Skip to main content

The Seed: Germination

  • Chapter

Abstract

Knowledge of the mature seed and its germination is of importance in the study of seed formation. Indeed, embryogeny and germination are extensions of each other separated by a period of relative metabolic inactivity called quiescence, and are essentially different phases of the continuing process of embryo growth and development. Obviously, the nature of the pre-quiescence embryo bears very heavily on early germination behaviour and its control, and answers to questions relating to germination behaviour are increasingly being sought during the period of seed development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Baki AA, Anderson JD (1972) Physiological and biochemical deterioration of seeds. In: Kozlowski TT (ed) Seed biology, vol II. Germination control, metabolism, and pathology. Academic Press, New York, pp 283–315

    Google Scholar 

  • Abdul-Baki AA, Baker JE (1973) Are changes in cellular organelles or membranes related to vigor loss in seeds? Seed Sci Tech 1:89–125

    CAS  Google Scholar 

  • Amen RD (1968) A model of seed dormancy. Bot Rev 34:1–31

    Article  CAS  Google Scholar 

  • Andrews P, Haugh L, Jones JKN (1953) Mannose-containing polysaccharides. III. The polysaccharides in the seeds of Iris ochroleuca and I. sibirica. J Chem Soc 1186–1192

    Google Scholar 

  • Ashford AE, Jacobsen JV (1974a) Cytochemical localisation of acid phosphatase in isolated aleurone layers treated with gibberellic acid and in germinating barley grains. In: Bieleski RL, Ferguson AR, Creswell MM (eds) Mechanisms of regulation of plant growth. Royal Society New Zealand Bull 12 (Wellington), pp 591–599

    Google Scholar 

  • Ashford AE, Jacobsen JV (1974b) Cytochemical localisation of phosphatase in barley aleurone cells: The pathway of gibberellic acid-induced enzyme release. Planta (Berl) 120:81–105

    Article  CAS  Google Scholar 

  • Ashton FM (1976) Mobilization of storage proteins of seeds. Annu Rev Plant Physiol 27:95–117

    Article  CAS  Google Scholar 

  • Bacic A, Stone BA (1979) Chemical composition of aleurone cell walls from wheat and barley. Proc 29th Annu Conf Royal Australian Chem Inst, Cereal Chem Div, Adelaide, pp 36–38

    Google Scholar 

  • Bagley BW, Cherry JH, Rollins ML, Altschul AM (1963) A study of protein bodies during germination of peanut (Arachis hypogaea) seed. Am J Bot 50:523–532

    Article  Google Scholar 

  • Bailey KM, Phillips IDJ, Pitt D (1976) Effects of gibberellic acid on the activation, synthesis, and release of acid phosphatase in barley seed. J Exp Bot 27:324–336

    Article  CAS  Google Scholar 

  • Bailey RW (1971) Polysaccharides in the Leguminosae. In: Harborne JB, Boulter D, Turner BL (eds) Chemotaxonomy of the Leguminosae. Academic Press, New York London, pp 503–541

    Google Scholar 

  • Bain JM, Mercer FV (1966) Subcellular organization of the cotyledons in germinating seeds and seedlings of Pisum sativum L. Aust J Biol Sci 19:69–84

    Google Scholar 

  • Ballance GM, Manners DJ (1978) Structural analysis and enzymic solubilization of barley endosperm cell walls. Carbohydr Res 61:107–118

    Article  CAS  Google Scholar 

  • Ballance GM, Meredith WOS, Laberge DE (1976) Distribution and development of endo-β-glucanase activities in barley tissues during germination. Can J Plant Sci 56:459–466

    Article  CAS  Google Scholar 

  • Barlow KK, Buttrose MS, Simmonds DH, Vesk M (1973a) The nature of the starch protein interface in wheat endosperm. Cereal Chem 50:443–454

    CAS  Google Scholar 

  • Barlow KK, Simmonds DH, Kendrick KG (1973b) The localization of water soluble proteins in the wheat endosperm as revealed by fluorescent antibody techniques. Lxperientia 29:229–231

    Article  CAS  Google Scholar 

  • Barton LV (1961) Seed preservation and longevity. Interscience, New York

    Google Scholar 

  • Barton LV (1965a) Dormancy in seeds imposed by the seed-coat. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol XV/2. Springer, Berlin, pp 727–745

    Google Scholar 

  • Barton LV (1965b) Longevity in seeds and in the propagules of fungi. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol XV/2. Springer, Berlin, pp 1058–1085

    Google Scholar 

  • Barton LV (1965c) Seed dormancy: General survey of dormancy types in seeds and dormancy imposed by external agents. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol XV/2. Springer, Berlin, pp 699–720

    Google Scholar 

  • Baumgartner B, Chrispeels MJ (1977) Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem 77:223–233

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner B, Tokuyasu KT, Chrispeels MJ (1978) Localization of vicilin peptidohydrolase in the cotyledons of mung-bean seedlings by immunofluorescence microscopy. J Cell Biol 79:10–19

    Article  PubMed  CAS  Google Scholar 

  • Beevers H (1975) Organelles from castor bean seedlings: Biochemical roles in gluconeogenesis and phospholipid biosynthesis. In: Galliard T, Mercer EI (eds) Recent advances in the chemistry and biochemistry of plant lipids. Proc Phytochem Soc 12:287–299

    Google Scholar 

  • Beevers H (1979) Microbodies in higher plants. Annu Rev Plant Physiol 30:159–193

    Article  CAS  Google Scholar 

  • Beevers L, Guernsey FS (1966) Changes in some nitrogenous components during the germination of pea seeds. Plant Physiol 41:1455–1458

    Article  PubMed  CAS  Google Scholar 

  • Bergfeld R, Hong Y-N, Kühnl T, Schopfer P (1978) Formation of oleosomes (storage lipid bodies) during embryogenesis and their breakdown during seedling development in cotyledons of Sinapis alba. Planta(Berl) 143:297–307

    Article  CAS  Google Scholar 

  • Berjak P, Villiers TA (1970) Ageing in plant embryos 1. The establishment of the sequence of development and senescence in the root cap during germination. New Phytol 69:929–938

    Article  CAS  Google Scholar 

  • Berjak P, Villiers TA (1972) Ageing in plant embryos 11. Age-induced damage and its repair during early germination. New Phytol 71:135–144

    Article  Google Scholar 

  • Berlyn GP (1972) Seed germination and morphogenesis. In: Kozlowski TT (ed) Seed biology, vol 1. Academic Press, New York, pp 223–312

    Google Scholar 

  • Bewley JD, Black M (1978) Physiology and biochemistry of seeds, vol 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bewley JD, Black M (1982) Physiology and biochemistry of seeds, vol 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Boatman SG, Crombie WM (1958) Fat metabolism in the West African oil palm. J Exp Bot 9:52–74

    Article  CAS  Google Scholar 

  • Bornman CH, Butler V, Jensen WA (1979a) Welwitschia mirabilis: Fine structure of the germinating seed I. Orientation. Z Pflanzenphysiol 91:189–196

    Google Scholar 

  • Bornman CH, Butler V, Jensen WA (1979b) Welwitschia mirabilis: Fine structure of the germinating seed V. The quiescent and imbibed gametophyte interface. Z Pflanzenphysiol 92:115–132

    Google Scholar 

  • Bornman CH, Butler V, Jensen WA (1979c) Welwitschia mirabilis: Fine structure of the germinating seed VI. The quiescent embryo. Z Pflanzenphysiol 92:355–365

    Google Scholar 

  • Bornman CH, Butler V, Jensen WA (1979d) Welwitschia mirabilis: Fine structure of the germinating seed VIII. Interface of the developing feeder. Z Pflanzenphysiol 92:417–430

    Google Scholar 

  • Borthwick HA, Robbins WW (1928) Lettuce seed and germination. Hilgardia 3:275–305

    Google Scholar 

  • Briarty LG, Coult DA, Boulter D (1970) Protein bodies of germinating seeds of Vicia faba. J Exp Bot 21:513–524

    Article  CAS  Google Scholar 

  • Briggs DE (1973) Hormones and carbohydrate metabolism in germinating cereal grains. In: Milborrow BV (ed) Biosynthesis and its control in plants. Academic Press, London New York, pp 219–277

    Google Scholar 

  • Briggs DE (1978) Barley. Chapman and Hall, London

    Book  Google Scholar 

  • Bullowa S, Negbi M, Ozeri Y (1975) Role of temperature, light, and growth regulators in germination in Anemone coronaria L. Aust J Plant Physiol 2:91–100

    Article  CAS  Google Scholar 

  • Butler V, Bornman CH, Jensen WA (1979a) Welwitschia mirabilis: Fine structure of the germinating seed II. Cytochemistry of gametophyte and feeder. Z Pflanzenphysiol 91:197–210

    CAS  Google Scholar 

  • Butler V, Bornman CH, Jensen WA (1979b) Welwitschia mirabilis: Fine structure of the germinating seed III. The quiescent gametophyte. Z Pflanzenphysiol 91:399–413

    Google Scholar 

  • Butler V, Bornman CH, Jensen WA (1979c) Welwitschia mirabilis: Fine structure of the germinating seed IV. The imbibed gametophyte. Z Pflanzenphysiol 92:95–113

    Google Scholar 

  • Butler V, Bornman CH, Jensen WA (1979d) Welwitschia mirabilis: Fine structure of the germinating seed VII. The imbibed embryo. Z Pflanzenphysiol 92:407–415

    Google Scholar 

  • Butler V, Bornman CH, Jensen WA (1979e) Welwitchia mirabilis: Fine structure of the germinating seed IX. Inner cells of the developing feeder. Z Pflanzenphysiol 93:45–61

    CAS  Google Scholar 

  • Buttrose MS (1971) Ultrastructure of barley aleurone cells as shown by freeze-etching. Planta (Berl) 96:13–26

    Article  Google Scholar 

  • Cheah KSE, Osborne DJ (1978) DNA lesions occur with loss of viability in embryos of ageing rye seed. Nature 272:593–599

    Article  PubMed  CAS  Google Scholar 

  • Chen SSC, Chang JLL (1972) Does gibberellic acid stimulate seed germination via amylase synthesis? Plant Physiol 49:441–442

    Article  PubMed  CAS  Google Scholar 

  • Chen SSC, Varner JE (1970) Respiration and protein synthesis in dormant and after-ripened seeds of Avenafatua. Plant Physiol 46:108–112

    Article  PubMed  CAS  Google Scholar 

  • Cherry JH (1963) Nucleic acid, mitochondria, and enzyme changes in cotyledons of peanut seeds during germination. Plant Physiol 38:440–446

    Article  PubMed  CAS  Google Scholar 

  • Ching TM (1972) Metabolism of germinating seeds. In: Kozlowski TT (ed) Seed biology, vol II. Germination control, metabolism, and pathology. Academic Press, New York, pp 103–218

    Google Scholar 

  • Chrispeels M J, Boulter D (1975) Control of storage protein metabolism in the cotyledons of germinating mung beans: Role of endopeptidase. Plant Physiol 55:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Baumgartner B, Harris N (1976) Regulation of reserve protein metabolism in the cotyledons of mung bean seedlings. Proc Natl Acad Sci USA 73:3168–3172

    Article  PubMed  CAS  Google Scholar 

  • Clermont-Beaugiraud S, Percheron F (1968) Etude du mode d’action de la b-mannanase de semences germées du fenugrec. Bull Soc Chim Biol 50:633–640

    PubMed  CAS  Google Scholar 

  • Colborne AJ, Morris G, Laidman DL (1976) The formation of endoplasmic reticulum in the aleurone cells of germinating wheat: An ultrastructural study. J Exp Bot 27:759–767

    Article  Google Scholar 

  • Corner EJH (1951) The leguminous seed. Phytomorphology 1:117–150

    Google Scholar 

  • Corner EJH (1976) The seeds of dicotyledons, vol 1. Cambridge Univ Press, Cambridge London New York Melbourne

    Google Scholar 

  • Courtois JE, Percheron F (1961) L’a-galactosidase de semences germées de fenugrec. Bull Soc Chim Biol 43:167–175

    PubMed  CAS  Google Scholar 

  • Crocker W (1916) Mechanisms of dormancy in seeds. Am J Bot 3:99–120

    Article  Google Scholar 

  • Crocker W, Barton LV (1957) Physiology of seeds. Chron Bot

    Google Scholar 

  • D’Amato F, Hoffman-Ostenhoff O (1956) Metabolism and spontaneous mutations in plants. Adv Genet 8:1–28

    Article  Google Scholar 

  • De Barsy Th, Deltour R, Bronchart R (1974) Study of nucleolar vacuolation and RNA synthesis in embryonic root cells of Zea mays. J Cell Sci 16:95–112

    PubMed  Google Scholar 

  • Dashek WV, Chrispeels M J (1977) Gibberellic acid-induced synthesis and release of cell-wall-degrading endoxylanases by isolated aleurone layers of barley. Planta (Berl) 134:251–256

    Article  CAS  Google Scholar 

  • Deltour R, Bronchart R (1971) Changements de l’ultrastructure de cellules radiculaires de Zea mays au début de la germination. Planta (Berl) 97:197–207

    Article  Google Scholar 

  • Deltour R, Jacqmard A (1974) Relation between water stress and DNA synthesis during germination ofZea mays L. Ann Bot 38:529–534

    CAS  Google Scholar 

  • Deltour R, Gautier A, Fakan J (1979) Ultrastructural cytochemistry of the nucleus in Zea mays embryos during germination. J Cell Sci 40:43–62

    PubMed  CAS  Google Scholar 

  • Dickson JG, Shands HL (1941) Cellular modification of the barley kernel during malting. Proc Am Soc Brew Chem 1–10

    Google Scholar 

  • Earle FR, Jones Q (1962) Analyses of seed samples from 113 plant families. Econ Bot 16:221–250

    Article  CAS  Google Scholar 

  • Esau K (1965a) Plant anatomy. Wiley, London

    Google Scholar 

  • Esau K (1965b) Vascular differentiation in plants. Rinehard and Winston, New York

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2 nd edn. Wiley, New York

    Google Scholar 

  • Evenari M (1965) Light and seed dormancy. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol XV/2. Springer, Berlin, pp 804–847

    Google Scholar 

  • Evenari M, Neumann G (1952) The germination of lettuce seed 11. The influence of fruit coat, seed coat, and endosperm upon germination. Bull Res Counc Isr Sect D Bot 11:75–78

    Google Scholar 

  • Fahn A (1974) Plant anatomy. Pergamon, Oxford New York Toronto Sydney Braunschweig

    Google Scholar 

  • Fincher GB (1975) Morphology and chemical composition of barley endosperm cell walls. J Inst Brew 81:116–122

    CAS  Google Scholar 

  • Foard DE, Haber AH (1966) Mitosis in thermodormant lettuce seeds with reference to histological location, localized expansion, and seed storage. Planta (Berl) 71:160–170

    Article  Google Scholar 

  • Foster AS, Gifford EM (1974) Comparative morphology of vascular plants. Freeman, San Francisco

    Google Scholar 

  • Fulcher RG, Setterfield G, Mully ME, Wood PJ (1977) Observations on the aleurone layer. 11. Fluorescence microscopy of the aleurone-sub-aleurone junction with emphasis on possible β-l,3-glucan deposits in barley. Aust J Plant Physiol 4:917–928

    Article  CAS  Google Scholar 

  • Gibbons GC (1980) Immunohistochemical determination of the transport pathways of a-amylase in germinating barley seeds. Cereal Res Commun 8:87–96

    CAS  Google Scholar 

  • Giersbach J (1937) Germination and seedling production of species of Viburnum. Contrib Boyce Thompson Inst 9:79–90

    Google Scholar 

  • Globerson D, Kadman-Zahavi A, Ginzburg C (1974) A genetic method for studying the role of the seed coats in the germination of lettuce. Ann Bot 38:201–203

    Google Scholar 

  • Guillermond A (1908) Recherches cytologiques sur la germination des graines de quelque Graminées et contribution à l’étude des graines d’aleurone. Arch Anat Microsc Morphol Exp 10:141–226

    Google Scholar 

  • Gunning B, Pate JS (1969) Transfer cells - Plant cells with wall ingrowths, specialized in relation to short distance transport of solutes - Their occurrence, structure, and development. Protoplasma 68:107–133

    Article  Google Scholar 

  • Haber AH, Luippold H (1960) Separation of mechanisms initiating cell division and cell expansion in lettuce seed germination. Plant Physiol 35:168–172

    Article  PubMed  CAS  Google Scholar 

  • Hallam ND (1973) Fine structure of viable and non-viable rye and other embryos. In: Heydecker W (ed) Seed Ecology. Butterworths, London (Nottingham University Easter School in Agricultural Science No 19), p 115

    Google Scholar 

  • Hallam ND, Roberts BE, Osborne DJ (1972) Embryogenesis and germination in rye (Secale cereale L.) II. Biochemical and fine structural changes during germination. Planta (Berl) 105:293–309

    Article  CAS  Google Scholar 

  • Hallam ND, Roberts BE, Osborne DJ (1973) Embryogenesis and germination in rye (Secale cereale L.) III. Fine structure and biochemistry of the non-viable embryo. Planta (Berl) 110:279–290

    Article  CAS  Google Scholar 

  • Halmer P, Bewley JD (1979) Mannanase production by the lettuce endosperm: Control by the embryo. Planta (Berl) 144:333–340

    Article  CAS  Google Scholar 

  • Halmer P, Bewley JD, Thorpe TA (1975) An enzyme to degrade the lettuce endosperm cell wall during giberellin- and light-induced germination. Nature 258:716–718

    Article  CAS  Google Scholar 

  • Halmer P, Bewley JD, Thorpe TA (1978) Degradation of the endosperm cell walls of Lactuca sativa L. cv Grand Rapids: Timing of mobilization of soluble sugars, lipid and phytate. Planta (Berl) 139:1–8

    Article  CAS  Google Scholar 

  • Harrington JF (1972) Seed storage and longevity. In: Kozlowski TT (ed) Seed biology, vol III. Insects and seed collection, storage, testing, and certification. Academic Press, New York, pp 145–245

    Google Scholar 

  • Harris N (1979) Endoplasmic reticulum in developing seeds in Vicia faba. Planta (Berl) 146:63–69

    Article  Google Scholar 

  • Harris N, Chrispeels MJ (1975) Histochemical and biochemical observations on storage protein metabolism and protein body autolysis in cotyledons of germinating mung beans. Plant Physiol 56:292–299

    Article  PubMed  CAS  Google Scholar 

  • Harris N, Chrispeels MJ, Boulter D (1975) Biochemical and histochemical studies on protease activity and reserve protein metabolism in cotyledons of germinating cowpeas (Vigna unguiculata). J Exp Bot 26:544–554

    Article  CAS  Google Scholar 

  • Haywood HE (1938) The structure of economic plants. Macmillan, New York

    Google Scholar 

  • Heydecker W (1972) Vigour. In: Roberts EH (ed) Viability of seeds. Chapman and Hall, London, pp 209–252

    Chapter  Google Scholar 

  • Higgins TJV, Jacobsen JV (1978) Phytohormones and subcellular structural modification. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, vol 1. The biochemistry of phytohormones and related compounds. Elsevier/North Holland, Amsterdam Oxford New York, pp 419–465

    Google Scholar 

  • Hopf H, Kandler O (1977) Characterization of the “reserve cellulose” of the endosperm of Carum carvi as a β(1–4)-manan. Phytochemistry 16:1715–1717

    Article  CAS  Google Scholar 

  • Horner HT, Arnott HJ (1965) A histochemical and ultrastructural study of Yucca seed proteins. Am J Bot 52:1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Horner HT, Arnott HJ (1966) Histochemical and ultrastructural study of pre- and post-germinated Yucca seeds. Bot Gaz 127:48–64

    Article  Google Scholar 

  • Ikuma H, Thimann KV (1963) The role of the seed coats in germination of photosynthetic lettuce seeds. Plant Cell Physiol 4:169–185

    Google Scholar 

  • Ives SA (1923) Maturation and germination of seeds of Ilex opaca. Bot Gaz 76:60–77

    Article  Google Scholar 

  • Jacks TJ, Yatsu LY, Altschul AM (1967) Isolation and characterization of peanut spherosomes. Plant Physiol 42:585–597

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JV (1977) Regulation of ribonucleic acid metabolism by plant hormones. Annu Rev Plant Physiol 28:537–564

    Article  CAS  Google Scholar 

  • Jacobsen JV, Higgins TJV (1978a) Post-transcription, translational, and post-translational effects of plant hormones. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, vol 1. The biochemistry of phytohormones and related compounds. Elsevier/North Holland, Amsterdam Oxford New York, pp 583–621

    Google Scholar 

  • Jacobsen JV, Higgins TJV (1978b) The influence of phytohormones on replication and transcription. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise, vol 1. The biochemistry of phytohormones and related compounds. Elsevier/ North Holland, Amsterdam Oxford New York, pp 515–582

    Google Scholar 

  • Jacobsen JV, Knox B (1973) Cytochemical localization and antigenicity of a-amylase in barley aleurone tissue. Planta (Berl) 112:213–224

    Article  CAS  Google Scholar 

  • Jacobsen JV, Knox B (1974) The proteins released by isolated barley aleurone layers before and after gibberellic acid treatment. Planta (Berl) 115:193–206

    Article  CAS  Google Scholar 

  • Jacobsen JV, Pressman E (1979) A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta (Berl) 144:241–248

    Article  Google Scholar 

  • Jacobsen JV, Pressman E, Pyliotis NA (1976) Gibberellin-induced separation of cells in isolated endosperm of celery seed. Planta (Berl) 129:113–122

    Article  CAS  Google Scholar 

  • Jones RL (1969a) Gibberellic acid and the fine structure of barley aleurone cells. I. Changes during the lag-phase of a-amylase synthesis. Planta (Berl) 87:119–133

    Article  CAS  Google Scholar 

  • Jones RL (1969b) Gibberellic acid and the fine structure of barley aleurone cells II. Changes during the synthesis and secretion of a-amylase. Planta (Berl) 88:73–86

    Article  CAS  Google Scholar 

  • Jones RL (1972) Fractionation of the enzymes of the barley aleurone layer: Evidence for a soluble mode of enzyme release. Planta (Berl) 103:95–109

    Article  CAS  Google Scholar 

  • Jones RL (1974) The structure of the lettuce endosperm. Planta (Berl) 121:133–146

    Article  Google Scholar 

  • Jones RL, Chen R-F (1976) Immunohistochemical localization of a-amylase in barley aleurone cells. J Cell Sci 20:183–198

    PubMed  CAS  Google Scholar 

  • Jones RL, Price JM (1970) Gibberellic acid and the fine structure of barley aleurone cells III. Vacuolation of the aleurone cell during the phase of ribonuclease release. Planta (Berl) 94:191–202

    Article  CAS  Google Scholar 

  • Khan AA (1977) Seed dormancy: Changing concepts and theories. In: Khan AA (ed) The physiology and biochemistry of seed dormancy and germination. North-Holland, Amsterdam, pp 29–50

    Google Scholar 

  • Klein S, Ben-Shaul Y (1966) Changes in cell fine structure of lima bean axes during early germination. Can J Bot 44:331–340

    Article  CAS  Google Scholar 

  • Koller D, Mayer A, Poljakoff-Mayber A, Klein S (1962) Seed germination. Annu Rev Plant Physiol 13:437–457

    Article  CAS  Google Scholar 

  • Laidman DL, Colborne AJ, Doig RI, Varty K (1974) The multiplicity of induction systems in wheat aleurone tissue. In: Bieleski RL, Ferguson AR, Creswell MM (eds) Mechanisms of regulation of plant growth. Royal Society New Zealand Bull 12, Wellington, pp 581–590

    Google Scholar 

  • Lang A (1965) Effects of some internal and external conditions on seed germination. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol XV/2. Springer, Berlin, pp 848–893

    Google Scholar 

  • Lehman K, Garz J (1962) Untersuchungen über den Umsatz der phosphathaltigen Substanzen und des Eiweißes in den Kotyledonen keimender Erbsensamen. Flora (Jena) 152:516–522

    Google Scholar 

  • Leung DWM, Reid JSG, Bewley JD (1979) Degradation of the endosperm cell wall of Lactuca sativa L. cv Grand Rapids in relation to the mobilization of proteins and the production of hydrolytic enzymes in the axis, cotyledons, and endosperms. Planta (Berl) 146:335–341

    Article  CAS  Google Scholar 

  • Lott JNA (1980) Protein bodies. In: The biochemistry of plants. A comprehensive treatise, vol 1. The plant cell. Academic Press, New York

    Google Scholar 

  • Lott JNA, Vollmer CM (1973) Changes in the cotyledons of Cucurbita maxima during germination. IV. Protein bodies. Protoplasma 78:255–271

    Article  Google Scholar 

  • MacLeod AM (1969) The utilization of cereal seed reserves. Sci Prog 57:99–112

    PubMed  CAS  Google Scholar 

  • MacLeod AM, Millar AS (1962) Effects of gibberellic acid on barley endosperm. J Inst Brew 68:322–332

    CAS  Google Scholar 

  • MacLeod AM, Palmer GH (1966) The embryo of barley in relation to modification of the endosperm. J Inst Brew 72:580–589

    CAS  Google Scholar 

  • Manners DJ (1974) The structure and metabolism of starch. In: Campbell PN, Dickens F (eds) Essays in Biochemistry, vol 10. Academic Press, London

    Google Scholar 

  • Mares DJ, Stone BA (1973) Studies of wheat endosperm. I. Chemical composition and ultrastructure of the cell walls. Aust J Biol Sci 26:793–812

    CAS  Google Scholar 

  • Marré E (1967) Ribosome and enzyme changes during maturation and germination of the castor bean seed. Curop Dev Biol 11:75–105

    Article  Google Scholar 

  • Martin AC (1946) The comparative internal morphology of seeds. Am Midi Nat 36:513–660

    Article  Google Scholar 

  • Mayer AM, Poljakoff-Mayber A (1975) The germination of seeds. Pergamon, Oxford

    Google Scholar 

  • McCleary BV, Matheson NK (1975) Galactomannan structure and ß-mannanase and ß-mannosidase activity in germinating legume seeds. Phytochemistry 14:1187–1194

    Article  CAS  Google Scholar 

  • McNeil M, Albersheim P, Taiz L, Jones RL (1975) The structure of plant cell walls. VII. Barley aleurone cells. Plant Physiol 55:64–68

    Article  PubMed  CAS  Google Scholar 

  • Meier H (1958) On the structure of cell walls and cell wall mannans from ivory nuts and from dates. Biochim Biophys Acta 28:229–240

    Article  PubMed  CAS  Google Scholar 

  • Millerd A, Whitfeld PR (1973) Deoxyribonucleic acid and ribonucleic acid synthesis during the cell expansion phase of cotyledon development in Vicia faba L. Plant Physiol 51:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Minamikawa T (1979) Hydrolytic enzyme activities and degradation of storage components in cotyledons of germinatingPhaseolus mungo seeds. Bot Mag Tokyo 92:1–12

    Article  CAS  Google Scholar 

  • Minamikawa T, Koshiba T (1979) Histochemical studies on mobilization of storage components in cotyledons of germinatingPhaseolus mungo seeds. Bot Mag Tokyo 92:325–332

    Article  CAS  Google Scholar 

  • Mlodzianowski F (1978) The fine structure of protein bodies of lupin cotyledons during the course of seed germination. Z Pflanzenphysiol 86:1–13

    Google Scholar 

  • Mollenhauer HH, Totten C (1971a) Studies on seeds 1. Fixation of seeds. J Cell Biol 48:387–394

    Article  PubMed  CAS  Google Scholar 

  • Mollenhauer HH, Totten C (1971b) Studies on seeds 11. Origin and degradation of lipid vesicles in pea and bean cotyledons. J Cell Biol 48:395–405

    Article  PubMed  CAS  Google Scholar 

  • Morrall P, Briggs DE (1978) Changes in cell wall polysaccharides of germinating barley grains. Phytochemistry 17:1495–1502

    Article  CAS  Google Scholar 

  • Muto S, Beevers H (1974) Lipase activities in castor bean endosperm during germination. Plant Physiol 54:23–28

    Article  PubMed  CAS  Google Scholar 

  • Nabors MW, Lang A (1971a) The growth physics and water relations of red light-induced germination in lettuce seeds. I. Embryos germinating in osmoticum. Planta (Berl) 101:1–25

    Article  Google Scholar 

  • Nabors MW, Lang A (1971b) The growth physics and water relations of red light-induced germination in lettuce seeds. II. Embryos germinating in water. Planta (Berl) 101:26–42

    Article  Google Scholar 

  • Nabors MW, Kugrens P, Ross C (1974) Photodormant lettuce seeds: Phytochrome-induced protein and lipid degradation. Planta (Berl) 117:361–365

    Article  CAS  Google Scholar 

  • Netolitzky F (1926) Anatomie der Angiospermen-Samen. In: Linsbauer K (ed) Handbuch der Pflanzenanatomie, B and X. Borntraeger, Berlin

    Google Scholar 

  • Nieuwdorp PJ, Buys MC (1964) Electron microscope structure of the epithelial cells of the scutellum of barley. II. Cytology of the cells during germination. Acta Bot Neerl 13:559–565

    Google Scholar 

  • Nikolaeva MG (1977) Factors controlling the seed dormancy pattern. In: Khan AA (ed) The physiology and biochemistry of seed dormancy and germination. North-Holland, Amsterdam New York Oxford, pp 51–76

    Google Scholar 

  • Obata T (1979) Fine structural changes in barley aleurone cells during gibberellic acid-induced enzyme secretion. Ann Bot 44:333–337

    Google Scholar 

  • O’Brien JA (1942) Cytoplasmic inclusions in the glandular epithelia of the scutellum of Triticum sativum and Secale cereale. Am J Bot 29:479–491

    Article  Google Scholar 

  • Okamoto K, Akazawa T (1979) Enzymic mechanisms of starch breakdown in germinating rice seeds. Plant Physiol 63:336–340

    Article  PubMed  CAS  Google Scholar 

  • Opik H (1965a) Respiration rate, mitochondrial activity, and mitochondrial structure in the cotyledons ofPhaseolus vulgaris L. during germination. J Exp Bot 16:667–682

    Article  Google Scholar 

  • Opik H (1965b) The form of nuclei in the storage cells of the cotyledons of germinating seeds of Phaseolus vulgaris L. Exp Cell Res 38:517–522

    Article  PubMed  CAS  Google Scholar 

  • Opik H (1966) Changes in cell fine structure in the cotyledons of Phaseolus vulgaris L. during germination. J Exp Bot 17:427–439

    Article  Google Scholar 

  • Ory RL, Yatsu LY, Kircher HW (1968) Association of lipase activity with the spherosomes of Ricinus communis. Arch Biochem Biophys 264:255–264

    Article  Google Scholar 

  • Osborne DJ, Roberts BE, Payne PI, Sen S (1974) Protein synthesis and viability in rye embryos. In: Bieleski RL, Ferguson AR, Creswell MM (eds) Mechanisms of regulation of plant growth. Royal Society of New Zealand Bull 12 Wellington, pp 805–812

    Google Scholar 

  • Osborne DJ, Dobrzanska M, Sen S (1977) Factors determining nucleic acid and protein synthesis in the early hours of germination. In: Jenning DH (ed) Symp Soc Exp Biol No 31. Cambridge Univ Press, Cambridge, pp 177–194

    Google Scholar 

  • Palmer GH (1972) Morphology of starch granules in cereal grains and malts. J Inst Brew 78:326–332

    CAS  Google Scholar 

  • Palmer GH, Bathgate GN (1976) Malting and brewing. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 1. American Association of Cereal Chemists, St Paul Minnesota, pp 237–324

    Google Scholar 

  • Pavlista AD, Haber AH (1970) Embryo expansion without protrusion in lettuce seeds. Plant Physiol 46:636–637

    Article  PubMed  CAS  Google Scholar 

  • Pavlista AD, Valdovinos JG (1978) Changes in the surface appearance of the endosperm during lettuce achene germination. Bot Gaz 139:171–179

    Article  Google Scholar 

  • Pyliotis NA, Ashford AE, Whitecross MI, Jacobsen JV (1979) Localization of gibberellic acid-induced acid phosphatase activity in the endoplasmic reticulum of barley aleurone cells with the electron microscope. Planta (Berl) 147:134–140

    Article  CAS  Google Scholar 

  • Raghavan V (1976) Experimental embryogenesis in vascular plants. Academic Press, London New York

    Google Scholar 

  • Reed HS (1904) A study of the enzyme-secreting cells in the seedling of Zea mays. Ann Bot 19:115–122

    Google Scholar 

  • Reid JS, Davies C (1977) Endo-b-mannanase, the leguminous aleurone layer and the storage galactomannan in germinating seeds ofTrigonella foenum-graecum L. Planta (Berl) 133:219–22

    Article  CAS  Google Scholar 

  • Reid JS, Meier H (1972) The function of the aleurone layer during galactomannan mobilization in germinating seeds of fenugreek (Trigonella foenum-graecum L.), crimson clover (Trifolium incarnatum L.), and lucerne(Medicago sativa L.): A correlative biochemical and ultrastructure study. Planta (Berl) 106:44–60

    Article  CAS  Google Scholar 

  • Reid JS, Meier H (1973) Enzymic activities and galactomannan mobilization in germinating seeds of fenugreek (Trigonella foenum-graecum L., Leguminosae): Secretion of α-galactosidase and β-mannosidase by the aleurone layer. Planta (Berl) 112:301–308

    Article  CAS  Google Scholar 

  • Roberts BE, Osborne DJ (1973) Protein synthesis and viability in rye grains. In: Heydecker W (ed) Seed ecology. (Nottingham University Easter School in Agricultural Science No 19) Butterworths, London, pp 99–114

    Google Scholar 

  • Roberts EH (1972a) Cytological, genetical, and metabolic changes associated with loss of viability. In: Roberts EH (ed) Viability of seeds. Chapman and Hall, London, pp 253–306

    Chapter  Google Scholar 

  • Roberts EH (1972b) Dormancy: A factor affecting seed survival in the soil. In: Roberts EH (ed) Viability of seeds. Chapman and Hall, London, pp 321–359

    Chapter  Google Scholar 

  • Roberts EH (1972c) Storage environment and the control of viability. In: Roberts EH (ed) Viability of seeds. Chapman and Hall, London, pp 14–58

    Google Scholar 

  • Roberts EH (1975) Problems of long-term storage of seeds and pollen for genetic resources conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge London New York Melbourne, pp 269–296

    Google Scholar 

  • Roberts EH, Abdulla FH, Owen RJ (1967) Nuclear damage and the ageing of seeds with a model for seed survival curves. Symp Soc Exp Biol 21:65–100

    PubMed  CAS  Google Scholar 

  • Rost TL (1972) The ultrastructure and physiology of protein bodies and lipids from hydrated dormant and non-dormant embryos of Setaria lutescens (Gramineae). Am J Bot 59:607–616

    Article  CAS  Google Scholar 

  • Sargant E, Robertson A (1905) The anatomy of the scutellum in Zea mays. Ann Bot 19:115–122

    Google Scholar 

  • Seiler A (1977) Galactomannanabbau in keimenden Johannisbrotsamen (Ceratonia siliqua L.). Planta (Berl) 134:209–221

    Article  CAS  Google Scholar 

  • Simola LK (1973) The origin and development of organelles in germinating embryos of Bidens cernua: Ultrastructural effects of cycloheximide, actinomycin D and chloramphenicol. Ann Bot Fenn 10:71–88

    CAS  Google Scholar 

  • Smith DL (1971) Nuclear changes in cotyledons of Pisum arvense L. during germination. Ann Bot 35:511–521

    CAS  Google Scholar 

  • Smith DL, Flinn AM (1967) Histology and histochemistry of the cotyledons of Pisum arvense L. during germination. Planta (Berl) 74:72–85

    Article  CAS  Google Scholar 

  • Sømme R (1970) Glycosidases and monosaccharides in germinated leguminous seeds. Acta Chem Scand 24:72–76

    Article  PubMed  Google Scholar 

  • Sømme R (1971) The correlation between the mono-, oligo-, and polysaccharides and the glycosidases present in clover seeds. Acta Chem Scand 25:759–761

    Article  Google Scholar 

  • Speer HL (1974) Some aspects of the function of the endosperm during the germination of lettuce seeds. Can J Bot 52:1117–1121

    Article  CAS  Google Scholar 

  • Spencer D, Higgins TJV (1979) Molecular aspects of seed protein biosynthesis. Curr Adv Plant Sci 34:1–15

    Google Scholar 

  • Srivastava LM, Paulson RE (1968) The fine structure of the embryo of Lactuca sativa II. Changes during germination. Can J Bot 46:1447–1453

    Article  Google Scholar 

  • Stokes P (1952a) A physiological study of embryo development inHeracleum sphondylium L. I. The effect of temperature on embryo development. Ann Bot 16:441–447

    Google Scholar 

  • Stokes P (1952b) A physiological study of embryo development in Heracleum sphondylium. II. The effect of temperature on after-ripening. Ann Bot 64:572–576

    Google Scholar 

  • Stokes P (1953a) A physiological study of embryo development in Heracleum sphondylium L. III. The effect of temperature on metabolism. Ann Bot 65:157–169

    Google Scholar 

  • Stokes P (1953b) The stimulation of growth by low temperature in embryos of Heracleum sphondylium L.J Exp Bot 4:222–234

    Article  CAS  Google Scholar 

  • Stokes P (1965) Temperature and seed dormancy. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol XV/2. Springer, Berlin, pp 746–803

    Google Scholar 

  • Swift JG, O’Brien TP (1970) Vascularization of the scutellum of wheat. Aust J Bot 18:45–53

    Article  Google Scholar 

  • Swift JG, O’Brien TP (1971) Vascular differentiation in the wheat embryo. Aust J Bot 19:63–71

    Article  Google Scholar 

  • Swift JG, O’Brien TP (1972) The fine structure of the wheat scutellum during germination. Aust J Biol Sci 25:469–486

    Google Scholar 

  • Taiz L, Honigman WA (1976) Production of cell wall hydrolyzing enzymes by barley aleurone layers in response to gibberellic acid. Plant Physiol 58:380–386

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Jones RL (1970) Gibberellic acid, β-l,3-glucanase and the cell walls of barley aleurone layers. Planta (Berl) 92:73–84

    Article  CAS  Google Scholar 

  • Taiz L, Jones RL (1973) Plasmodesmata and an associated cell wall component in barley aleurone tissue. Am J Bot 60:67–75

    Article  CAS  Google Scholar 

  • Thomas H (1972) Control mechanisms of the resting seed. In: Roberts EH (ed) Viability in seeds. Chapman and Hall, London, pp 360–396

    Chapter  Google Scholar 

  • Thompson JL, Jones JKN (1964) The glucomannan of bluebell seed (Scilla nonscripta L.). Can J Chem 42:1088–1091

    Article  CAS  Google Scholar 

  • Toole EH (1924) The transformation and course of development of the germinating maize. Am J Bot 11:325–350

    Article  CAS  Google Scholar 

  • Torrey JC (1902) Cytological changes accompanying the secretion of diastase. Bull Torrey Bot Club 29:421–435

    Article  Google Scholar 

  • Varner JE (1977) Hormonal control of protein synthesis. In: Bogorad L, Weil J (eds) Nucleic acids and protein synthesis in plants. Plenum, New York London, pp 293–307

    Google Scholar 

  • Varner JE, Ho DT-H (1976) The role of hormones in the integration of seedling growth. In: Papaconstantinou J (ed) The molecular biology of hormone action. Academic Press, New York San Francisco London, pp 173–194

    Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Annu Rev Plant Physiol 15:185–224

    Article  CAS  Google Scholar 

  • Vigil EL (1970) Cytochemical and developmental changes in microbodies (glyoxysomes) and related organelles of castor bean endosperm. J Cell Biol 46:435–454

    Article  PubMed  CAS  Google Scholar 

  • Vigil EL, Ruddat M (1973) Effect of gibberellic acid and actinomycin D on the formation and distribution of rough endoplasmic reticulum in barley aleurone cells. Plant Physiol 51:549–558

    Article  PubMed  CAS  Google Scholar 

  • Villaroya H, Williams J, Dey P, Villaroya S, Petek F (1978) Purification and properties of ß-man-nanases I and II from the germinated seeds of Trifolium repens. Biochem J 175:1079–1087

    Google Scholar 

  • Villiers TA (1971) Cytological studies in dormancy I. Embryo maturation during dormancy in Fraxinus excelsior. New Phytol 70:751–760

    Article  Google Scholar 

  • Villiers TA (1972) Seed dormancy. In: Kozlowski TT (ed) Seed biology, vol II. Academic Press, New York, pp 219–281

    Google Scholar 

  • Villiers TA (1975) Genetic maintenance of seeds in imbibed storage. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge London New York Melbourne, pp 297–316

    Google Scholar 

  • Villiers TA, Wareing PF (1964) Dormancy in fruits of Fraxinus excelsior L. J Exp Bot 15:359–367

    Article  Google Scholar 

  • Wareing PF (1965) Endogenous inhibitors in seed germination and dormancy. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol XV/2. Springer, Berlin, pp 909–924

    Google Scholar 

  • Werker E, Vaughan JG (1974) Anatomical and ultrastructural changes in aleurone and myrosin cells of Sinapsis alba during germination. Planta (Berl) 116:243–255

    Article  Google Scholar 

  • Wirth M, Withner CL (1959) Embryology and development in the Orchidaceae. In: Withner CL (ed) The orchids: A scientific survey. Ronald Press, New York, pp 155–188

    Google Scholar 

  • Wolfrom ML, Laver ML, Patin DL (1961) Carbohydrates of the coffee bean. II. Isolation and characterization of a mannan. J Org Chem 26:4533–4535

    Article  CAS  Google Scholar 

  • Yatsu LY, Jacks TJ (1972) Spherosome membranes. Half unit-membranes. Plant Physiol 49:937–943

    Article  PubMed  CAS  Google Scholar 

  • Yomo H, Taylor MP (1973) Histochemical studies on protease formation in the cotyledons of germinating bean seeds. Planta (Berl) 112:35–43

    Article  CAS  Google Scholar 

  • Yomo H, Varner JE (1971) Hormonal control of a secretory tissue. In: Moscona AA, Monray A (eds) Current topics in developmental biology. Academic Press, New York, pp 111–144

    Google Scholar 

  • Yoo BY (1970) Ultrastructural changes in cells of pea embryo radicle during germination. J Cell Biol 45:158–171

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobsen, J.V. (1984). The Seed: Germination. In: Johri, B.M. (eds) Embryology of Angiosperms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69302-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69302-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69304-5

  • Online ISBN: 978-3-642-69302-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics