H (1972) The ecology of nitrogen fixation in Nephroma arcticum and Solorina crocea. Rep Kevo Subarct Res Stn 9: 7–14

    Google Scholar 

  • Kershaw KA (1974) Dependence of the level of nitrogenase activity on the water content of the thallus in Peltigera canina, P. evansiana, P. polydactyla, and P. praetextata. Can J Bot 52: 1423–1427

    CAS  Google Scholar 

  • Kershaw KA, Millbank JW (1970) Nitrogen metabolism in lichens. II. The partition of cephalodial–flxed nitrogen between the mycobiont and phycobionts of Peltigera aphthosa. New Phytol 69: 75–79

    Google Scholar 

  • König J, Peveling E (1980) Vorkommen von Sporopollenin in der Zellwand des Phycobionten Trebouxia. Z Pflanzenphysiol 98: 459–464

    Google Scholar 

  • Lange OL (1969) Die funktionellen Anpassungen der Flechten an die ökologischen Bedingungen arider Gebiete. Ber Dtsch Bot Ges 82: 3–22

    Google Scholar 

  • Lazaroff N (1973) Photomorphogenesis and nostocacean development. In: Carr NG, Whitton BA (eds) The biology of blue–green algae. Univ California Press, Berkeley Los Angeles, pp 279–319

    Google Scholar 

  • Lea PJ, Miflin BJ (1979) Photosynthetic ammonia fixation. In: Gibbs M, Latzko E (eds). Encyclopedia of plant physiology, vol. 6. Springer, Berlin Heidelberg New York, pp 445 — 456

    Google Scholar 

  • Lockhart CM, Rowell P, Stewart WDP (1978) Phytohaemagglutinins from the nitrogenfixing lichens Peltigera canina and P. polydactyla. FEMS Microbiol Lett 3: 127–130

    CAS  Google Scholar 

  • Marton K (1977) The cyanophilous lichen population of the Arava Valley and the Judean Desert, their means of propagation and culturing under controlled conditions. Ph D Thesis, Tel–Aviv Univ, Tel Aviv Marton K, Galun M (1976) In vitro dissociation and reassociation of the symbionts in the lichen Heppia echinulata. Protoplasma 87: 135–143

    Google Scholar 

  • McNeil PL (1981) Mechanisms of nutritive endocytosis. I. Phagocytic versatility and cellular recognition in Chlorohydra digestive cells, a scanning electron microscope study. J Cell Sei 49: 311–339

    CAS  Google Scholar 

  • Miflin BJ, Lea PJ (1982) Ammonia assimilation and amino acid metabolism. In: Boulter D, Parthier B (eds) Encyclopedia of plant physiology, vol. 14A. Springer, Berlin Heidelberg New York, pp 5–64

    Google Scholar 

  • Millbank JW (1972) Nitrogen metabolism in lichens. IV. The nitrogenase activity of the Nostoc phycobiont in Peltigera canina. New Phytol 71: 1–10

    CAS  Google Scholar 

  • Millbank JW (1974a) Associations with blue–green algae. In: Quispel A (ed) The biology of nitrogen fixation. Elsevier North Holland, Amsterdam New York, pp 238–264

    Google Scholar 

  • Millbank JW (1974 b) Nitrogen metabolism in lichens V. The forms of nitrogen released by the blue–green phycobiont in Peltigera spp. New Phytol 73: 1171–1181

    Google Scholar 

  • Millbank JW (1978) The contribution of nitrogen–fixing lichens to the nitrogen status of the environment. Ecol Bull 26: 260–265

    Google Scholar 

  • Millbank JW (1981) The assessment of nitrogen fixation and throughout by lichens. I. The use of a controlled environment chamber to relate acetylene reduction estimates to nitrogen fixation. New Phytol 89: 647–655

    CAS  Google Scholar 

  • Millbank JW, Kershaw KA (1969) Nitrogen metabolism in lichens. I. Nitrogen fixation in the cephalodia of Peltigera aphthosa. New Phytol 68: 721–729

    Google Scholar 

  • Millbank JW, Kershaw KA (1970) Nitrogen metabolism in lichens. III. Nitrogen fixation by internal cephalodia in Lobaria pulmonaria. New Phytol 69: 595–597

    Google Scholar 

  • Millbank JW, Olsen JD (1981) The assessment of nitrogen fixation and throughput by lichens II. Construction of an enclosed growth chamber for the use of 15N2. New Phytol 89: 657–665

    Google Scholar 

  • Mosbach K (1973) Biosynthesis of lichen substances. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London New York, pp 523–546

    Google Scholar 

  • Paau AS, Leps WT, Brill WJ (1981) Agglutinin from alfalfa necessary for binding and nodulation by Rhizobium meliloti. Science 213: 1513–1515

    PubMed  CAS  Google Scholar 

  • Paran N, Ben–Shaul Y, Galun M (1971) Fine structure of the blue–green phycobiont and its relation to the mycobiont in two Gonohymenia lichens. Arch Microbiol 76: 103–113

    CAS  Google Scholar 

  • Peat A (1968) Fine structure of the vegetative thallus of the lichen, Peltigera polydactyla. Arch Mikrobiol 61: 212–222

    Google Scholar 

  • Petit P (1982) Phytolectins from the nitrogen–fixing lichen Peltigera horizontalis: the binding pattern of the primary protein extract. New Phytol 91: 705–710

    CAS  Google Scholar 

  • Peveling E (1969a) Electronenoptische Untersuchungen an Flechten. III. Cytologische Differenzierungen der Pilzzellen im Zusammenhang mit ihrer symbiotischen Lebensweise. Z Pflanzenphysiol 61: 151–164

    Google Scholar 

  • Peveling E (1969b) Elektronenoptische Untersuchungen an Flechten. IV. Die Feinstruktur einiger Flechten mit Cyanophyceen–Phycobionten. Protoplasma 68: 209–222

    Google Scholar 

  • Peveling E (1973a) Fine structure. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London New York, pp 147–182

    Google Scholar 

  • Peveling E (1974) Biogenesis of cell organelles during the differentiation of the lichen thallus. Port Acta Biol Sér A 14: 357–368

    Google Scholar 

  • Peveling E (1976) Investigations into the ultrastructure of lichens. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London New York, pp 17–26

    Google Scholar 

  • Peveling E, Hill DJ (1974) The localization of an insoluble intermediate in glucose production in the lichen Peltigera polydactyla. New Phytol 73: 767–769

    Google Scholar 

  • Pike LH (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81: 247–257

    CAS  Google Scholar 

  • Plessl A (1963) Über die Beziehungen von Haustorientypus und Organisationshöhe bei Flechten. Oesterr Bot Z 110: 194–269

    Google Scholar 

  • Pool RR Jr., Muscatine L (1980) Phagocytic recognition and the establishment of the Hydra viridis–Chlorella symbiosis. In: Schwemmler W, Schenk HEA (eds) Endocytobiology, endosymbiosis and cell biology, Vol 1. de Gruyter, Berlin, pp 223–238

    Google Scholar 

  • Provasoli L, Yamasu T, Mantón I (1968) Experiments on the resynthesis of symbiosis in Convoluta roscoffensis with different flagellate cultures. J Mar Biol Assoc UK 48: 465–479

    Google Scholar 

  • Rai AN, Rowell P, Stewart WDP (1980) NH assimilation and nitrogenase regulation in the lichen Peltigera aphthosa Willd. New Phytol 85: 545–555

    CAS  Google Scholar 

  • Rai AN, Rowell P, Stewart WDP (1981a) Glutamate synthase activity in symbiotic cyanobacteria. J Gen Microbiol 126: 515–518

    CAS  Google Scholar 

  • Rai AN, Rowell P, Stewart WDP (1981b) 15N2 incorporation and metabolism in the lichen Peltigera aphthosa Willd. Planta 152: 544–552

    Google Scholar 

  • Rai AN, Rowell P, Stewart WDP (1981c) Nitrogenase activity and dark C02 fixation in the lichen Peltigera aphthosa Wild. Planta 151: 256–264

    CAS  Google Scholar 

  • Ramakrishnan S, Subramanian SS (1964 a) Amino acids of Rocella montagnei and Parmelia tinctorium. Indian J Chem 2: 467

    Google Scholar 

  • Ramakrishnan S, Subramanian SS (1964 b) Amino acids of Peltigera canina. Curr Sei 33: 522–523

    Google Scholar 

  • Stewart WDP, Rowell P, Rai AN (1980) Symbiotic nitrogen–fixing cyanobacteria. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic Press, London New York, pp 239–277

    Google Scholar 

  • Tapper R (1981) Direct measurement of translocation of carbohydrate in the lichen Cladonia convoluta, by quantitative autoradiography. New Phytol 89: 429–437

    CAS  Google Scholar 

  • Trench RK (1979) The cell biology of plant–animal symbiosis. Annu Rev Plant Physiol 30: 485–531

    CAS  Google Scholar 

  • Tschermak–Woess E (1970) Über wenig bekannte und neue Flechtengonidien. V. Der Phycobiont von Verrucaria aquatilis und die Fortpflanzung von Pseudopleurococcus arthropyreniae. Oesterr Bot Z 118: 433–455

    Google Scholar 

  • Tschermak–Woess E (1976) Algal taxonomy and the taxonomy of lichens: the phycobiont of Verrucaria adriatica. In: Brown DH, Hawksworth DL, Bailey RN (eds) Lichenology, progress and problems. Academic Press, London New York, pp 89–105 Tschermak–Woess E (1978 a) Myrmecia reticulata as a phycobiont and freeliving–free–living Trebouxia–the problem of Stenocybe septata. Lichenologist 10: 69–79

    Google Scholar 

  • Tschermak-Woess E (1978 b) Über den Chlorella–Phycobionten von Trapelia coarctata. Plant Syst Evol 130:253–263

    Google Scholar 

  • Tschermak-Woess E (1978 c) Über die Phycobionten der Sektion Cystophora von Chaeno– theca, insbesondere Dictyochloropsis splendida und Trebouxia simplex, spec. nova. Plant Syst Evol 129:185–208

    Google Scholar 

  • Tschermak–Woess E (1980a) Asterochloris phycobiontica gen. et spec., nov., der Phycobiont der Flechte Varicellaria carneonivea. Plant Syst Evol 135: 279–294

    Google Scholar 

  • Tschermak-Woess E (1980 b) Chaenothecopsis consociata–kein parasitischer oder para– symbiontischer Pilz, sondern lichenisiert mit Dictyochloropsis symbiontica, sp. nov. Plant Syst Evol 136:287–306

    Google Scholar 

  • Tschermak–Woess E (1980c) Elliptochloris bilobata gen. et sp. nov., der Phycobiont von Catolechia wahlenbergii. Plant Syst Evol 136: 63–72

    Google Scholar 

  • Tschermak–Woess E (1981) Zur Kenntnis der Phycobionten von Lobaria linita und Normandina pulchella. Nova Hedwigia 35: 63–73

    Google Scholar 

  • Tschermak–Woess E, Poelt J (1976) Vezdaea, a peculiar liehen genus, and its phycobiont. In: Brown DH, Hawskworth DL, Bailey RH (eds) Lichenology, progress and problems. Academic Press, London New York, pp 89–105

    Google Scholar 

  • Wang–Yang J–R, Ahmadjian V (1972) A morphological study of the algal symbionts of Cladonia rangiferina (L) Web and Parmelia caper ata ( L) Ach. Taiwania 17: 170–181

    Google Scholar 

  • Webber MM, Webber PJ (1970) Ultrastructure of lichen haustoria: symbiosis in Parmelia sulcata. Can J Bot 48: 1521–1524

    Google Scholar 

  • Wetmore CM (1970) The lichen family Heppiaceae in North America. Ann Mo Bot Gard 57: 158–209

    Google Scholar 

  • Ramakrishnan S, Subramanian SS (1965) Amino acids of Cladonia rangiferina, CI. gracilis, and Lobaria isidiosa. Curr Sei 34: 345–347

    Google Scholar 

  • Ramakrishnan S, Subramanian SS ( 1966 a) Amino acids of Lobaria subisidiosa, Umbilicaria pustulata, Parmelia nepalensis, and Ramalina sinensis. Curr Sei 35: 124

    Google Scholar 

  • Ramakrishnan S, Subramanian SS (1966b) Amino acids of Dermatocarpon moulinsii. Curr Sei 35: 284

    CAS  Google Scholar 

  • Renner B, Gerstner E (1982) Stoffwechselunterschiede zwischen dem lichenisierten und dem isolierten Mycosymbionten von Baeomyces rufus ( Huds.) Rebent. Z Pflanzenphy– siol 107: 47–57

    Google Scholar 

  • Richardson DHS (1973) Photosynthesis and carbohydrate movement. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London New York, pp 249–288

    Google Scholar 

  • Richardson DHS (1975) The vanishing lichens. David & Charles Douglas, Vancouver Richardson DHS, Smith DC (1968) Liehen physiology IX. Carbohydrate movement from the Trebouxia symbiont of Xanthoria aureola to the fungus. New Phytol 67: 61–68

    Google Scholar 

  • Robenek H, Marx M, Peveling E (1982) Gold–labelled concanavalin A–binding sites at the cell surface of two phycobionts visualized by deep–etching. Z Pflanzenphysiol 106: 63–68

    CAS  Google Scholar 

  • Rogers RW, Lange RT, Nicholas DJD (1966) Nitrogen fixation by lichens of arid soil crusts. Nature 209: 96–97

    Google Scholar 

  • Sampaio MJAM, Rai AN, Rowell P, Stewart WDP (1979) Occurrence, synthesis and activity of glutamine synthetase in N2–fixing lichens. FEMS Microbiol Lett 6: 107–110

    CAS  Google Scholar 

  • Samuelson DA, Bezerra J (1977) Concentric bodies in two species of the Loculoascomycetes. Can J Microb 23: 1485–1488

    CAS  Google Scholar 

  • Schwendener S (1869) Die Algentypen der Flechtengonidien. Universitätsbuchdruckerei C Schultze, Basel

    Google Scholar 

  • Scott GD (1956) Further investigations of some lichens for fixation of nitrogen. New Phytol 55: 111–116

    CAS  Google Scholar 

  • Slocum RD, Ahmadjian V, Hildreth KC (1980) Zoosporogenesis in Trebouxia gelatin– osa: ultrastructural potential for zoospore release and implications for the lichen association. Lichenologist 12: 173–187

    Google Scholar 

  • Smith DC (1974) Transport from symbiotic algae and symbiotic chloroplasts to host cells. Symp Soc Exp Biol 28: 485–520

    PubMed  CAS  Google Scholar 

  • Smith DC (1975) Symbiosis and the biology of lichenised fungi. Symp Soc Exp Biol 29: 373–405

    PubMed  CAS  Google Scholar 

  • Smith DC (1979) Is a lichen a good model for biological interactions in nutritional–limited environments? In: Shilo M (ed) Strategies of microbial life in extreme environments. Dahlem Konferenzen, Berlin, pp 291–303

    Google Scholar 

  • Smith DC (1980) Mechanisms of nutrient movement between lichen symbionts. In: Cook CB, Pappas PW, Rudolph ED (eds) Cellular interactions in symbiosis and parasitism. Ohio State Univ Press, Columbus, pp 197–227

    Google Scholar 

  • Smith DC (1981) The role of nutrient exchange in recognition between symbionts. Ber Dtsch Bot Ges 94: 517–528

    Google Scholar 

  • Smith DC, Hill DJ (1972) Lichen physiology. XII. The “inhibition technique”. New Phytol 71: 15–30

    Google Scholar 

  • Smith DC, Molesworth S (1973) Lichen physiology. XIII. Effects of rewetting dry lichens.

    Google Scholar 

  • New Phytol 72:525–533

    Google Scholar 

  • Spector DL, Jensen TE (1977) Fine structure of Leptoguium cyanescens and its cultured phycobiont Nostoc commune. Bryologist 80: 445–460

    Google Scholar 

  • Stewart WDP (1970) Algal fixation of atmospheric nitrogen. Plant Soil 32: 555–588

    CAS  Google Scholar 

  • Stewart WDP (1974) Blue–green algae. In: Quispel A (ed) The biology of nitrogen fixation. Elsevier, North Holland, Amsterdam New York, pp 202–237

    Google Scholar 

  • Stewart WDP (1980) Some aspects of structure and function in N2–fixing cyanobacteria. Annu Rev Microbiol 34: 497–536

    PubMed  CAS  Google Scholar 

  • Stewart WDP, Rodgers GA (1978) Studies on the symbiotic blue–green algae of Anthoceros, Blasia and Peltiger a. Ecol Bull 26: 247–259

    Google Scholar 

  • Stewart WDP, Rowell P (1977) Modifications of nitrogen–fixing algae in lichen symbioses. Nature 265: 371–372

    CAS  Google Scholar 

  • Stewart WDP, Rowell P, Rai AN (1980) Symbiotic nitrogen–fixing cyanobacteria. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic Press, London New York, pp 239–277

    Google Scholar 

  • Tapper R (1981) Direct measurement of translocation of carbohydrate in the lichen Cladonia convoluta, by quantitative autoradiography. New Phytol 89: 429–437

    CAS  Google Scholar 

  • Tschermak–Woess E (1970) Über wenig bekannte und neue Flechtengonidien. V. Der Phycobiont von Verrucaria aquatilis und die Fortpflanzung von Pseudopleurococcus arthropyreniae. Oesterr Bot Z 118: 433–455

    Google Scholar 

  • Tschermak–Woess E (1976) Algal taxonomy and the taxonomy of lichens: the phycobiont of Verrucaria adriatica. In: Brown DH, Hawksworth DL, Bailey RN (eds) Licheno– logy, progress and problems. Academic Press, London New York, pp 89–105

    Google Scholar 

  • Tschermak-Woess E (1978 a) Myrmecia reticulata as a phycobiont and freeliving–free–living Trebouxia–the problem of Stenocybe septata. Lichenologist 10:69–79

    Google Scholar 

  • Tschermak-Woess E (1978 b) Über den Chlorella–Phycobionten von Trapelia coarctata. Plant Syst Evol 130:253–263

    Google Scholar 

  • Tschermak-Woess E (1978 c) Über die Phycobionten der Sektion Cystophora von Chaenotheca, insbesondere Dictyochloropsis splendida und Trebouxia simplex, spec. nova. Plant Syst Evol 129:185–208

    Google Scholar 

  • Tschermak–Woess E (1980a) Asterochloris phycobiontica gen. et spec., nov., der Phycobiont der Flechte Varicellaria carneonivea. Plant Syst Evol 135: 279–294

    Google Scholar 

  • Tschermak-Woess E (1980 b) Chaenothecopsis consociata–kein parasitischer oder para– symbiontischer Pilz, sondern lichenisiert mit Dictyochloropsis symbiontica, sp. nov. Plant Syst Evol 136:287–306

    Google Scholar 

  • Tschermak–Woess E (1980c) Elliptochloris bilobata gen. et sp. nov., der Phycobiont von Catolechia wahlenbergii. Plant Syst Evol 136: 63–72

    Google Scholar 

  • Tschermak–Woess E (1981) Zur Kenntnis der Phycobionten von Lobaria linita und Normandina pulchella. Nova Hedwigia 35: 63–73

    Google Scholar 

  • Tschermak–Woess E, Poelt J (1976) Vezdaea, a peculiar liehen genus, and its phycobiont. In: Brown DH, Hawskworth DL, Bailey RH (eds) Lichenology, progress and problems. Academic Press, London New York, pp 89–105

    Google Scholar 

  • Wang–Yang J–R, Ahmadjian V (1972) A morphological study of the algal symbionts of Cladonia rangiferina (L) Web and Parmelia caper ata ( L) Ach. Taiwania 17: 170–181

    Google Scholar 

  • Webber MM, Webber PJ (1970) Ultrastructure of lichen haustoria: symbiosis in Parmelia sulcata. Can J Bot 48: 1521–1524

    Google Scholar 

  • Wetmore CM (1970) The lichen family Heppiaceae in North America. Ann Mo Bot Gard 57: 158–209

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this chapter

Cite this chapter

Galun, M., Bubrick, P. (1984). Physiological Interactions Between the Partners of the Lichen Symbiosis. In: Linskens, H.F., Heslop-Harrison, J. (eds) Cellular Interactions. Encyclopedia of Plant Physiology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69299-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69299-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69301-4

  • Online ISBN: 978-3-642-69299-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics