Skip to main content

The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

  • Conference paper
Progress in Sensory Physiology

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 8))

Abstract

Basic sensory functions depend on physical stimulus characteristics, physiological perceptual mechanisms, the state of the nervous system at the time of stimulus arrival, and also on the exact location of the stimulus on the receptor plane. In the somatosensory system, for example, the spatial resolution for mechanical stimuli differs according to whether they are applied to the fingertips or to the arm area, and the visual system shows pronounced functional differences between the center and the periphery of the retina, related to the different local packing densities of the photoreceptors and their different connections to the retinal ganglion cells.

We are all aware of the fact that science has become more and more impatient and competitive. New experiments and new techniques may open new ways of understanding the nervous system. However, their success is based entirely on the intelligent and responsible use of them, which implies a thorough knowledge of what has been learned from the serious work of the past. The questions remain the same, and the techniques themselves should not be overvalued. Rather, the knowledge and results presented ... should be judged by the intelligence of the question, the seriousness of the approach, and the rigor of the conclusion, no matter whether the technique was traditional or modern.

O. D. Creutzfeldt (Words of Welcome, Seventh European Neuroscience Congress, Hamburg, 1983)

To Annemarie and Gernot

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi-Usami E, Lehmann D (1983) Monocular and binocular evoked average potential field topography: upper and lower hemiretSnal stimuli. Exp Brain Res 50:341–346

    PubMed  CAS  Google Scholar 

  • Aebersold H, Creutzfeldt OD, Kuhnt U and Sanides D (1981) Representation of the visual field in the optic tract and optic chiasm of the cat. Exp Brain Res 42:127–145

    PubMed  CAS  Google Scholar 

  • Afanador AJ, Andrews CE (1978) Rod and cone contribution to the EOG ratio. Am J Optom 55:101–107

    CAS  Google Scholar 

  • Ali MA, Klyne MA (1985) Vision in vertebrates. Plenum New York

    Google Scholar 

  • Alpern M (1972) Eye movements. In: Jameson D, Hurwich LM (eds) Handbook of sensory physiology, vol VII/4. Springer, Berlin Heidelberg New York, pp 304–330

    Google Scholar 

  • Annis RC, Frost B (1973) Human visual ecology and orientation anisotropics in acuity. Science 182:729–731

    PubMed  CAS  Google Scholar 

  • Arden GB, Kelsey JH (1962a) Changes produced by light in the standing potential of the human eye. J Physiol 161, 189–204

    PubMed  CAS  Google Scholar 

  • Arden GB, Kelsey JH (1962b) Some observations on the relationship between the standing potential of the human eye and the bleaching and regeneration of visual purple. J Physiol 161, 205–226

    PubMed  CAS  Google Scholar 

  • Arden GB, Carter RM, Hogg C, Siegel IM, Margolis S (1979) A gold foil electrode: extending the horizons for clinical electroretinography. Invest Ophthalmol 18, 421–426

    CAS  Google Scholar 

  • Armington JC (1968) The electroretinogram, the visual evoked potential, and the arealuminance relation. Vision Res 1968, 8, 263–276

    Google Scholar 

  • Armington JC (1974) The electroretinogram. Academic, New York

    Google Scholar 

  • Aschoff U (1981) Skotopische und photopische Anteile der Hell- und Dunkelschwingung im Elektrookulogramm. Dev Ophthalmol 4, 149–166

    PubMed  CAS  Google Scholar 

  • Aubert H, Förster R (1857) Beiträge zur Kenntnis des indirecten Sehens. I. Untersuchungen über den Raumsinn der Retina. Arch Ophthalmol 3, 1–37

    Google Scholar 

  • Baizer JS, Maguire WM (1983) Double representation of lower visual quadrant in prelunate gyrus of rhesus monkey. Invest Ophthalmol Vis Sci 24, 1436–1439

    PubMed  CAS  Google Scholar 

  • Bartlett NR, Sticht TG, Pease VP (1968) Effects of wavelength and retinal locus on the reaction time to onset and offset stimulation. J Exp Psychol 78, 699–701

    PubMed  CAS  Google Scholar 

  • Basier A (1911) Über die Verschmelzung von zwei nacheinander erfolgenden Lichtreizen. Pflügers Arch 143, 245–251

    Google Scholar 

  • Bennet-Clark HC (1964) The oculomotor response to small target replacements. Optica Acta 11, 301–314

    PubMed  CAS  Google Scholar 

  • Berger H (1929) Über das Elektrenkephalogramm des Menschen. 1, Mitteilung. Arch Psychiat Nervenkrankh 87, 527–570

    Google Scholar 

  • Bilge M, Bingle A, Seneviratne KG, Whitteridge D (1967) A map of the visual cortex in the cat. J Physiol 191, 116P–118P

    PubMed  CAS  Google Scholar 

  • Bishop PO, Kozak W, Vakkur GJ (1962) Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics. J Physiol 163, 466–502

    PubMed  CAS  Google Scholar 

  • Bjaalie JG (1985) Distribution in areas 18 and 19 of neurons projecting to the pontine nuclei: a quantitative study in the cat with retrograde transport of HRP-WGA. Exp Brain Res 57, 585–597

    PubMed  CAS  Google Scholar 

  • Bjaalie JG, Brodai P (1983) Distribution in area 17 of neurons projecting to the pontine nuclei: a quantitative study in the cat with retrograde transport of HRP-WGA. J Comp Neurol 221:289–303

    PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Diamond SP (1976) The measurement of spatial contrast sensitivity in cases of blurred vision associated with cortical lesions. Brain 99, 695–710

    PubMed  CAS  Google Scholar 

  • Braddick D, Campbell FW, Atkinson J (1978) Channels in vision: basic aspects. In: Held R, Leibowitz HW, Teuber H-J (eds) Handbook of sensory physiology, vol 8. Springer, Berlin Heidelberg New York, pp 3–38

    Google Scholar 

  • Breitmeyer B, Julesz B, Kropfl W (1975) Dynamic random-dot stereograms reveal up-down anisotropy and left-right isotropy between cortical hemifields. Science 187, 269–270

    PubMed  CAS  Google Scholar 

  • Brettel H, Caelli T, Hilz R, Rentschler I (1982) Modelling perceptual distortion: amplitude and phase transmission in the human visual system. Hum Neurobiol 1, 61–67

    PubMed  CAS  Google Scholar 

  • Brindley G, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196, 479–493

    PubMed  CAS  Google Scholar 

  • Broca P (1861) Perte de la parole. Romolissement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bull Soc Anthrop (Paris) 219

    Google Scholar 

  • Brown JL (1965) Flicker and intermittent stimulation. In: Graham CH (ed) Vision and visual perception. Wiley, New York, pp 251–320

    Google Scholar 

  • Burkhalter A, Felleman DJ, Newsome WT, van Essen DC (1986) Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Res 26, 63–80

    PubMed  CAS  Google Scholar 

  • Campbell FW, Robson JG (1968) Applications of Fourier analysis to the visibility of gratings. J Physiol 197, 551–566

    PubMed  CAS  Google Scholar 

  • Caton R (1875) The electric currents of the brain. Br Med J 2, 278

    Google Scholar 

  • Clarke PGH, Whitteridge D (1976) The projection of the retina, including the red area, on to the optic tectum of the pigeon. Q J Exp Physiol 61, 351–358

    CAS  Google Scholar 

  • Cocito L, Favale E, Taraglione A (1977) Asimmetrie funzionali tra emicampo visivo superiore ed inferiore nel soggetto normale. Boll Soc It Biol Sper 53, 629–633

    CAS  Google Scholar 

  • Copenhaver RM, Perry NW (1964) Factors affecting visually evoked cortical potentials such as impaired vision of varying etiology. Invest Ophthalmol 3, 665–675

    PubMed  CAS  Google Scholar 

  • Creutzfeldt OD (1983) Cortex cerebri. Springer Berlin Heidelberg New York

    Google Scholar 

  • Creutzfeldt OD, Kuhnt U (1967) The visual evoked potential: physiological, developmental, and clinical aspects. Electroencephalogr Clin Neurophysiol [Suppl 26]:29–41

    Google Scholar 

  • Curcio CA, Hendrickson AE, Kalina RE (1985) Topographical distribution of human photoreceptors. Invest Ophthalmol Vis Sci 26 [Suppl]:261

    Google Scholar 

  • Dawson WW, Maida TM (1984) Relations between the human retinal cone and ganglion cell distribution. Ophthalmologica 188, 216–221

    PubMed  CAS  Google Scholar 

  • Delius JD, Perchard RJ, Emmerton J (1976) Polarized light discrimination by pigeons and an electroretinographic correlate. J Comp Physiol Psychol 90, 560–571

    PubMed  CAS  Google Scholar 

  • Dimond SJ, Beaumont JG (1974) Hemisphere function in the human brain. Elek Science, London, p 398

    Google Scholar 

  • Ditchburn RW (1973) Eye movements and visual perception. Clarendon, Oxford

    Google Scholar 

  • Dodt E (1951) Cone electroretinography by flicker. Nature 168:738

    PubMed  CAS  Google Scholar 

  • Dodt E (1964) Erregung und Hemmung retinaler Neurone bei intermittierender Belichtung. Doc Ophthalmol 18, 259–274

    PubMed  CAS  Google Scholar 

  • Dodt E, Baier M (1984) Area-luminance relationship for a constant light peak of the standing potential in the human eye. Ophthalmologica 188, 232–238

    PubMed  CAS  Google Scholar 

  • Dodt E, Enroth C (1954) Retinal flicker response in cat. Acta Phys Scand 30, 375–390

    CAS  Google Scholar 

  • Donchin E, Ritter W, McCallum WC (1978) Cognitive psychophysiology: the endogenous components of the ERP. In: Callaway E, Tueting P, Koslow SH (eds), Event-related brain potentials in man. Academic, New York, pp 349–411

    Google Scholar 

  • Dräger UC, Hubel DH (1976) Topography of visual and somatosensory projections to mouse superior colliculus. J Neurophysiol 39, 91–101

    PubMed  Google Scholar 

  • Drance SM (1977) The visual field of low tension glaucoma and shock-induced optic neuropathy. Arch Ophthalmol 95, 1359–1361

    PubMed  CAS  Google Scholar 

  • Drasdo N (1977) The neural representation of visual space. Nature 266, 554–555

    PubMed  CAS  Google Scholar 

  • Eason RG, White CT, Oden D (1967) Averaged occipital responses to stimulation of sites in the upper and lower halves of the retina. Percept Psychophys 2, 423–425

    Google Scholar 

  • Ehrlich D (1981) Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. J Comp Neurol 195, 643–657

    PubMed  CAS  Google Scholar 

  • Elenius V, Aantaa E (1973) Light-induced increase in amplitude of electro-oculogram. Arch Ophthalmol 90, 60–63

    PubMed  CAS  Google Scholar 

  • Emmerton J (1983a) Functional morphology of the visual system. In: Abs M (ed), Physiology and behaviour of the pigeon, Academic, New York, pp 221–244

    Google Scholar 

  • Emmerton J (1983b) Vision. In: Abs M (ed), Physiology and behaviour of the pigeon, Academic, New York, pp 245–266

    Google Scholar 

  • Estevez O, Spekreijse H (1974) Relationship between pattern appearance — disappearance and pattern reversal response. Exp Brain Res 19, 233–238

    PubMed  CAS  Google Scholar 

  • Flammer J, Drance SM, Fankhausen F, Augustiny L (1984) Differential light threshold in automated static perimetry. Arch Ophthalmol 102, 876–879

    PubMed  CAS  Google Scholar 

  • Fox SS, O’Brien JH (1965) Duplication of evoked potential waveform by curve of probability of firing of a single cell. Science 147, 888–890

    PubMed  CAS  Google Scholar 

  • Freeman RB (1964) Figurai after-effects: displacement or contrast. Am J Pyschol 77, 607–613

    Google Scholar 

  • Freeman WJ (1978) Discussion in E. Donchin: Use of scalp distribution as a dependent variable in event-related potential studies: excerpts of preconference correspondence. In: Otto DA (ed) Multidisciplinary perspectives.., in event-related brain potential research. EPA, Washington, pp 501–510

    Google Scholar 

  • Gazzaniga MS (1970) The bisected brain. Appleton-Century-Crofts, New York

    Google Scholar 

  • Gibson A, Baker J, Mower G, Glickstein M (1978) Corticopontine cells in area 18 of the cat. J Neurophysiol 41, 484–495

    PubMed  CAS  Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Glickstein M, Stein J, King RA (1972) Visual input to the pontine nuclei. Science 178, 1110–1111

    PubMed  CAS  Google Scholar 

  • Goodale MA (1983) Visually guided, pecking in the pigeon (Columba livia). Brain Behav Evol 22, 22–41

    PubMed  CAS  Google Scholar 

  • Gramer E, Gerlach R, Krieglstein GK, Leydhecker W (1982) Zur Topographie früher glaukomatöser Gesichtsfeldausfälle bei der Computerperimetrie. Klin Monatsbl Augenheilk 180, 515–523

    CAS  Google Scholar 

  • Granit R (1947) Sensory mechanisms of the retina. Hafner, New York

    Google Scholar 

  • Granit R (1955) Centrifugal and antidromic effects on ganglion cells of retina. J Neurophysiol 18, 388–411

    PubMed  CAS  Google Scholar 

  • Granit R, Hammond EL (1931) Comparative studies on the peripheral and central retina. V. The sensation-time curve and time course of the fusion frequency on intermittent stimulation. Am J Physiol 98, 654–663

    Google Scholar 

  • Greenberg JH, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, Stein A, Tusa R, Dann R, Christman D, Fowler J, McGregor B, Wolf A (1981) Metabolic mapping of functional activity in human subjects with the [18-F]fluorodeoxyglucose technique. Science 212, 678–680

    PubMed  CAS  Google Scholar 

  • Grehn F, Prost M (1983) Function of retinal nerve fibers depends on perfusion pressure: neurophysiologic investigations during acute intraocular pressure elevation. Invest Ophthalmol 24, 347–353

    CAS  Google Scholar 

  • Griff ER, Steinberg RH (1982) Origin of the light peak: in vitro study of Gekko gekko. J Physiol 331, 637–652

    PubMed  CAS  Google Scholar 

  • Groneberg A, Teping C (1980) Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster. Ber Dtsch Ophthalmol Ges 77, 409–415

    Google Scholar 

  • Grüsser O-J (1984) Face recognition within the reach of neurobiology and beyond it. Hum Neurobiol 3, 183–190

    PubMed  Google Scholar 

  • Grüsser O-J, Kapp H (1958) Reaktionen retinaler Neurone nach Lichtblitzen. II. Doppelblitze mit wechselndem Blitzintervall. Pflügers Arch 266, 111–129

    PubMed  Google Scholar 

  • Grüsser O-J, Rabelo C (1958) Reaktionen retinaler Neurone nach Lichtblitzen. I. Einzelblitze und Blitzreize wechselnder Frequenz. Pflügers Arch 265, 501–525

    PubMed  Google Scholar 

  • Gstalder RJ, Green DG (1971) Laser interferometric acuity in amblyopia. J Pediatr Ophthalmol 8, 251–256

    Google Scholar 

  • Hall GS, von Kries J (1879) Über die Abhängigkeit der Reaktionszeit vom Ort des Reizes. Arch Anat Physiol (Leipzig) [Suppl] 1–10

    Google Scholar 

  • Halliday AM, McDonald WI, Mushin J (1973) The visual evoked response in the diagnosis of multiple sclerosis. Br Med J 4, 661–664

    PubMed  CAS  Google Scholar 

  • Hayreh SS, Revie IHS, Edwards J (1970) Vasogenic origin of visual field defects and optic nerve changes in glaucoma. Br J Ophthalmol 54, 461–472

    PubMed  CAS  Google Scholar 

  • Hebel R, Holländer H (1983) Size and distribution of ganglion cells in the human retina. Anat Embryol 168, 125–136

    PubMed  CAS  Google Scholar 

  • Hirsch HVB, Spinelli DN (1970) Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 869–871

    PubMed  CAS  Google Scholar 

  • Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39, 526–530

    PubMed  CAS  Google Scholar 

  • Holden AL, Powell TPS (1972) The functional organization of the isthmo-optic nucleus in the pigeon. J Physiol 223, 419–447

    PubMed  CAS  Google Scholar 

  • Holländer H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55, 483–493

    PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6, 65–70

    Google Scholar 

  • Holmes G (1945) The organization of the visual cortex in man. Proc R Soc, Lond (Biol) 132, 348–361

    Google Scholar 

  • Hubel DH, Wiesel TN (1970a) Cells sensitive to binocular depth in area 18 of the macaque monkey cortex, Nature 225, 41–42

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1970b) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206, 419–436

    PubMed  CAS  Google Scholar 

  • Hughes A (1975) A quantitative analysis of the cat retinal ganglion cell topography. J Comp Neurol 163, 107–128

    PubMed  CAS  Google Scholar 

  • Hughes A, Wässle H (1976) The cat optic nerve: fibre total count and diameter spectrum. J Comp Neurol 169, 171–184

    PubMed  CAS  Google Scholar 

  • Hylkema BS (1942) Examination of the visual field by determining the fusion frequency. Acta Ophthalmol 20, 181–193

    Google Scholar 

  • Jampolsky A (1978) Unequal visual inputs in strabismus management: a comparison of human and animal strabismus. In: Symposium on strabismus. Transactions of the New Orleans Academy of Ophthalmology. Mosby, St. Louis, pp 358–492

    Google Scholar 

  • Jeeves MA (1984) The historical roots and recurring issues of neurobiological studies of face perception. Hum Neurobiol 3, 191–196

    PubMed  CAS  Google Scholar 

  • Jeffreys DA, Smith AT (1979) The polarity inversion of scalp potentials evoked by upper and lower half field stimulus patterns: latency or surface distribution differences? Electroencephalogr Clin Neurophysiol 46, 409–415

    PubMed  CAS  Google Scholar 

  • Jewett DL, Romano MN, Williston JS (1970) Human auditory evoked potentials: possible brain stem components detected on the scalp. Science 167, 1517–1518

    PubMed  CAS  Google Scholar 

  • Jones RK, Wilcott IT (1977) Topographic impairment of night vision related to exercise. Am J Ophthalmol 84, 868–871

    PubMed  CAS  Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  • Kavanagh RN, Darcey TM, Lehmann D, Fender DH (1978) Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans Biomed Eng 25, 421–429

    PubMed  CAS  Google Scholar 

  • Kimura H, Tsutsui J (1981) Average responses evoked by moving grating pattern in the upper, central and lower visual field. Neurosci Lett 24, 295–299

    PubMed  CAS  Google Scholar 

  • King-Smith PE (1969) Absorption spectra and function of the colored oil drops in the pigeon retina. Vision Res 9, 1391–1399

    PubMed  CAS  Google Scholar 

  • Kleberger E (1955) Untersuchungen über die Verschmelzungsfrequenz intermittierendenLichts an gesunden und kranken Augen. III. Das normale Flimmergesichtsfeld. Graefes Arch Ophthalmol 157, 158–166

    CAS  Google Scholar 

  • Kriss A, Halliday AM (1980) A comparison of occipital potentials evoked by pattern onset, offset and reversal by movement. In: Barber C (ed) Evoked potentials. MTP Press, Lancaster, pp 205–212

    Google Scholar 

  • Kuba M, Peregrin K, Vit F, Hanusova I (1982) Visual evoked responses to reversal stimulation in the upper and lower half of the central part of the visual field in man. Physiol Bohemeslow 31, 503–510

    CAS  Google Scholar 

  • Landau D, Dawson WW (1970) The histology of retinas from the pinnipedia. Vision Res 10, 691–702

    PubMed  CAS  Google Scholar 

  • Landis C (1954) Determinants of critical flicker-fusion threshold. Physiol Rev 34, 259–286

    PubMed  CAS  Google Scholar 

  • Landolt E, Hummelsheim E (1904) Die Untersuchung der Funktionen des excentrischen Netzhautgebietes. In: Sämisch T (ed) Gräfe-Sämisch Handbuch der gesamten Augenheilkunde, vol 4. Engelmann, Leipzig, pp 503–583

    Google Scholar 

  • Lawden MC (1982) The analysis of spatial phase in amblyopia. Hum Neurobiol 1, 55–60

    PubMed  CAS  Google Scholar 

  • Lehmann D (1977) The EEG as scalp field distribution. In: Rémond A (ed) EEG informatics. Elsevier, Amsterdam, pp 365–384

    Google Scholar 

  • Lehmann D (1984) EEG measurement of brain activity: spatial aspects, segmentation and imaging. Int J Psychophysiol 1, 267–276

    PubMed  CAS  Google Scholar 

  • Lehmann D, Julesz B (1978) Lateralized cortical potentials elicited by dynamic random dot stereograms. Vision Res 18, 1265–1271

    PubMed  CAS  Google Scholar 

  • Lehmann D, Mir Z (1976) Methodik und Auswertung visuell evozierter EEG-Potentiale bei Verdacht auf multiple Sklerose. J Neurol 213, 97–103

    PubMed  CAS  Google Scholar 

  • Lehmann D, Skrandies W (1979) Multichannel evoked potential fields show different properties of human upper and lower hemi-retinal systems. Exp Brain Res 35, 151–159

    PubMed  CAS  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48, 609–621

    PubMed  CAS  Google Scholar 

  • Lehmann D, Skrandies W (1984) Spatial analysis of evoked potentials in man: a review. Progr Neurobiol 23, 227–250

    CAS  Google Scholar 

  • Lehmann D, Meles HP, Mir Z (1977) Average multichannel EEG potential fields evoked from upper und lower hemiretina: latency differences. Electroencephalogr Clin Neurphysiol 43, 725–731

    Google Scholar 

  • Lehmann D, Darcey TM, Skrandies W (1982) Intracerebral and scalp fields evoked by hemiretinal checkerboard reversal, and modeling of their dipole generators. In: Courjon J, Maugiere F, Revol M (eds) Clinical applications of evoked potentials in neurology. Raven, New York, pp 41–48

    Google Scholar 

  • Lesèvre N (1972) Potentiels évoqués par des patterns chez l’homme: influence des variables caracterisant le stimulus et sa position dans le champ visuel. In: Fessard A, Lelord G (eds) Activités evoquées et leur conditionnement. INSERM, Paris, pp 1–22

    Google Scholar 

  • Lesèvre N, Joseph JP (1979) Modifications of the pattern-evoked potential (PEP) in relation to the stimulated part of the visual field. Electroencephalogr Clin Neurophysiol 47, 183–203

    PubMed  Google Scholar 

  • Lichtenstein M, White CT (1961) Relative visual latency as a function of retinal locus. J Opt Soc Am 51, 1033–1034

    PubMed  CAS  Google Scholar 

  • Lindsley DB, Lansing RW (1956) Flicker and two-flash fusional threshold and EEG, Am Psychol 11, 433

    Google Scholar 

  • Linsenmeyer RA, Steinberg RH (1982) Origin and sensitivity of the light peak in the intact cat eye. J Physiol 331, 653–673

    Google Scholar 

  • Lipkin BS (1962) Monocular flicker discrimination as a function of the luminance and area of contralateral steady light: I. Luminance. II. Area. J Opt Soc Am 52:1287–1295, 1296–1300

    Google Scholar 

  • Low FN (1943) The peripheral visual acuity of 100 subjects. Am J Physiol 140, 83–88

    Google Scholar 

  • Lundh BL, Lennerstrand G, Derefeldt G (1983) Central and peripheral normal contrast sensitivity for static and dynamic sinusoidal gratings. Acta Ophthalmol 61, 171–182

    CAS  Google Scholar 

  • Luria SM, Kinney JA (1970) Underwater vision. Science 167, 1454–1461

    PubMed  CAS  Google Scholar 

  • MacKay DM (1984a) Source density analysis of scalp potentials during evaluated action. I. Coronal distribution. Exp Brain Res 54, 73–85

    PubMed  CAS  Google Scholar 

  • MacKay DM (1984b) Source density analysis of scalp potentials during evaluated action. II. Lateral coronal distributions. Exp Brain Res 54, 86–94

    PubMed  CAS  Google Scholar 

  • Maffei L (1982) Electroretinographic and visual cortical potentials in response to alternating gratings. Ann NY Acad Sci 388, 1–10

    PubMed  CAS  Google Scholar 

  • Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211, 953–955

    Google Scholar 

  • Maffei L, Fiorentini A, Bisti S, Holländer H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59, 423–425

    PubMed  CAS  Google Scholar 

  • Magrotti E, Cosi V, Borutti G (1980) Differenze funzionali tra emicampi visivi superiore ed inferiore per stimoli non strutturanti. Boll Soc Ital Biol Sper 56, 416–422

    PubMed  CAS  Google Scholar 

  • Martin GR, Muntz WRA (1979) Retinal oil droplets and vision in the pigeon (Columba liva). In: Granda AM, Maxwell JF (eds) Neural mechanisms of behavior in the pigeon. Plenum, New York, pp 307–325

    Google Scholar 

  • Matelli M, Olivieri MF, Saccani A, Rizzoloatti G (1983) Upper visual space neglect and motor deficits after section of the midbrain commissures in the cat. Behav Brain Res 10, 263–285

    PubMed  CAS  Google Scholar 

  • McAlpine D, Lumsden CE, Acheson ED (1972) Multiple sclerosis: a reappraisal. Williams and Wilkins, Baltimore

    Google Scholar 

  • Millodot M, Lamont A (1974) Peripheral visual acuity in the vertical plane. Vision Res 14, 1497–1498

    Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65, 37–100

    PubMed  CAS  Google Scholar 

  • Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33, 371–394

    PubMed  CAS  Google Scholar 

  • Murray I, MacCana F, Kulikowski JJ (1983) Contribution of two movement detecting mechanisms to central and peripheral vision. Vision Res 23, 151–159

    PubMed  CAS  Google Scholar 

  • Nachmias J (1959) Two-dimensional motion of the retinal image during monocular fixation. J Opt Soc Am 49, 901–908

    PubMed  CAS  Google Scholar 

  • Nagata T, Hayashi Y (1984) The visual field representation of the rat ventral lateral geniculate nucleus. J Comp Neurol 227, 582–588

    PubMed  CAS  Google Scholar 

  • Newman RP, Kinkel WR, Jacobs L (1984) Altitudinal hemianopia caused by occipital infarctions. Arch Neurol 41, 413–418

    PubMed  CAS  Google Scholar 

  • Niemeyer G (1975) The function of the retina in the perfused eye. Doc Ophthalmol 35, 53–116

    Google Scholar 

  • Nuboer JFW, Wortel JF (1985) Wavelength discrimination in the lower and upper visual field of the pigeon. J Physiol 366, 95P

    Google Scholar 

  • Nunez P (1981) Electric fields of the brain. Oxford University Press, New York

    Google Scholar 

  • Østerberg G (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmol [13 Suppl. 6]: 1–102

    Google Scholar 

  • Oyster CW, Takahashi ES, Cilluffo M, Brecha NC (1985) Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina. Proc Natl Acad Sci 82, 6335–6339

    PubMed  CAS  Google Scholar 

  • Payne WH (1965) Visual reaction times on a circle about the fovea. Science 155, 481–482

    Google Scholar 

  • Pease VP, Sticht TG (1965) Reaction time as a function of onset and offset stimulation of the fovea and periphery. Percept Mot Skills 20, 549–554

    PubMed  CAS  Google Scholar 

  • Phelps ME, Kuhl DE, Mazziotta JC (1981) Metabolic mapping of the brain’s response to visual stimulation: studies in humans. Science 211, 1445–1448

    PubMed  CAS  Google Scholar 

  • Phillips G (1933) Perception of flicker in lesions of the visual pathways. Brain 56, 464–478

    Google Scholar 

  • Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Arch Psychol 3, 1–73

    Google Scholar 

  • Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40, 1392–1405

    PubMed  CAS  Google Scholar 

  • Presson J, Moran J, Gordon B (1983) Effects of eye rotation on visually guided behavior. J Neurophysiol 50, 631–643

    PubMed  CAS  Google Scholar 

  • Prinz W (1984) Attention and sensitivity in visual search. Psychol Res 45, 355–366

    PubMed  CAS  Google Scholar 

  • Quingley HA, Flower RW, Addicks EM, McLeod DS (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol 19, 505–517

    Google Scholar 

  • Rains JD (1963) Signal luminance and position effects in human reaction time. Vision Res 3, 239–251

    Google Scholar 

  • Regan D, Silver R, Murray TJ (1977) Visual acuity and contrast sensitivity in multiple sclerosis — hidden visual loss. Brain 100, 563–579

    PubMed  CAS  Google Scholar 

  • Rémond A, Lesèvre N, Joseph JP, Rieger H, Lairy GC (1969) The alpha average: I. Methodology and description. Electroencephalogr Clin Neurophysiol 26, 245–265

    PubMed  Google Scholar 

  • Reuter TE, White RH, Wald G (1971) Rhodopsin and porphyropsin in the adult bullfrog retina. J Gen Physiol 58, 351–371

    PubMed  CAS  Google Scholar 

  • Riemslag FCC, Ringo JL, Spekreijse H, Verduyn Lunel HF (1985) The luminance origin of the pattern electroretinogram in man. J Physiol 363, 191–209

    PubMed  CAS  Google Scholar 

  • Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus patterns. Science 144, 567

    PubMed  CAS  Google Scholar 

  • Scalia F (1976) The optic pathway of the frog: nuclear organization and connections. In: Llinas R, Precht W (eds) Frog neurobiology. Springer Berlin Heidelberg New York, pp 386–406

    Google Scholar 

  • Schade OH (1956) Optical and photoelectric analog of the eye. J Opt Soc Am 46, 721–739

    PubMed  Google Scholar 

  • Schmidt M, Wässle H, Humphrey M (1985) Number and distribution of putative cholinergic neurons in the cat retina. Neurosci Lett 59, 235–240

    PubMed  CAS  Google Scholar 

  • Schneider MR (1972) A multistage process for computing dipolar sources of EEG discharges from surface information. IEEE Trans Biomed Eng 19, 1–12

    PubMed  CAS  Google Scholar 

  • Schneider MR (1974) Effect of inhomogeneities on surface signals coming from a cerebral dipole source. IEEE Trans Biomed Eng 21, 52–54

    PubMed  CAS  Google Scholar 

  • Schwartz EL, Christman DR, Wolf AP (1984) Human primary visual cortex topography imaged via positron tomography. Brain Res 294, 225–230

    PubMed  CAS  Google Scholar 

  • Seiple WH, Siegel IM (1983) Recording the pattern electroretinogram: a cautionary note. Invest Ophthalmol 24, 796–798

    CAS  Google Scholar 

  • Seneviratne KN (1963) The representation of the visual field on the subcortical centers of the cat and rabbit. PhD thesis, Edinburgh

    Google Scholar 

  • Seneviratne KN, Whitteridge D (1962) Visual evoked responses in the lateral geniculate nucleus. Electrocephalogr Clin Neurophysiol 14, 785

    Google Scholar 

  • Shickman GM (1981) Time-dependent functions in vision. In: Moses RA (ed) Adler’s physiology of the eye. Mosby, St. Louis, pp 663–713

    Google Scholar 

  • Shurong W, Kun Y, Yinting W (1981) Visual field topography and binocular responses in frog’s nucleus isthmi. Scientia Sin [B] 24, 1292–1301

    Google Scholar 

  • Sidman RD, Giambalvo V, Allison T, Bergey P (1978) A method for localization of sources of human cerebral potentials evoked by sensory stimuli. Sensory Proc 2, 116–129

    CAS  Google Scholar 

  • Simonson E (1958) Contralateral glare effect on the fusion frequency of flicker. Arch Ophthalmol 60, 995–999

    CAS  Google Scholar 

  • Skrandies W (1981) Latent components of potentials evoked by visual stimuli in different retinal locations. Int J Neurosci 14, 77–84

    PubMed  CAS  Google Scholar 

  • Skrandies W (1983) Information processing and evoked potentials: topography of early and late components. Adv Biol Psychiatr 13, 1–12

    Google Scholar 

  • Skrandies W (1984a) Differences of visual evoked potential latencies and topographies depending on retinal location and presentation mode. Pflügers Arch 400, R31

    Google Scholar 

  • Skrandies W (1984b) Scalp potential fields evoked by grating stimuli: effects of spatial frequency and orientation. Electroencephalogr Clin Neurophysiol 58, 325–332

    PubMed  CAS  Google Scholar 

  • Skrandies W (1985a) Critical flicker fusion and double flash discrimination in different parts of the visual field. Int J Neurosci 25, 225–231

    PubMed  CAS  Google Scholar 

  • Skrandies W (1985b) Human contrast sensitivity: regional retinal differences. Hum Neurobiol 4, 95–97

    Google Scholar 

  • Skrandies W (1986a) Visual evoked potential topography: methods and results. In: Duffy FH (ed) Topographic mapping of brain electrical activity. Butterworth, Boston, pp 7–28

    Google Scholar 

  • Skrandies W (1986b) Temporal summation of stereoscopic visual stimuli: brain electric components and subjective perception. In: Rohrbaugh JW, Johnson R, Parasuraman R (eds) Research reports of EPIC VIII conference, Stanford, pp 397–399

    Google Scholar 

  • Skrandies W, Baier M (1986) Activity of human pigment epithelium shows differences between upper and lower retinal areas. Vision Res 26, 577–581

    PubMed  CAS  Google Scholar 

  • Skrandies W, Gottlob I (1986) Alterations of visual contrast sensitivity in Parkinson’s Disease. Hum Neurobiol 5, 255–259

    PubMed  CAS  Google Scholar 

  • Skrandies W, Lehmann D (1982a) Occurrence time and scalp location of components of evoked EEG potential fields. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart, pp 183–192

    Google Scholar 

  • Skrandies W, Lehmann D (1982b) Spatial principal components of multichannel maps evoked by lateral visual half-field stimuli. Electroencephalogr Clin Neurophysiol 54, 662–667

    PubMed  CAS  Google Scholar 

  • Skrandies W, Vomberg HE (1985) Stereoscopic stimuli activate different cortical neurones in man: electrophysiological evidence. Int J Psychophysiol 2, 293–296

    PubMed  CAS  Google Scholar 

  • Skrandies W, Richter M, Lehmann D (1980) Checkerboard evoked potentials: topography and latency for onset, offset, and reversal. Progr Brain Res 54, 291–295

    CAS  Google Scholar 

  • Skrandies W, Wässle H, Peichl L (1978) Are field potentials an appropriate method for demonstrating connections in the brain? Exp Neurol 60, 509–521

    PubMed  CAS  Google Scholar 

  • Skrandies W, Chapman RM, McCrary JW, Chapman JA (1984) Distribution of latent components related to information processing. Ann NY Acad Sci 425, 271–277

    PubMed  CAS  Google Scholar 

  • Soso MJ, Lettich E, Belgum JH (1980) Pattern-sensitive epilepsy. II: Effects of pattern orientation and hemifield stimulation. Epilepsia 21, 313–323

    PubMed  CAS  Google Scholar 

  • Southall JPC (1962) Helmholtz’s treatise on physiological optics. Dover, New York

    Google Scholar 

  • Spalding JMK (1952) Wounds of the visual pathway. J Neurol Neurosurg Psychiatr 15, 169–183

    PubMed  CAS  Google Scholar 

  • Sperry RW (1964) The great cerebral commissure. Sci Am 210, 42–52

    PubMed  CAS  Google Scholar 

  • Sperry RW (1968) Hemisphere deconnection and unity in conscious awareness. Am Psychol 23, 723–733

    PubMed  CAS  Google Scholar 

  • Standage GP, Benevento LA, The organization of connections between the pulvinar and visual area MT in the macaque monkey. Brain Res 262, 288–294

    Google Scholar 

  • Starr A, Achor J (1975) Auditory brainstem responses in neurological disease. Arch Neurol 32, 761–768

    PubMed  CAS  Google Scholar 

  • Stone J, Johnston E (1981) The topography of primate retina: a study of the human, bushbaby, and New- and Old-World monkeys. J Comp Neurol 196, 205–223

    PubMed  CAS  Google Scholar 

  • Sutton S, Braren M, Zubin J, John ER (1965) Evoked potential correlates of stimulus uncertainty. Science 150, 1187–1188

    PubMed  CAS  Google Scholar 

  • Talairach J, Szikla G (1967) Atlas of stereotaxic anatomy of the telencephalon. Masson, Paris

    Google Scholar 

  • Täumer R (ed) (1976) Electro-oculography — its clinical importance. Karger, Basel. Bibliotheca Ophthalmologica, Vol 85

    Google Scholar 

  • ten Doesschate J (1946) Visual acuity and distribution of percipient elements on the retina. Ophthalmologica 112, 1–18

    Google Scholar 

  • Teuber H-L, Battersby WS, Bender MB (1960) Visual field defects after penetrating missile wounds of the brain. Harvard University Press, Cambridge

    Google Scholar 

  • Teuber ML (1974) Sources of ambiguity in the prints of Maurits C. Escher. Sci. Am. 231 (No 1), 90–104

    CAS  Google Scholar 

  • Torrealba F, Guillery RW, Eysel U, Polley EH, Mason CA (1982) Studies of retinal representations within the cat’s optic tract. J Comp Neurol 211, 377–396

    PubMed  CAS  Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177, 213–236

    PubMed  CAS  Google Scholar 

  • Valeton JM, van Norren D (1982) Intraretinal recording of slow electrical responses to steady illumination in monkey: isolation of receptor responses and the origin of the light peak. Vision Res 22, 393–399

    PubMed  CAS  Google Scholar 

  • van Buren A (1963) The retinal ganglion cell layer. Thomas, Springfield

    Google Scholar 

  • van de Grind WA, Grüsser O-J, Lunkenheimer H-U (1973) Temporal transfer properties of the afferent visual system. Psychophysical, neurophysiological and theoretical investigations. In: Jung R (ed) Handbook of sensory physiology, Vol VII/3A. Springer, Berlin Heidelberg New York, pp 431–573

    Google Scholar 

  • van der Waerden BL (1971) Mathematische Statistik, 3rd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex, Vol 3. Plenum, New York, pp 259–329

    Google Scholar 

  • van Essen DC, Maunsell JHR, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199, 293–326

    PubMed  Google Scholar 

  • van Essen DC, Newsome WT, Maunsell JHR (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropics, and individual variability. Vision Res 24, 429–448

    PubMed  Google Scholar 

  • van Essen DC, Newsome WT, Maunsell JHR, Bixby JL (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol 244, 451–480

    PubMed  Google Scholar 

  • Vaney DI (1985) The morphology and topographic distribution of AII amacrine cells in the cat retina. Proc R Soc Lond [Biol] 224, 475–488

    CAS  Google Scholar 

  • Vaney DI, Hughes A (1976) Rabbit optic nerve: fibre diameter spectrum, fibre count, and comparison with a retinal ganglion cell count. J Comp Neurol 170, 241–251

    PubMed  CAS  Google Scholar 

  • Vomberg HE, Skrandies W (1985) Untersuchung des Stereosehens im Zufallspunktmuster-VECP: Normbefunde und klinische Anwendung. Klin Monatsbl Augenheilkd 187, 205–208

    PubMed  CAS  Google Scholar 

  • von der Heydt R, Hänni P, Dürsteier M, Peterhans E (1981) Neuronal responses to stereoscopic stimuli in the alert monkey — a comparison between striate and prestriate cortex. Pflügers Arch 391, R34

    Google Scholar 

  • von Helmholtz H (1853) Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierelektrischen Versuche. Ann Phys Chemie 29: 211–233, 353–377

    Google Scholar 

  • von Helmholtz H (1910) Handbuch der physiologischen Optik, Vol 3, 3rd edn. Voss, Hamburg

    Google Scholar 

  • Wässle H, Peichl L, Boycott BB (1978) Topography of horizontal cells in the retina of the domestic cat. Proc R Soc Lond [Biol] 203, 269–291

    Google Scholar 

  • Wernicke C (1874) Der aphasische Symtomenkomplex. Cohne und Weigert, Breslau

    Google Scholar 

  • Wertheim T (1894) Über die indirekte Sehsschärfe. Z Psychol Physiol Sinnesorg 7, 172–187

    Google Scholar 

  • Whitteridge D (1973) Projection of optic pathways to the visual corex. In: Jung R (ed) Handbook of sensory physiology, Vol VII/3B. Springer, Berlin Heidelberg New York, pp 247–268

    Google Scholar 

  • Wilson FN, Bayley RH (1950) The electric field of an eccentric dipole in a homogenous spherical conducting medium. Circulation 1, 84–92

    PubMed  CAS  Google Scholar 

  • Woodworth RS (1938) Experimental psychology. Holt, New York

    Google Scholar 

  • Woodworth RS, Schlossberg H (1955) Experimental psychology, 3rd edn. Holt, New York

    Google Scholar 

  • Yanashima K (1982) Surface distribution of steady-state cortical potentials evoked by visual half-field stimulation. Gräfes Arch Ophthalmol 218, 118–123

    CAS  Google Scholar 

  • Yarbus AL (1967) Eye movements and vision. Plenum, New York

    Google Scholar 

  • Zihl J, von Cramon D (1986) Zerebrale Sehstörungen. Kohlhammer, Stuttgart

    Google Scholar 

  • Zubek JP, Bross M (1972) Depression and later enhancement of the critical flicker frequency during prolonged monocular deprivation. Science 176, 1045–1047

    PubMed  CAS  Google Scholar 

  • Zubek JP, Bross M (1973) Changes in critical flicker frequency during and after fourteen days of monocular deprivation. Nature 241, 288–290

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Skrandies, W. (1987). The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences. In: Autrum, H., Ottoson, D., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology. Progress in Sensory Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71060-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71060-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71062-9

  • Online ISBN: 978-3-642-71060-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics