Skip to main content

Cellular Resistance to Cadmium

  • Chapter
Cadmium

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 80))

Abstract

This chapter focuses on the application of cultured cell systems to the study of cellular responses associated with exposure to Cd2+. The scope of this review is limited to considerations of cellular metabolism of Cd2+ and the physiologic and genetic factors that modulate cadmium toxicity. Major emphasis is directed toward three areas: (a) the isolation or derivation of cells differing in Cd2+ cytotoxic response and utilization of such cells to define factors that play a role in cadmium resistance; (b) a consideration of the manifold environmental/physiologic conditions that affect cellular responses in culture; and (c) an evaluation of studies employing somatic cell and molecular genetic techniques to dissect in detail the molecular components of the response mechanisms. The chapter concludes with a discussion of directions and approaches to be pursued in the future to fill gaps in our current understanding of Cd2+ metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alt FW, Kellems R, Bertino J, Schimke RT (1978) Selective multiplication of dihydrofolate reductase genes in methotrexate resistant variants of cultured murine cells. J Biol Chem 253:1357–1370

    PubMed  CAS  Google Scholar 

  • Asokan P, Dixit R, Mukhtar H, Murti CRK (1981) Effect of cadmium on hepatic mixed-function oxidases during the early development of rats: Possible protective role of metallothionein. Biochem Pharmacol 30:3095–3097

    PubMed  CAS  Google Scholar 

  • Bakka A, Rugstad HE (1981) Uptake and egress of cadmium in cultures of cadmium-resistant and the corresponding “wild-type” cells. Acta Pharmacol Toxicol 48:81–86

    CAS  Google Scholar 

  • Barrett JC, Crawford BD, Ts’o POP (1980) The role of somatic mutation in a multistage model of carcinogenesis. In: Mishra N, Dunkel V, Mehlman M (eds) Mammalian cell transformation by chemical carcinogens, vol I. Advances in modern environmental toxicology. Senate, Princeton, New Jersey, pp 467–501

    Google Scholar 

  • Bazzell KL, Coleman RL, Nordquist RE (1979) Induction of metallothionein-like protein in human breast tumor cells. Toxicol Appl Pharmacol 50:199–205

    PubMed  CAS  Google Scholar 

  • Beach LR, Palmiter RD (1981) Amplification of the metallothionein I gene in cadmium-resistant mouse cells. Proc Natl Acad Sci USA 78:2110–2114

    PubMed  CAS  Google Scholar 

  • Beisel WR, Pekarek RS, Wannemacher RW Jr (1976) Homeostatic mechanisms affecting plasma zinc levels in acute stress. In: Prasad S, Oberleas D (eds) Trace elements in human health and disease, vol I. Acadmic, New York, pp 87–106

    Google Scholar 

  • Bettger WJ, O’Dell BL (1981) Minireview: a critical physiological role of zinc in the structure and function of biomembranes. Life Sci 28:1425–1438

    PubMed  CAS  Google Scholar 

  • Bozelka BE, Burkholder PM (1982) Inhibition of mixed leukocyte culture responses in ead-mium-treated mice. Environ Res 27:421–432

    PubMed  CAS  Google Scholar 

  • Bozelka BE, Burkholder PM, Chang LW (1978) Cadmium, a metallic inhibitor of antibody-mediated immunity in mice. Environ Res 17:390–402

    PubMed  CAS  Google Scholar 

  • Brinster RL, Chen HY, Warren R, Sarthy A, Palmiter RD (1982) Regulation of metallo-thionein-thymidine kinase fusion plasmids injected into mouse eggs. Nature 296:39–42

    PubMed  CAS  Google Scholar 

  • Burger MM, Weber R (eds) (1982) Embryonic development, part A. Genetic aspects. IX Congress of the International Society of Developmental Biologists, Basel, Switzerland. Liss, New York

    Google Scholar 

  • Chan JYH, Ruchirawat M, Lapeyre J-N, Becker FF (1982) In vitro inhibition of DNA methylase (DMase) by direct acting carcinogens and the protective ability of thiol reducing agents. Fed Proc 41:685

    Google Scholar 

  • Chen DJ-C, Hildebrand CE, Walters RA, Griffith JK, Enger MD (1981) Somatic cell hybridization studies of the mechanism of cadmium resistance in Chinese hamster cells. J Cell Biol 91:383A

    Google Scholar 

  • Cherian MG (1980) The synthesis of metallothionein and cellular adaptation to metal toxicity in primary rat kidney epithelial cell cultures. Toxicology 17:225–231

    PubMed  CAS  Google Scholar 

  • Cherian MG (1981) Comparative studies on mechanism of cellular toxicity of cadmium-metallothionein and cadmium chloride in rat kidney epithelial cell culture. Fed Proc 40:714

    Google Scholar 

  • Cherian MG (1982) Studies of the toxicity of metallothionein in rat kidney epithelial cell culture. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Hol-land, New York, pp 193–202

    Google Scholar 

  • Cherian MG, Vostal JJ (1977) Biliary excretion of cadmium in rat. 1. Dose dependent bilary excretion and the form of cadmium in the bile. J Toxicol Environ Health 2:945–954

    PubMed  CAS  Google Scholar 

  • Chin B, Lesowitz GS, Bernstein I A, Dinman BD (1978) A cellular model for studying accommodation to environmental stresses: A protective response to subtoxic exposure to cadmium. Environ Res 16:423–431

    PubMed  CAS  Google Scholar 

  • Chowdhury P, Lousia DB, Chang LW, Rayford PL (1982) Cadmium induced pulmonary injury in mouse: A relationship with serum antitrypsin activity. Bull Environ Contam Toxicol 28:446–451

    PubMed  CAS  Google Scholar 

  • Compere S, Palmiter RD (1981) DNA methylation controls the inducibility of the mouse metallothionein I gene in lymphoid cells. Cell 25:233–240

    PubMed  CAS  Google Scholar 

  • Corrigan A J, Huang PC (1981) Cellular uptake of cadmium and zinc. Biol Trace Element Res 3:197–216

    CAS  Google Scholar 

  • Corrigan AJ, Huang PC (1983) Cadmium and zinc flux in wild-type and cadmium-resistant CHO cells. Biol Trace Element Res 5:25–33

    CAS  Google Scholar 

  • Cox DR, Palmiter RD (1983) The metallothionein-I gene maps to mouse chromosome 8: Implications for human Menkes’ disease. Hum Genet 64:61–64

    PubMed  CAS  Google Scholar 

  • Crawford BD, Barrett JC, Ts’o POP (1983) Neoplastic conversion of preneoplastic Syrian hamster cells: rate estimation by fluctuation analysis. Mol Cell Biol 3:931–945

    PubMed  CAS  Google Scholar 

  • Deaven LL, Campbell EW (1980) Factors affecting the induction of chromosomal aberrations by cadmium in Chinese hamster cells. Cytogenet Cell Genet 26:251–260

    PubMed  CAS  Google Scholar 

  • Diamond EM, Jedeikin A, Kench JE (1973) Purification of tryptophan oxygenase and its interaction with cadmium. Biochem Biophys Res Commun 52:679–686

    PubMed  CAS  Google Scholar 

  • Dierickx PJ (1982) In vitro inhibition of soluble glutathione S-transferases from rat liver by heavy metals. Enzyme 27:25–32

    PubMed  CAS  Google Scholar 

  • Doerfler W (1983) DNA methylation and gene activity. Ann Rev Biochem 52:93–124

    PubMed  CAS  Google Scholar 

  • Drysdale JW, Munro HN (1966) Regulation of synthesis and turnover of ferritin in rat liver. J Biol Chem 241:3630–3637

    PubMed  CAS  Google Scholar 

  • Durnam DM, Palmiter RD (1981) Transcriptional regulation of the mouse metallothionein I gene by heavy metals. J Biol Chem 256:5712–5716

    PubMed  CAS  Google Scholar 

  • Eaton DL, Stacey NH, Wong K-L, Klaassen CD (1980) Dose response effects of various metal ions on rat liver metallothionein, glutathione, heme oxygenase and cytochrome P-450. Toxicol Appl Pharmacol 55:393–402

    PubMed  CAS  Google Scholar 

  • Engel DW, Fowler BA (1979) Factors influencing cadmium accumulation and its toxicity to marine organisms. Environ Health Perspect 28:81–88

    PubMed  CAS  Google Scholar 

  • Enger MD, Campbell EW, Barrington HL (1976) Stimulation of informosomal RNA synthesis in cultured Chinese hamster cells exposed to low levels of cadmium. FEBS Letters 70:43–47

    PubMed  CAS  Google Scholar 

  • Enger MD, Hildebrand CE, Jones M, Barrington H (1978) Altered RNA metabolism in cultured mammalian cells exposed to low levels of Cd2 +: correlation of the effects with Cd2+ uptake and intracellular distribution. In: Mahlum D, Sikov MR, Hackett PL, Andrew FD (eds) Developmental toxicology of energy-related pollutants. DOE symposium Series 47

    Google Scholar 

  • Enger MD, Campbell EW, Ratliff RL, Tobey RA, Hildebrand CE, Kissane RJ (1979a) Cadmium-induced alterations in RNA metabolism in cultures of Chinese hamster cells sensitive to and resistant to the cytotoxic effects of cadmium. J Toxicol Environ Health 5:711–728

    PubMed  CAS  Google Scholar 

  • Enger MD, Rail LB, Hildebrand CE (1979b) Thionein gene expression in Cd2+-variants of the CHO cell: correlation of thionein synthesis rates with translatable mRNA levels during induction, deinduction, and superinduction. Nucleic Acids Res 7:271–288

    PubMed  CAS  Google Scholar 

  • Enger MD, Griffith BB, Hildebrand CE (1980a) Differential patterns of thionein synthesis regulation in Cd2+-resistant CHO variants. J Cell Biol 87:270a

    Google Scholar 

  • Enger MD, Rail LB, Walters RA, Hildebrand CE (1980b) Regulation of induced thionein gene expression in cultured mammalian cells: effects of protein synthesis inhibition on translatable thionein mRNA levels in regulatory variants of the CHO cell. Biochem Biophys Res Commun 93:343–348

    PubMed  CAS  Google Scholar 

  • Enger MD, Ferzoco LT, Tobey RA, Hildebrand CE (1981) Cadmium resistance correlated with cadmium uptake and thionein binding in CHO cell variants Cdr20F4 and Cdr30F9. J Toxicol Environ Health 7:675–690

    PubMed  CAS  Google Scholar 

  • Enger MD, Hildebrand CE, Griffith JK, Walters RA (1983a) Molecular and somatic cell genetics analysis of metal metabolism in cultured cells. In: Rennert OM, Chan W (eds) Metabolism of trace metals in man: developmental biology and genetic implications. CRC Press, Boca Raton, pp 7–24

    Google Scholar 

  • Enger MD, Hildebrand CE, Stewart CC (1983b) Cd2+ responses of cultured human blood cells. Toxicol Appl Pharmacol 69:214–224

    PubMed  CAS  Google Scholar 

  • Enger MD, Hildebrand CE, Walters RA, Seagrave JC, Barham SS, Hoagland HC (1984a) Molecular and somatic cell genetic analysis of metal resistance mechanisms in mammalian cells. In: Tashjian AH Jr (ed) Cellular approaches to understanding mechanisms of toxicity. Harvard University Press, pp 38–62

    Google Scholar 

  • Enger MD, Tesmer JG, Hanners JL, Barham SS, Alley MC, UHL CB, Tarara JE (1984b) Some cell lines derived from human cancers are cadmium-sensitive but produce metallothionein (in press)

    Google Scholar 

  • Evans RM, Patierno SR, Wang DS, Cantoni O, Costa M (1983) Growth inhibition and metallothionein induction in cadmium-resistant cells by essential and non-essential metals. Molec Pharmacol 24:77–83

    CAS  Google Scholar 

  • Failla ML, Cousins RJ, Mascenik MJ (1979) Cadmium accumulation and metabolism by rat liver parenchymal cells in primary monolayer culture. Biochim Biophys Acta 583:63–72

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1982) Role of metallothionein in transport of heavy metals. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Holland, New York

    Google Scholar 

  • Gick GG, McCarty KS Sr (1982) Amplification of the metaOothionein-I gene in cadmium-and zinc-resistant Chinese hamster ovary cells. J Biol Chem 257:9049–9053

    PubMed  CAS  Google Scholar 

  • Gick G, McCarty KS Jr, McCarty KS Sr (1981) The role of metallothionein synthesis in cadmium-and zinc-resistant CHO-K1M cells. Exp Cell Res 132:23–30

    PubMed  CAS  Google Scholar 

  • Gilbert HF (1982) Biological disulfides: the third messenger? J Biol Chem 257:12086–12091

    PubMed  CAS  Google Scholar 

  • Gilliavod N, Leonard A (1975) Mutagenicity tests with cadmium in the mouse. Toxicology 5:43–47

    PubMed  CAS  Google Scholar 

  • Griffith BB, Walters RA, Enger MD, Hildebrand CE, Griffith JK (1983) cDNA cloning and nucleotide sequence comparison of Chinese hamster metallothionein I and II mRNAs. Nucleic Acids Res 11:901–910

    PubMed  CAS  Google Scholar 

  • Griffith JK, Enger MD, Hildebrand CE, Walters RA (1981) Differential induction by cadmium of a low-complexity ribonucleic acid class in cadmium-resistant and cadmium-sensitive mammalian cells. Biochemistry 20:4755–4761

    PubMed  CAS  Google Scholar 

  • Hahn G, Li GC (1982) Thermotolerance and heat shock proteins in mammalian cells. Radiation Res 92:452–457

    PubMed  CAS  Google Scholar 

  • Hart BA, Keating RF (1980) Cadmium accumulation and distribution in human lung fibroblasts. Chem Biol Interact 29:67–83

    PubMed  CAS  Google Scholar 

  • Hata A, Tsunoo H, Nakajima H, Shintaku K, Kimura M (1980) Acute cadmium intoxication in inbred mice: a study on strain differences. Chem Biol Interact 32:29–39

    PubMed  CAS  Google Scholar 

  • Hayden TL, Turner JE, Williams MW, Cook JS, Hsie AW (1982) A model for cadmium transport and distribution in CHO cells. Comput Biomed Res 15:97–110

    PubMed  CAS  Google Scholar 

  • Heikkila JJ, Schultz GA, Iatrou K, Gedamu L (1982) Expression of a set of fish genes following heat or metal ion exposure. J Biol Chem 257:12000–12005

    PubMed  CAS  Google Scholar 

  • Henle KJ, Peck JW, Higashikubo R (1983) Protection against heat-induced cell killing by polyols in vitro. Cancer Res 43:1624–1627

    PubMed  CAS  Google Scholar 

  • Hidalgo HA, Koppa V, Bryan SE (1978) Induction of cadmium-thionein in isolated rat liver cells. Biochem J 170:219–225

    PubMed  CAS  Google Scholar 

  • Hildebrand CE, Cram LS (1979) Distribution of cadmium in human blood cultured in low levels of CdCl2: accumulation of Cd in lymphocytes and preferential binding to metallothionein. Proc Soc Exp Biol Med 161:438–443

    PubMed  CAS  Google Scholar 

  • Hildebrand CE, Enger MD (1980) Regulation of Cd2+/Zn2+-stimulated metallothionein synthesis during induction, deinduction, and superinduction. Biochemistry 19:5850–5857

    PubMed  CAS  Google Scholar 

  • Hildebrand CE, Tobey RA, Campbell EW, Enger MD (1979) A cadmium-resistant variant of the Chinese hamster (CHO) cell with increased metallothionein induction capacity. Exp Cell Res 124:237–246

    PubMed  CAS  Google Scholar 

  • Hildebrand CE, Griffith JK, Tobey RA, Walters RA, Enger MD (1982) Molecular mechanism of Cd detoxification in cadmium resistant cultured cells: role of metallothionein and other inducible factors. In: Foulkes EC (ed) The biological role of metallothionein. Elsevier/North-Holland, New York, pp 279–303

    Google Scholar 

  • Hildebrand CE, Crawford BD, Enger MD, Griffith BB, Griffith JK, Hanners JL, Jackson PJ, Longmire JL, Münk AC, Tesmer JG, Walters RA, Stallings RL (1983) Coordinate amplification of metallothionein I and II gene sequences in cadmium resistant CHO variants. In: Hamer D, Rosenberg M (eds) Gene expression, vol VIII. UCLA Symposium on cellular and molecular biology. Liss, New York, pp 467–479

    Google Scholar 

  • Hsie AW, O’Neill JP, SanSebastian JR, Couch DB, Fuscoe JC, Sun WNC, Brimer PA, Machanoff R, Riddle JC, Forbes NL, Hsie MH (1978) Mutagenicity of carcinogens: a study of 101 agents in a quantitative mammalian cell mutation system, CHO/HGPRT. Fed Proc 37:1384

    Google Scholar 

  • Huang PC, Corrigan A, Smith B, Bohdan P, Moreadith R (1980a) Cadmium resistance in CHO mutants. Fed Proc 39:1680

    Google Scholar 

  • Huang PC, Smith B, Bohdan P, Corrigan A (1980b) Effect of zinc on cadmium influx and toxicity in cultured CHO cells. Biol Trace Element Res 2:211–220

    CAS  Google Scholar 

  • Hunt DM, Mhlanga T (1983) Genetic studies on metallothionein synthesis in the mouse: the induction of metallothionein by cadmium in inbred strains. Biochem Genet 21:609–625

    PubMed  CAS  Google Scholar 

  • Ivarie RD, O’Farrell PH (1978) The glucocorticoid domain: steroid mediated changes in the rate of synthesis of rat hepatoma proteins. Cell 13:41–55

    PubMed  CAS  Google Scholar 

  • Jacobsen KB, Turner JE (1980) The interaction of cadmium and certain other metalions with proteins and nucleic acids. Toxicology 16:1–37

    Google Scholar 

  • Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs, and DNA methylation. Cell 20:85–93

    PubMed  CAS  Google Scholar 

  • Jones RH, Williams RL, Jones AM (1971) Effects of heavy metal on the immune response. Preliminary findings for cadmium in rats. Proc Soc Exp Biol Med 137:1231–1236

    PubMed  CAS  Google Scholar 

  • Kägi JHR, Vasak M, Lerch K, Gilg DEO, Hunziken P, Bernhard WR, Good M (1984) Structure of mammalian metallothionein. Environ Health Perspect 54:93–103

    PubMed  Google Scholar 

  • Karin M, Herschman HR (1979) Dexamethasone stimulation of metallothionein synthesis in HeLa cell cultures. Science 204:176–177

    PubMed  CAS  Google Scholar 

  • Karin M, Herschman HR (1980) Characterization of the metallothioneins induced in HeLa cells by dexamethasone and zinc. Eur J Biochem 107:395–401

    PubMed  CAS  Google Scholar 

  • Karin M, Holtgreve H (1983) Regulation of the human metallothionein IIA gene after transfection into rat fibroblasts. J Cell Biochem Suppl 7A:114

    Google Scholar 

  • Karin M, Richards RI (1982) Human metallothionein genes-primary structure of the metallothionein-II gene and a related processed gene. Nature 299:797–802

    PubMed  CAS  Google Scholar 

  • Karin M, Andersen RD, Herschman HR (1981) Induction of metallothionein mRNA in HeLa cells by dexamethasone and by heavy metals. Eur J Biochem 118:527–531

    PubMed  CAS  Google Scholar 

  • Kiremidjian-Schumacher L, Stotzky G, Dickstein RA, Schwartz J (1981a) Influence of cadmium, lead, and zinc on the ability of guinea pig macrophages to interact with macrophage migration inhibitory factor. Environ Res 24:106–116

    PubMed  CAS  Google Scholar 

  • Kiremidjian-Schumacher L, Stotzky G, Likhite V, Schwartz J, Dickstein RA (1981b) Influence of cadmium, lead, and zinc on the ability of sensitized guinea pig lymphocytes to interact with specific antigen and to produce lymphokine. Environ Res 24:96–105

    PubMed  CAS  Google Scholar 

  • Kjellstrom T, Nordberg GF (1978) A kinetic model of cadmium metabolism in the human being. Environ Res 16:248–269

    PubMed  CAS  Google Scholar 

  • Klauser S, Kägi JHR, Wilson KJ (1983) Characterization of isoprotein patterns in tissue extracts and isolated samples of metallothioneins by reverse-phase high-pressure liquid chromatography. Biochem J 209:71–80

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Kimura M (1980) Different inducibility of metallothionein in various mammalian cells in vitro. Toxicol Lett 5:357–362

    PubMed  CAS  Google Scholar 

  • Kojima Y, Kägi JHR (1978) Metallothionein. Trends Biochem Sci 3:90–93

    CAS  Google Scholar 

  • Koller LD (1973) Immunosuppression produced by lead, cadmium, and mercury. Am J Vet Res 34:1457–1458

    PubMed  CAS  Google Scholar 

  • Kotsonis FN, Klaassen Cd (1979) The relationship of metallothionein to the toxicity of cadmium after prolonged oral administration to rats. Toxicol Appl Pharmacol 46:39–54

    Google Scholar 

  • Landry J, Bernier D, Chrétien P, Nicole LM, Tanguay RM, Marceau N (1982) Synthesis and degradation of heat shock proteins during development and decay of thermotol-erance. Cancer Res 42:2457–2461

    PubMed  CAS  Google Scholar 

  • Lauwerys R (1979) Cadmium in man. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, New York, pp 433–456

    Google Scholar 

  • Lawrence DA (1981) Heavy metal modulation of lymphocyte activities. Toxicol Appl Pharmacol 57:439–451

    PubMed  CAS  Google Scholar 

  • Levinson W, Oppermann H, Jackson J (1980) Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta 606:170–180

    PubMed  CAS  Google Scholar 

  • Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: Evidence for metalloprotein interactions. Cell 29:171–181

    PubMed  CAS  Google Scholar 

  • Li GC, Shrieve DC, Werb Z (1982) Correlations between synthesis of heat shock proteins and development of tolerance to heat and to adriamycin in Chinese hamster fibroblasts: heat shock and other inducers. In: Schlesinger MJ, Ashburner M, Tissieres A (ed) Heat shock from bacteria to man. Cold Spring Harbor Laboratory, New York, pp 395–404

    Google Scholar 

  • Loose LD, Silkworth JB, Warrington D (1977) Cadmium-induced depression of the respiratory burst in mouse pulmonary alveolar macrophages, peritoneal macrophages and polymorphonuclear neutrophils. Biochem Biophys Res Comm 79:326–332

    PubMed  CAS  Google Scholar 

  • Lucis OJ, Lucis R (1969) Distribution of cadmium 109 and zinc 65 in mice of inbred strains. Arch Environ Health 19:334–336

    PubMed  CAS  Google Scholar 

  • Lucis OJ, Shaikh ZA, Embil J A Jr (1970) Cadmium as a trace element and cadmium binding components in human cells. Experientia 26:1109–1110

    PubMed  CAS  Google Scholar 

  • Maines MD, Chung AS, Kulty RK (1982) The inhibition of testicular heme oxygenase activity by cadmium. J Biol Chem 257:14116–14121

    PubMed  CAS  Google Scholar 

  • Maiti I, Mbikay M, Marengo C, Thirion JP (1982) Immunological characterization of metallothioneins in mouse LMTK cells and in a variant resistant to cadmium. J Cell Physiol 112:35–41

    PubMed  CAS  Google Scholar 

  • Malcolm D (1972) Potential carcinogenic effect of cadmium in animals and man. Ann Occup Hyg 15:33–36

    PubMed  CAS  Google Scholar 

  • Marx JL (1983) Immunoglobulin genes have enhancers. Science 221:733–734

    Google Scholar 

  • Mayo KE, Palmiter RD (1981) Glucocorticoid regulation of metallothionein-I mRNA synthesis in cultured mouse cells. J Biol Chem 256:2621–2624

    PubMed  CAS  Google Scholar 

  • Mayo KE, Palmiter RD (1982) Glucocorticoid regulation of mouse metallothionein I gene is selectively lost following amplification of the gene. J Biol Chem 257:3061–3067

    PubMed  CAS  Google Scholar 

  • Mayo KE, Warren R, Palmiter RD (1982) The mouse metallothionein-I gene is transcriptionally regulated by cadmium following transfection into human or mouse cells. Cell 29:99–108

    PubMed  CAS  Google Scholar 

  • Meisler M, Orlowski C, Gross E, Bloor JH (1979) Cadmium metabolism in cdm/cdm mice. Biochem Gen 17:731–736

    CAS  Google Scholar 

  • Minkel DT, Poulsen K, Weilgus S, Shaw CF III, Petering DH (1980) On the sensitivity of metallothioneins to oxidation during isolation. Biochem J 191:475–485

    PubMed  CAS  Google Scholar 

  • Minton KW, Karmin P, Hahn GM, Minton AP (1982) Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci 79:7107–7111

    PubMed  CAS  Google Scholar 

  • Muller L, Ohnesorge FK (1982) Different response of liver parenchymal cells from starved and fed rats to cadmium. Toxicology 25:141–150

    PubMed  CAS  Google Scholar 

  • Nagai Y, Sato M, Sasaki M (1982) Effect of cadmium administration upon urinary excretion of hydroxylysine and hydroxyproline in the rat. Toxicol Appl Pharmacol 63:188–193

    PubMed  CAS  Google Scholar 

  • Nordberg M, Kojima Y (1979) Metallothionein and other low molecular weight metal-binding proteins. In: Kagi JHR, Nordberg M (eds) Metallothionein. Birkhauser, Boston, pp 41–135

    Google Scholar 

  • Oh SH, Deagen JT, Whanger PD, Weswig PH (1978) Biological function of metallothionein V. Its induction in rats by various stresses. Am J Physiol 234:E282–285

    PubMed  CAS  Google Scholar 

  • Ohsawa M, Kawai K (1981) Cytological shift in lymphocytes induced by cadmium in mice and rats. Environ Res 24:192–200

    PubMed  CAS  Google Scholar 

  • O’Malley BW, Means AR (1974) Female steroid hormones and target cell nuclei. Science 183:610–620

    PubMed  Google Scholar 

  • Otvos JD, Armitage IM (1980) Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci USA 77:7094–7098

    PubMed  CAS  Google Scholar 

  • Ozawa K, Sato A, Okada H (1976) Differential susceptibility of L cells in the exponential and stationary phases to cadmium chloride. Jpn J Pharmacol 26:347–351

    PubMed  CAS  Google Scholar 

  • Pelham HRB (1982) A regulatory upstream promotor element in the Drosophila hsp 70 heat-shock gene. Cell 30:517–528

    PubMed  CAS  Google Scholar 

  • Perrin DD, Watt AE (1971) Complex formation of zinc and cadmium with glutathione. Biochim Biophys Acta 230:96–104

    PubMed  CAS  Google Scholar 

  • Petering DH, Petering HG (1979) A molecular basis for metal toxicity. In: Bhatnagar RS (ed) Molecular basis of environmental toxicity. Ann Arbor Science, Ann Arbor, Michigan

    Google Scholar 

  • Piscator M (1964) On cadmium in normal human kidneys together with a report on the isolation of metallothionein from livers of cadmium-exposed rabbits. Nord Hyg Tidskr 45:76–82

    PubMed  CAS  Google Scholar 

  • Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    PubMed  CAS  Google Scholar 

  • Roberts KS, Cryer A, Kay J, de LG Solbe JF (1979) A high molecular weight cadmium-binding fraction isolated from the liver cytosol of trout exposed to environmentally relevant concentrations of the metal. Biochem Soc Trans 7:650–651

    PubMed  CAS  Google Scholar 

  • Röhr G, Bauchinger M (1976) Chromosome analyses in cell cultures of the Chinese hamster after application of cadmium sulphate. Mutat Res 40:125–130

    PubMed  Google Scholar 

  • Rudd CJ, Herschman HR (1978) Metallothionein accumulation in response to cadmium in a clonal rat liver cell line. Toxicol Appl Pharmacol 44:1–10

    Google Scholar 

  • Rugstad HE, Norseth T (1975) Cadmium resistance and content of cadmium-binding protein in cultured human cells. Nature 257:136–137

    PubMed  CAS  Google Scholar 

  • Samarawickrama GP (1979) Biological effects of cadmium in mammals. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, New York

    Google Scholar 

  • Schimke RT (ed) (1982) Gene amplification. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sciortino CV, Failla ML, Bullis DB (1982) Identification of metallothionein in parenchymal and non-parenchymal liver cells of the adult rat. Biochem J 204:509–514

    PubMed  CAS  Google Scholar 

  • Seagrave JC, Hildebrand CE, Enger MD (1983) Effects of cadmium on glutathione metabolism in cadmium sensitive and cadmium resistant Chinese hamster cell lines. Toxicology 29:101–107

    PubMed  CAS  Google Scholar 

  • Senear AW, Palmiter RD (1982) Expression of the mouse metallothionein-I gene alters the nuclease hypersensitivity of its 5’ regulatory region. Cold Spring Harbor Symp Quant Biol XLVII:539–547

    Google Scholar 

  • Shapiro SG, Cousins RJ (1980) Induction of rat liver metallothionein mRNA and its distribution between free and membrane-bound polyribosomes. Biochem J 190:755–764

    PubMed  CAS  Google Scholar 

  • Squibb KS, Cousins RJ (1977) Synthesis of metallothionein in a polysomal cell-free system. Biochem Biophys Res Commun 75:806–812

    PubMed  CAS  Google Scholar 

  • Squibb KS, Cousins RJ, Feldman SL (1977) Control of zinc-thionein synthesis in rat liver. Biochem J 164:223–228

    PubMed  CAS  Google Scholar 

  • Stacey NH, Kappus H (1982) Heavy metal toxicity and lipid peroxidation in isolated rat hepatocytes. Naunyn Schmiedebergs Arch Pharmacol [Suppl] 319:R27

    Google Scholar 

  • Stacey NH, Klaassen CD (1980) Cadmium uptake by isolated rat hepatocytes. Toxicol Appl Pharm 55:448–455

    CAS  Google Scholar 

  • Sunderman FW (1978) Carcinogenic effects of metals. Fed Proc 37:40–46

    PubMed  CAS  Google Scholar 

  • Taylor BA, Heiniger HJ, Meier H (1973) Genetic analysis of resistance to cadmium-in-duced testicular damage in mice. Proc Soc Exp Biol Med 143:629–633

    PubMed  CAS  Google Scholar 

  • Walters RA, Enger MD, Hildebrand CE, Griffith JK (1981) Genes coding for metal induced synthesis of RNA sequences are differentially amplified and regulated in mammalian cells. In: Brown D, Fox CF (eds) Developmental biology using purified genes. ICN-UCLA Symposium on molecular and cellular biology, vol XXIII. Academic, New York, pp 229–237

    Google Scholar 

  • Watanabe T, Schimada T, Endo A (1979) Mutagenic effects of cadmium on mammalian oocyte chromosomes. Mutat Res 67:349–356

    PubMed  CAS  Google Scholar 

  • Webb M (1975) The metallothioneins. Biochem Soc Trans 3:632–634

    PubMed  CAS  Google Scholar 

  • Webb M, Vershoyle RD (1976) An investigation of the role of metallothioneins in protection against the acute toxicity of the cadmium ion. Biochem Pharmacol 25:673–679

    PubMed  CAS  Google Scholar 

  • Wolkowsky-Tyl R, Preston SF (1979) The interaction of cadmium-binding proteins and progesterone in cadmium-induced tissue and embryo toxicity. Teratology 20:341–352

    Google Scholar 

  • Wong KL, Klaassen CD (1981) Relationship between liver and kidney levels of glutathione and metallothionein in rats. Toxicology 19:39–47

    PubMed  CAS  Google Scholar 

  • Zelazowski AJ, Szymanska JA, Cierniewski CS (1980) Immunological properties of low molecular-weight proteins binding heavy metals in rat kidney and liver. Chem Biol Interact 33:115–125

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Enger, M.D., Hildebrand, C.E., Seagrave, J., Tobey, R.A. (1986). Cellular Resistance to Cadmium. In: Foulkes, E.C. (eds) Cadmium. Handbook of Experimental Pharmacology, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70856-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70856-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70858-9

  • Online ISBN: 978-3-642-70856-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics