Skip to main content

Probability Density Distribution in Turbulent Wall Boundary-Layer Flows

  • Conference paper
Turbulent Shear Flows 5

Abstract

The present paper provides a summary of a literature survey on statistical properties of wall boundary-layer flows. Existing knowledge on the subject and the authors’ own investigations are described that were initially carried out to yield mean and fluctuating flow properties in turbulent wall boundary layers at high Reynolds numbers. From these investigations, instantaneous velocity information resulted which was processed to yield local velocity information in the form of mean velocity and probability density distributions of the turbulent velocity fluctuations. It is shown that the latter obey a general analytical distribution law. Hence, it is possible to describe probability density distributions in turbulent boundary-layer flows in an analytical form. In the sublayer as well as in the wake region of the boundary layer, a simple form of the general distribution, known as the hyperbolic function, describes the probability density distributions of the velocity fluctuations very well. The latter curve contains four parameters whereas the general distribution requires seven parameters for describing the entire probability density distribution of turbulent velocity fluctuations. The distributions of these parameters across a wall boundary-layer flow are given in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A):

Additive constant of log-law

B):

Mean frequency of occurrence of coherent structure

F):

Flatness factor

Lτ):

Integral time scale

n, k):

Coefficients for hot-wire power-law calibration curve

p(K)):

Probability density distribution

Rθ):

Reynolds number based on momentum thickness

S):

Skewness factor

SS):

Super-skewness factor

SF):

Super-flatness factor

B):

Mean time duration of coherent structure

Δt):

Sampling interval

u):

Instantanious streamwise velocity component

u+):

Non-dimensional velocityu + = u/u τ

uτ):

Friction velocity\({u_{\tau }} = \sqrt {{{\tau _{w}}/\varrho }}\)

U):

Average velocity

U):

Free stream velocity

Δu/u τ ):

Coles’s wake parameter

y +):

Non-dimensional distance from the wall y + = yu τ/ v

γ):

Intermittency factor or parameter of general distribution function

δ):

Boundary layer thickness or parameter of general distribution function

ϑ):

Momentum thickness of investigated boundary layer

K):

Von Karman’s constant

v):

Kinematic viscosity

ϱ):

Fluid density

τw):

Wall shear stress

References

  • Andreopoulos, J., Durst, F., Jovanovic, J., Zaric, Z. (1984): Influence of Reynolds number on characteristics of turbulent wall boundary layers. Exp. Fluids 2, 7–16

    Article  Google Scholar 

  • Anseimet, F., Gagne, Y., Hopfinger, J. E., Antonia, A. R. (1984): High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 63–89

    Article  ADS  Google Scholar 

  • Barndorff-Nielsen, O. (1979): Models for non-Gaussian variation with applications to turbulence. Proc. R. Soc. London A 368, 501–520

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bhatia, J. C, Durst, F., Jovanovic, J. (1982): Corrections of hot-wire anemometer measurements near walls. J. Fluid Mech. 122, 411–431

    Article  ADS  Google Scholar 

  • Bhatia, J. C, Durst, F. (1984): On the estimation of parameters for two non-Gaussian distributions. Report LSTM 37/T/84, University of Erlangen-Nürnberg

    Google Scholar 

  • Blackwelder, R. F., Haritanidis, H. J. (1983): The bursting frequency in turbulent boundary layers. J. Fluid Mech. 132, 87–103

    Article  ADS  Google Scholar 

  • Blackwelder, R. F. (1978): “Pattern Recognition of Coherent Eddies,” Proc. Dynamic Flow Conference - Dynamic Measurements in Unsteady Flows, Marseille-Baltimore

    Google Scholar 

  • Blaesild, P. (1978): The shape of generalized inverse Gaussian and hyperbolic distributions. Research Report, No. 37, Dep. of Theoretical Statistics, University of Aarhus

    Google Scholar 

  • Brunn, H. H., Tropea, C. D. (1979): The SFB 80 nozzle calibration facility. Report 80/M/14, University of Karlsruhe

    Google Scholar 

  • Chen, C. H. F. (1974): “The Large Scale Motion in a Turbulent Boundary Layer: A Study Using Temperature Contamination;” Ph.D. Thesis, University of Southern California

    Google Scholar 

  • Clark, J. A. (1968): A study of incompressible turbulent boundary layers in channel flow. Trans. ASME, Journal Basic Eng. D90, 455–468

    Article  Google Scholar 

  • Coles, D. (1956): The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191–226

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Collis, D. C, Williams, M. J. (1959): Two-dimensional convection from heated wires at low Reynolds numbers. J. Fluid Mech. 6, 357

    Article  ADS  MATH  Google Scholar 

  • Comte-Bellot, G. (1965): Ecoulement turbulent entre deux parois paralleles, Pub. Sci. et Tech. No. 419,

    Google Scholar 

  • Paris Davies, P. O. A. L., Brunn, H. (1969): The performance of yawed hot wire. ISVR Report No. 284

    Google Scholar 

  • Durst, F., Melling, A., Whitelaw, J. H. (1971): The interpretation of hot-wire signals in low-turbulence flows. Report Department of Mechanical Engineering, Imperial College, London S.W. 7

    Google Scholar 

  • Eckelmann, H. (1974): The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65, 439–459

    Article  ADS  Google Scholar 

  • Ermshaus, R., Naudascher, E. (1977): Der Niedergeschwindigkeitskanal des Instituts für Hydromechanik an der Universität Karlsruhe. Z. Weltraumforsch. 1, 419–425

    Google Scholar 

  • Frenkiel, F. N., Klebanoff, P. S. (1967): Higher-order correlations in a turbulent field. Phys. Fluids 10, 507–520

    Article  ADS  Google Scholar 

  • Frenkiel, F. N., Klebanoff, P. S. (1967): Correlation measurements in a turbulent flow using high-speed Computing methods. Phys. Fluids 10, 1737–1747

    Article  ADS  Google Scholar 

  • Frenkiel, F. N., Klebanoff, P. S. (1973): Probability distributions in a turbulent boundary layer. Phys. Fluids 16, 725–737

    Article  ADS  Google Scholar 

  • Gupta, A. K. (1971): “An Experimental Investigation of the Viscous Sublayer Region in a Turbulent Boundary Layer;” Ph.D. Thesis University of Southern California

    Google Scholar 

  • Jensen, J. L. (1983): Maximum likelihood estimation of the hyperbolic parameters from grouped observations. Research Reports No. 91, Department of Theoretical Statistics, University of Aarhus

    Google Scholar 

  • Johansson, V. A., Alfredson, P. H. (1982): On the structure of turbulent channel flow. J. Fluid Mech. 122, 295–314

    Article  ADS  Google Scholar 

  • Jones, W. P., Launder, B. E. (1972): The prediction of laminarization with a two equation model of turbulence. Int. J. Heat Transfer 15, 301

    Article  Google Scholar 

  • King, V. L. (1914): The convection of heat from small cylinders in a stream of fluid. Determination of the convection constants of small platinium wires with application to hot-wire anemometry. Philos. Trans. Roy. Soc. London A 214, 373–432

    Article  ADS  Google Scholar 

  • Kreplin, H., Eckelmann, H. (1979): Behavior of the three fluctuation velocity components in the wall region of a turbulent channel flow. Phys. Fluids 22, 1233–1239

    Article  ADS  Google Scholar 

  • Launder, B. E., Spalding, D. B. (1972): Mathematical Methods of Turbulence (Academic, London, New York)

    Google Scholar 

  • Lumley, J. (1970): Stochastic Tools in Turbulence (Academic, London, New York)

    MATH  Google Scholar 

  • Murlis, J., Tsai, M. H., Bradshaw, P. (1982): The structure of turbulent boundary layers at low-Reynolds numbers. J. Fluid Mech. 122, 13–56

    Article  ADS  Google Scholar 

  • Moin, P., Kim, J. (1982): Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377

    Article  ADS  MATH  Google Scholar 

  • Patel, V. C. (1965): Calibration of the Preston tube and limitations on its use in pressure gradients. J. Fluid Mech. 23, 185–208

    Article  ADS  Google Scholar 

  • Prandtl, L. (1927): Über den Reibungswiderstand strömender Luft. Ergeb. AVA Göttingen, III. Lfg. 1–5

    Google Scholar 

  • Prandtl, L. (1932): Zur turbulenten Strömung in Rohren längs Platten. Ergeb. AVA Göttingen IV. Lfg. 18–29

    MATH  Google Scholar 

  • Pope, S. B. (1980): “Probability Distributions of Sealars in Turbulent Shear Flow.” in Turbulent Shear Flows 2, ed. by L. J. S. Bradbury et al. (Springer, Berlin, Heidelberg) p. 7

    Google Scholar 

  • Van Atta, C. W., Chen, W. Y. (1968): Correlation measurements in grid turbulence using digital harmonic analysis. J. Fluid Mech. 34, 497–515

    Article  ADS  Google Scholar 

  • Van Atta, C. W., Yeh, T. H. (1970): Some measurements of multi-point time correlations in grid turbulence. J. Fluid Mech. 41, 169–178

    Article  ADS  Google Scholar 

  • Van Thinh, J. (1969): “Auto-correlation Measurements of Turbulent Velocity Fluctuations in the Viscous Sublayer Using Real Time Digital Techniques,” International Seminar Herceg Novi-Yugoslavia

    Google Scholar 

  • Von Karman, T. (1930): Mechanische Ähnlichkeit und Turbulenz, Nachr. Gesellsch. Wissensch. Göttingen, Math.-Phys. Klasse 1930, 58–76

    Google Scholar 

  • Wallace, J., Bordkey, S. R., Eckelmann, H. (1977): Pattern recognized structures in bounded shear flows. J. Fluid Mech. 83, 673–693

    Article  ADS  Google Scholar 

  • Willmarth, W. W. (1977): Survey on new measurements of turbulence structure near the wall. Phys. Fluids Suppl. 20, No. 10, 9–21

    Article  ADS  Google Scholar 

  • Zaric, Z. (1974): Etude statistique de la turbulence parietale. Report Institut Boris Kidric-Vinca

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durst, F., Jovanovic, J., Kanevce, L. (1987). Probability Density Distribution in Turbulent Wall Boundary-Layer Flows. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics