Skip to main content

Molecular mechanisms of nitrovasodilator bioactivation

  • Conference paper
Endothelial Mechanisms of Vasomotor Control

Summary

All nitrovasodilators act intracellularly by a common molecular mechanism. This is characterized by the release of nitric oxide (NO). They are, thus, prodrugs or carriers of the active principle NO, responsible for endothelial controlled vasodilation. The rate of NO-formation strongly correlates with the activation of the soluble guanylate cyclase in vitro, resulting in a stimulation of cGMP synthesis. Nitrovasodilators thus are therapeutic substitutes for endogenous EDRF/NO. The pathways of bioactivation, nevertheless, differ substantially, depending on the individual chemistry of the nitrovasodilator. Besides NO, numerous other reaction products such as nitrite and nitrate anions are formed. The guanylate cyclase is only activated if NO is liberated. In the case of organic nitrates such as GTN, NO is only formed if certain thiol compounds are present as an essential cofactor. The rate of NO-formation correlates with the number of nitrate ester groups and proceeds with a simultaneous nitrite formation (with a ratio of 1: 14 in the presence of cysteine). Nitrosamines such as molsidomine do not need thiol compounds for bioactivation. They directly liberate NO from the ring-open A-forms. This process basically depends on the presence of oxygen as electron acceptor from the sydnonimine molecule. Therefore, besides NO also Superoxide radicals are formed, which may react with the generated NO under formation of nitrate ions. Organic nitrites (such as amyl nitrite) require the preceding interaction with a mercapto group to form a S-nitrosothiol intermediate, from which finally NO radicals are liberated. Nitrosothiols (like S-nitroso-acetyl-penicillamine) and sodium nitroprusside spontaneously release NO. The molecules themselves do not possess a direct enzyme activating potency. In the presence of thiol compounds organic nitrites (e. g., amyl nitrite) and nitrosothiols may act as intermediary products of NO generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdollah A, Moffat JA, Armstrong PW (1987) N-acetylcysteine does not modify nitroglycerin-induced tolerance in canine vascular rings. J Cardiovasc Pharmacol 9:445–450

    Article  PubMed  CAS  Google Scholar 

  2. Bohn H, Schönafinger K (1989) Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J Cardiovasc Pharmacol 14 (Suppl 11):S6–S12

    PubMed  CAS  Google Scholar 

  3. Cooke JP, Andon N, DelDuca D, Dzau V, Loscalzo J (1989) S-nitrosocaptopril: a novel vasodilator resistant to nitrate tolerance. Circulation 80 (Suppl) II–559

    Google Scholar 

  4. Crandall LA (1932) The fate of glyceryl trinitrate in the tolerant and non-tolerant animal. J Pharmacol Exptl Therapeut 48:127–140

    Google Scholar 

  5. Doyle MP, Hoekstra JW (1981) Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14:351–358

    Article  PubMed  CAS  Google Scholar 

  6. Feelisch M (1988) Experimentelle Untersuchungen zum intrazellulären Wirkungsmechanismus der Nitrovasodilatatoren und der endothelabhängigen Gefaßregulation. Beweis für die Bildung von Stickoxid (NO) als gemeinsamem, intermediärem Wirkungsvermittler. Thesis, Düsseldorf

    Google Scholar 

  7. Feelisch M, Noack (1987) Molecular prerequisites of thiol-containing compounds like cysteine for their stimulatory action on the degradation of organic nitrates and activation of soluble guanylate cyclase. N S Arch Pharmacol 335 Suppl:46

    Google Scholar 

  8. Feelisch M, Noack E (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139:19–30

    Article  PubMed  CAS  Google Scholar 

  9. Feelisch M, Noack E (1987) Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur J Pharmacol 142:465–469

    Article  PubMed  CAS  Google Scholar 

  10. Feelisch M, Ostrowski J, Noack E (1989) On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol 14 (Suppl. 11):S13–S22

    PubMed  CAS  Google Scholar 

  11. Gruetter CA, Lemke SM (1986) Effects of sulfhydryl reagents on nitroglycerin-induce relaxation of bovine coronary artery. Can J Physiol Pharmacol 64:1395–1401

    Article  PubMed  CAS  Google Scholar 

  12. Haussmann HJ, Werringloer J (1985) Nitric oxide and nitrite formation during the degradation of N-nitrosamines. Nauny-Schmiedeberg’s Arch Pharmacol 329 (Suppl R21):84

    Google Scholar 

  13. Henry PJ, Horowitz JD, Louis WJ (1989) Nitroglycerin-induced tolerance affects multiple sites in the organic nitrate bioconversion cascade. J Pharmacol Exp Ther 248:762–768

    PubMed  CAS  Google Scholar 

  14. Ignarro LJ, Kadowitz PJ, Baricos WH (1981) Evidence that regulation of hepatic guanylate cyclase activity involves interactions between catalytic site SH-groups and both substrate and activator. Arch Biochem Biophys 208:75–86

    Article  PubMed  CAS  Google Scholar 

  15. May DC, Popma JJ, Black WH, Schaefer S, Lee HR, Levine BD, Hillis LD (1987) In vivo induction and reversal of nitroglycerin tolerance in human coronary arteries. N Engl J Med 317:805–809

    Article  PubMed  CAS  Google Scholar 

  16. Moffat JA, Armstrong PW, Marks GS (1982) Investigations into the role of sulfhydryl groups in the mechanism of action of the nitrates. Can J Physiol Pharmacol 60:1261–1266

    Article  PubMed  CAS  Google Scholar 

  17. Needleman P, Krantz JC (1965) The biotransformation of nitroglycerin. Biochem Pharmacol 14:1225–1230

    Article  PubMed  CAS  Google Scholar 

  18. Newman CM, Warren JB, Taylor GW, Boobis AR, Davies DS (1990) Rapid tolerance to the hypotensive effects of glyceryl trinitrate in the rat: prevention by N-acetyl-l-but not N-acetyl-d-cysteine. Br J Pharmacol 99:825–829

    PubMed  CAS  Google Scholar 

  19. Noack E (1984) Investigations on structure-activity relationship in organic nitrates. Meth and Find Exptl Clin Pharmacol 6:583–586

    CAS  Google Scholar 

  20. Noack E (1990) Mechanisms of nitrate tolerance — influence of the metabolic activation pathways. Z Kardiol 79:Suppl 2

    Google Scholar 

  21. Noack E, Feelisch M (1989) Molecular aspects underlying the vasodilator action of molsidomine. J Cardiovasc Pharmacol 14 (Suppl 11):S1–S5

    PubMed  CAS  Google Scholar 

  22. Noack E, Schröder H, Feelisch M (1986) Continuous determination of nitric oxide formation during non-enzymatic degradation of organic nitrates and its correlation to guanylate cyclase activation. N S Arch Pharmacol 332 Suppl:125–00

    Google Scholar 

  23. Packer M, Lee WH, Kessler PD, Gottlieb SS, Medina N, Yushak M (1987) Prevention and reversal of nitrate tolerance in patients with congestive heart failure. N Engl J Med 317:799–804

    Article  PubMed  CAS  Google Scholar 

  24. Schröder H, Noack E (1986) Neue Ergebnisse zur thiolabhängigen Aktivierung der Guanylatcyklase durch organische Nitrate. Z Kardiol 75, Suppl 3:20–24

    PubMed  Google Scholar 

  25. Schröder H, Noack E (1987) Structure-activity relationship of organic nitrates for activation of guanylate cyclase. Arch int pharmacodyn Ther 290:225–246

    Google Scholar 

  26. Schröder H, Noack E, Müller R (1985) Evidence for a correlation between nitric oxide formation by cleavage of organic nitrates and activation of guanylate cyclase. J Mol Cell Cardiol 17:931–934

    Article  PubMed  Google Scholar 

  27. Servent D, Delaforge M, Ducrocq C, Mansuy D, Lenfant M (1989) Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: involvement of cytochrome P-450. Biochem Biophys Res Commun 163:1210–1216

    Article  PubMed  CAS  Google Scholar 

  28. Taylor T, Taylor IW, Chasseaud LF, Bonn R (1987) Pharmacokinetics and metabolism of organic nitrate vasodilators. Progress in Drug metabolism 10:207–336

    CAS  Google Scholar 

  29. Torresi J, Horowitz JD, Dusting GJ (1985) Prevention and reversal of tolerance to nitroglycerine with N-acetylcysteine. J Cardiovasc Pharmacol 7:777–783

    Article  PubMed  CAS  Google Scholar 

  30. Wolf J, Werringloer J (1988) Metabolic degradation of glyceryl trinitrate. N S Arch Pharmacol 337 (Suppl):34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Noack, E., Feelisch, M. (1991). Molecular mechanisms of nitrovasodilator bioactivation. In: Drexler, H., Zeiher, A.M., Bassenge, E., Just, H. (eds) Endothelial Mechanisms of Vasomotor Control. Steinkopff. https://doi.org/10.1007/978-3-642-72461-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72461-9_5

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72463-3

  • Online ISBN: 978-3-642-72461-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics