Skip to main content

Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds

  • Conference paper
Chemistry of Multiphase Atmospheric Systems

Part of the book series: NATO ASI Series ((ASIG,volume 6))

Abstract

Reactions of gases in liquid-water clouds are potentially important in the transformation of atmospheric pollutants affecting their transport in the atmosphere and subsequent removal and deposition to the surface. Such processes consist of the following sequence of steps: Mass-transport of the reagent gas or gases to the air-water interface; transfer across the interface and establishment of solubility equilibria locally at the interface; mass-transport of the dissolved gas or gases within the aqueous phase; aqueous-phase chemical reaction(s); mass-transport of reaction product(s) and possible subsequent evolution into the gas-phase. Description of the rate of the overall process requires identification of the rate-limiting step (or steps) and evaluation of the rate of such step(s). Identification of the rate-limiting step may be achieved by evaluation and comparison of the characteristic times pertinent to the several processes and may be readily carried out by methods outlined herein, for known or assumed reagent concentrations, drop size, and fundamental constants as follows: gas- and aqueous-phase diffusion coefficients; Henry’s law coefficient and other pertinent equilibrium constants; interfacial mass-transfer accommodation coefficient; aqueous-phase reaction rate constants(s). A graphical method is described whereby it may be ascertained whether a given reaction is controlled solely by reagent solubility and intrinsic chemical kinetic or is mass-transport limited by one or another of the above processes. In the absence of mass-transport limitation, reaction rates may be evaluated uniformly for the entire liquid-water content of the cloud using equilibrium reagent concentrations. In contrast, where appreciable mass-transport limitation is indicated, evaluation of the overall rate requires knowledge of and integration over the drop-size distribution characterizing the cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A.W. (1973), A Textbook of Physical Chemistry. Academic Press, New York.

    Google Scholar 

  • Andrew, S.P.S. (1955), A Simple Method of Measuring Gaseous Diffusion Coefficients. Chem Eng. Sci. 4, pp. 269–272.

    Article  CAS  Google Scholar 

  • Baboolal, L.B., H.R. Pruppacher, J.H. Topalian (1981), A Sensitivity Study of a Theoretical Model of SO2 Scavenging by Water Drops in Air. J. Atmos. Sci. 38, pp. 856–870.

    Article  CAS  Google Scholar 

  • Beilke, S., G. Gravenhorst (1978), Heterogeneous SO2 Oxidation in the Droplet Phase. Atmos. Environ. 12, pp. 231–239.

    Article  CAS  Google Scholar 

  • Blair, E.W., W. Ledbury (1925), The Partial Formaldehyde Vapor Pressures of Aqueous Solutions of Formaldehyde, Part I. J. Chem. Soc. 1925, pp. 26–40.

    Google Scholar 

  • Briner, E., E. Perrottet (1939), Determination des Solubilités de l’Ozone dans l’Eau et dans une Solution Aqueuse de Chlorure de Sodium; Calcul des Solubilités de l’Ozone Atmosphérique dans les Eaux. Helv. Chim. Acta 22, pp. 397–404.

    Article  CAS  Google Scholar 

  • Brock, J.R., J.L. Durham (1984), Aqueous Aerosol as a Reactant in the Atmosphere, In: SO 2 , NO, and NO 9 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert, ed., pp. 209–250, Butterworth, Boston.

    Google Scholar 

  • Chameides, W.L. (1985), Photochemistry in the Atmospheric Aqueous Phase. This volume.

    Google Scholar 

  • Chameides, W.L., D.D. Davis (1982), The Free Radical Chemistry of Cloud droplets and its Impact Upon the Composition of Rain. J. Geophys. Res. 87, pp. 4863–4977.

    Article  CAS  Google Scholar 

  • Chameides, W.L., D.D. Davis (1983), Aqueous-Phase Source of Formic Acid in Clouds. Nature 304, pp. 427–429.

    Article  CAS  Google Scholar 

  • Chang, R., E.J. Davis (1976), Knudsen Aerosol Evaporation. J. Colloid Interface Sci. 54, pp. 352–363.

    Article  CAS  Google Scholar 

  • Chapman, S., T.G. Cowling (1939), The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge.

    Google Scholar 

  • Chapman, S., T.G. Cowling (1970), The Mathematical Theory of Non-Uniform Gases, 3rd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Crank, J. (1975), The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford.

    Google Scholar 

  • Dahneke, B. (1983), Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols. In: Theory of Dispersed Multiphase Flow. R.E. Meyer, ed., Academic Press, Inc., New York, pp. 97–133.

    Google Scholar 

  • Danckwerts, P.V. (1970), Gas-Liquid Reactions. McGraw-Hill, New York.

    Google Scholar 

  • Daum, P.H., S.E. Schwartz, L. Newman (1984), Acidic and Related Constituents in Liquid Water Clouds. J. Geophys. Res., 89, pp. 1447–1485

    Article  CAS  Google Scholar 

  • Davis, E.J. (1983), Transport Phenomena with Single Aerosol Particles. Aerosol Sci. Technol. 2, pp. 121–144.

    CAS  Google Scholar 

  • Freiberg, J.E., S.E. Schwartz (1980), Oxidation of SO2 in Aqueous Droplets: Mass Transport Limitation in Laboratory Studies and the Ambient Atmosphere. Atmos.Environ. 15, pp. 1145–1154.

    Google Scholar 

  • Fuchs, N.A., A.G. Sutugin (1971), High-Dispersed Aerosols. In: Topics in Current Aerosol Research, G.M. Hidy, J.R. Brock, eds., pp. 1–60, Pergamon, Oxford.

    Google Scholar 

  • Fuller, E.N., D. Schettler, J.C. Giddings (1966), A New Method for Predictation of Binary Gas-Phase Diffusion Coefficient. Ind. Eng. Chem. 58 (5), pp. 19–27.

    Article  Google Scholar 

  • Gill, P.S., T.E. Graedel, C.J. Weschler (1983), Organic Films on Atmospheric Aerosol Particles, Fog Droplets, Cloud Droplets, Raindrops, and Snowflakes. Rev. Geophys. Space. Phys. 21, pp. 903–920

    Article  CAS  Google Scholar 

  • Graedel, T.E., P.S. Gill, C.J. Weschler (1983), Effects of Organic Surface Films on the Scavenging of Atmospheric Gases by Raindrops and Aerosol Particles. In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. 1, H.R. Pruppacher, R.G. Semonin, W.G.N. Slinn, eds., pp. 417 - 430, Elsevier, New York.

    Google Scholar 

  • Harvey, E.A., W. Smith (1959), The Absorption of Carbon Dioxide by a Quiescent Liquid. Chem. Eng. Sci. 10, pp. 274–280.

    Article  CAS  Google Scholar 

  • Hegg, D.A., P.V. Hobbs (1983), Preliminary Measurements on the Scavenging of Sulfate and Nitrate by Clouds. In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. H.R. Pruppacher, R.G. Semonin, W.G.N. Slinn, eds., pp. 79–89, Elsevier, New York.

    Google Scholar 

  • Heikes, B.G. and A.M. Thompson (1983), Effects of Heterogeneous Processes on NO3, HONO and HNO3 Chemistry in the Troposphere. J. Geophys. Res., 88, pp 10883–10895

    Google Scholar 

  • Hertz, H. (1882), Ueber die Verdunstung der Fluessigkeiten, insbesondere des Quecksilbers, im luftleeren Räume. Ann. Phys. 17, pp. 177–193.

    Article  Google Scholar 

  • Hidy, G.M., J.R. Brock (1970), The Dynamics of Aerocolloidal Systems. Pergamon, Oxford.

    Google Scholar 

  • Himmelblau, P.M. (1964), Diffusion of Dissolved Gases in Liquids. Chem. Rev. 64, pp. 527–550.

    Article  CAS  Google Scholar 

  • Johnstone, H.F., P.W. Leppla (1934), The Solubility of Sulfur Dioxide. J. Am. Chem. Soc. 56, pp. 2233–2238.

    Article  CAS  Google Scholar 

  • Knollenberg, R.G. (1981), Techniques for probing cloud microstructure. In: Clouds - Their Formation, Optical Properties, and Effects, P.V. Hobbs, A. Deepak, eds., pp. 15–91, Academic Press, New York.

    Google Scholar 

  • Knudsen, M. (1915), Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann. Phys. 47, pp. 697–708.

    Article  CAS  Google Scholar 

  • La Mer, V.K. (162), Retardation of Evaporation by Monolayers: Transport Processes. Academic Press, New York.

    Google Scholar 

  • Langmuir, I. (1913), The Vapor Pressure of Metallic Tungsten. Phys. Rev. 2, pp. 329–342.

    Article  Google Scholar 

  • Lazrus, A.L., Haagenson, P.L., Kok, G.L., Huebert, B.J., Kreitzberg, C.W., Likens, G.E., Mohnen, V.A., Wilson, W.E., Winchester, J.W. (1983), Acidity in air and water in a case of warm frontal precipitation. Atmos. Environ. 17, pp. 581–591.

    Article  CAS  Google Scholar 

  • Leaitch, W.R., J.W. Strapp, H.A. Wiebe, G.A. Isaac (1983), Measurements of Scavenging and Transformation of Aerosol Inside Cumulus, In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. h H.R. Pruppacher, R.G. Semonin, W.C.N. Slinn, eds., pp. 53–69, Elsevier, New York.

    Google Scholar 

  • Lee, Y.-N., S.E. Schwartz (1981a), Reaction Kinetics of Nitrogen Dioxide with Liquid Water at Low Partial Pressure. J. Phys. Chem. 85, pp. 840–848.

    Article  CAS  Google Scholar 

  • Lee, Y.-N. and S.E. Schwartz, (1981b), Evaluation of the Rate of Uptake of Nitrogen Dioxide by Atmospheric and Surface Liquid Water, J. Geophys.Res. 86, pp. 11971–11983.

    Article  CAS  Google Scholar 

  • Lee, Y.-N., G.I. Senum, J.S. Gaffney (1983), Peroxyacetyl Nitrate (PAN) Stability, Solubility, and Reactivity - Implications for Tropospheric Nitrogen Cycles and Precipitation Chemistry. Fifth International Conference of the Commission on Atmospheric Chemistry and Global Pollution; Symposium on Tropospheric Chemistry, Oxford, England, August 28September 2, 1983.

    Google Scholar 

  • Littlewood, R., E. Rideal (1956), On the Evaporation Coefficient. Trans. Faraday Soc. 52, pp. 1598–1608.

    Article  CAS  Google Scholar 

  • Loomis, A.G. (1928), Solubilities of Gases in Water. In: International Critical Tables, Vol. III, pp. 255–261, McGraw-Hill, New York.

    Google Scholar 

  • Lugg, G.A. (1968), Diffusion Coefficients of Some Organic and Other Vapors in Air. Anal. Chem. 40, pp. 1072–1077.

    Article  CAS  Google Scholar 

  • Maa, J.R. (1967), Evaporation Coefficient of Liquids. Ind. Eng. Chem. Fundam. 6, pp. 504–518.

    Article  CAS  Google Scholar 

  • Maa, J.R. (1970), Rates of Evaporation and Condensation between Pure Liquids and Their Own Vapors. Ind. Eng. Chem. Fundam. 9, pp. 283–287.

    Article  CAS  Google Scholar 

  • Marrero, T.R., E.A. Mason (1972), Gaseous Diffusion Coefficients. J. Phys. Chem. Ref. Data pp. 3–118.

    Google Scholar 

  • Martin, L.R. (1984), Kinetic Studies of Sulfite Oxidation in Aqueous Solution. In: SO2, NO, and NO2 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert, ed., 63–100, Butterworth, Boston.

    Google Scholar 

  • Martin L.R., D.E. Damschen (1981), Aqueous Oxidation of Sulfur Dioxide by Hydrogen Peroxide at Low pH. Atmos. Environ. 15, pp. 1615–1621.

    Article  CAS  Google Scholar 

  • Mason, B.J. (1971), The Physics of Clouds, 2nd ed. Clarendon Press, Oxford.

    Google Scholar 

  • Maxwell, J.C. (1877), Diffusion, In: Encyclopedia Britannica, Vol. 2. p. 82. Reprinted in: The Scientific Papers of James Clerk Maxwell, W.D. Niven, ed., Dover, New York, Vol. 2, pp. 625–646.

    Google Scholar 

  • Mohnen, V. (1969), Die Radioaktiv-Markierung von Aerosolen. Z. Phys. 229, pp. 109–122.

    Article  Google Scholar 

  • Munger, J.W., D.J. Jacob, J.M. Waldman, M.R. Hoffmann (1983), Fogwater Chemistry in an Urban Atmosphere. J. Geophys. Res. 88, pp. 5109–5121.

    Article  CAS  Google Scholar 

  • Paul, B. (1962), Compilation of Evaporation Coefficients. Amer. Rocket. Soc. J. 32, pp. 1321–1328.

    CAS  Google Scholar 

  • Pruppacher, H.R., J.D. Klett (1978), Microphysics of Clouds and Precipitation. D. Reidel Publishing Co., Boston, MA.

    Google Scholar 

  • Radke, L.F. (1983), Preliminary Measurements of the Size Distribution of the Cloud Interstitial Aerosol. In: Precipitation Scavenging, Dry Deposition and Resuspension, Vol. H.R. Pruppacher, R.G. Semonin, W.G.N. Slinn, eds., pp. 71–78, Elsevier, New York.

    Google Scholar 

  • Raimondi, P., H.L. Toor (1959), Interfacial Resistance in Gas Absorption. Am. Inst. Chem. Eng. J. 5, pp. 86–92.

    CAS  Google Scholar 

  • Rogers, R.R. (1979), A Short Course in Cloud Physics, 2nd ed. Pergamon Press, Oxford.

    Google Scholar 

  • Schwartz, S.E. (1984b), Gas- and Aqueous-Phase Chemistry of HO2 in Liquid- Water Clouds. Geophys. Res. 89, pp/ 11589–11598

    Article  CAS  Google Scholar 

  • Schwartz, S.E., (1984), Gas-Aqueous Reactions of Sulfur and Nitrogen Oxides in Liquid-Water Clouds. In: SO2, NO, and NO2 Oxidation Mechanisms: Atmospheric Considerations, J.G. Calvert, ed., pp. 173–208, Butterworth, Boston.

    Google Scholar 

  • Schwartz, S.E., J.E. Freiberg (1981), Mass-Transport Limitation to the Rate of Reaction in Liquid Droplets: Application to Oxidation of SO2 in Aqueous Solutions. Atmos. Environ. 15, pp. 1129–1144.

    Article  CAS  Google Scholar 

  • Schwartz, S.E., W.H. White (1981), Solubility Equilibria of the Nitrogen Oxides and Oxyaeids in Dilute Aqueous Solution, In: Advances in Environmental Science and Engineering, Vol. J.R. Pfafflin and E.N. Ziegler, eds., pp. 1–45, Gordon and Breach, New York.

    Google Scholar 

  • Schwartz, S.E., W.H. White (1983), Kinetics of Reactive Dissolution of Nitrogen Oxides into Aqueous Solution. In: Advances in Environmental Science and Technology, Vol. 12, S.E. Schwartz, ed., pp. 1–116, John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Seinfeld, J.H. (1980), Lectures in Atmospheric Chemistry, American Institute of Chemical Engineers, Monograph Series, No. 12, Vol. 76, New York.

    Google Scholar 

  • Sherwood, T.K., R.L. Pigford, C.R. Wilke (1975), Mass Transfer. McGraw-Hill, New York.

    Google Scholar 

  • van Krevelen, D.W., P.J. Hoftijzer, F.J. Huntens (1949), Composition and Vapour Pressures of Aqueous Solutions of Ammonia, Carbon Dioxide and Hydrogen Sulphide. Recueil Trav. Chim. Pays Bas 68, pp. 191–216.

    Article  CAS  Google Scholar 

  • Wagner, P.E. (1982), Aerosol Growth by Condensation. In: Aerosol Microphysics II: Chemical Physics of Microparticles, W.H. Marlow, ed., Springer- Verlag, Berlin, pp. 129–178.

    Google Scholar 

  • Warneck, P. (1985), The Equilibrium Distribution of Atmospheric Gases between the Two Phases of Liquid Water Clouds. This volume.

    Google Scholar 

  • Wilke, C.R., P. Chang (1955), Correlation of Diffusion Coefficients in Dilute Solutions, Am. Inst. Chem. Eng. J. 1, pp. 264–270.

    CAS  Google Scholar 

  • Wilke, C.R., C.Y. Lee (1955), Estimation of Diffusion Coefficients for Gases and Vapors, Ind. Eng. Chem. 47, pp. 1253–1257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwartz, S.E. (1986). Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds. In: Jaeschke, W. (eds) Chemistry of Multiphase Atmospheric Systems. NATO ASI Series, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70627-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70627-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70629-5

  • Online ISBN: 978-3-642-70627-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics