Skip to main content

Metals in Aquatic and Terrestrial Systems: Sorption, Speciation, and Mobilization

  • Chapter
Chemistry and Biology of Solid Waste

Abstract

Water is a major carrier of metal pollutants which can be transported from a disposal site both in dissolved and particulate form. The particles can be original components of the waste as well as newly formed material or existing solids contaminated during leachate flow through the receiving ecosystem. Water is also the medium in which the metal pollutants undergo biological and chemical reactions. Some of these reactions induce phase changes resulting in variations in the rate of metal transport. It is therefore important to understand which phenomena are responsible for retarding the metal fluxes and which are, in contrast, capable of increasing the metal mobility in order to select disposal sites which provide conditions to provoke minimum pollutant dispersion from the point source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alesii BA, Fuller WH, Boyle MV (1980) Effect of leachate flow rate on metal migration through soil. J Environ Qual 9:119–126

    CAS  Google Scholar 

  • Anderson MA, Rubin AJ (eds) (1981) Adsorption of Inorganics at Solid-Liquid Interfaces. Ann Arbor Sci Publ, Ann Arbor: 357 pp

    Google Scholar 

  • Aringhieri R, Carrai P, Petruzzelli G (1985) Kinetics of Cu2+ and Cd2+ adsorption by an Italian soil. Soil Sci 139:197–204

    CAS  Google Scholar 

  • Baccini P, Grieder E, Stierli R, Goldberg S (1982) The influence of natural organic matter on the adsorption properties of mineral particles in lake water. Schweiz Z Hydrol 44:99–116

    CAS  Google Scholar 

  • Bailey SM, Helz GR, Harris RL (1975) Investigation of the transport of metals and orthophosphate away from a sewage treatment plant outfall. Environ Lett 10:159–169

    CAS  Google Scholar 

  • Balistrieri LS, Murray JW (1981) The surface chemistry of goethite (αFeOOH) in major ion seawater. Am J Sci 281:788–806

    CAS  Google Scholar 

  • Balistrieri LS, Murray JW (1983) Apparent equilibrium constants for metal-solid interactions in the marine environment. Geochim Cosmochim Acta 47:1091–1098

    CAS  Google Scholar 

  • Balistrieri LS, Murray JW (1984) Marine scavenging: trace metal adsorption by interfacial sediment from MANOP site H1. Geochim Cosmochim Acta 48:921–929

    CAS  Google Scholar 

  • Behra P (1986) Migration or retention of mercury (II) salts when percolating through a porous medium constituted of a natural quartz sand. Proc 2nd Internat Conf Environmental Contamination, Sept 1986, Amsterdam, pp 318–320

    Google Scholar 

  • Behra P, Bourg ACM, Sardin M (1988) Influence of the chemical composition of the liquid phase upon the migration of mercury through sand. In preparation

    Google Scholar 

  • Benjamin MM, Leckie JO (1980) Adsorption of metals at oxide interfaces: effects of the concentrations of the adsorbate and competing metals. In: Baker RA (ed) Contaminants and Sediments, Ann Arbor Sci, Ann Arbor: pp 305–322

    Google Scholar 

  • Benjamin MM, Leckie JO (1981) Multiple site adsorption of Cd, Cu, Zn and Pb on amorphous iron oxyhydroxide. J Colloid Interface Sci 79:209–211

    CAS  Google Scholar 

  • Benjamin MM, Leckie JO (1981) Effects of complexation by C1, SO4, S2O3 on adsorption behavior of Cd on oxide surfaces. Environ Sci Technol 16:162–170

    Google Scholar 

  • Benjamin MM, Hayes MM, Leckie JO (1982) Removal of toxic trace metals from power-generation waste streams by adsorption and co-precipitation. J Water Pollut Control Fed 54:1472–1481

    CAS  Google Scholar 

  • Bourg ACM (1983a) Role of fresh water/sea water mixing on trace metals adsorption phenomena. In: Wong CS, Burton JD, Boyle E, Bruland K, Goldberg ED (eds) Trace Metals in Sea Water, Plenum, New York, pp 195–208

    Google Scholar 

  • Bourg ACM (1983b) ModĂ©lisation du Comportement des MĂ©taux Traces Ă  l’Interface Solide-Liquide dans les Systèmes Aquatiques. Document du B.R.G.M. n°62, Editions of the Bureau de Recherches GĂ©ologiques et Minières, OrlĂ©ans, France, 171 pp

    Google Scholar 

  • Bourg ACM (1984) Geochemical control of dissolved cadmium, copper and zinc in the low salinity zone of the Gironde Estuary, France. Proc Internat Symp Interactions between Sediments and Water, Aug 1984, Geneva, pp 249–252

    Google Scholar 

  • Bourg ACM (1988) Physico-chemical speciation of trace elements in oxygenated estuarine waters. In: Trace Elements in Natural Waters. Internat Union Pure and Applied Chem. In press

    Google Scholar 

  • Bourg ACM, Mouvet C (1988) Adsorption as a control mechanism of dissolved trace metals in the Meuse River. In preparation

    Google Scholar 

  • Bourg ACM, Schindler PW (1978) Ternary surface complexes. (1) Complex formation in the system silica-Cu(II)-ethylenediamine. Chimia 32:166–168

    CAS  Google Scholar 

  • Bourg ACM, Schindler PW (1979) Effect of EDTA on the adsorption of Cu(II) at amorphous silica. Inorg Nucl Chem Lett 15:225–229

    CAS  Google Scholar 

  • Bourg ACM, Schindler PW (1985) Control of trace metals in natural aquatic systems by the adsorptive properties of organic matter. Proc Internat Conf Heavy Metals in the Environment, Sept 1985, Athens, Vol 1, pp 97–99

    CAS  Google Scholar 

  • Bourg ACM, Schindler PW (1988) Adsorption of Cu(II) complexes on amorphous silica: ternary surface complexes. In preparation

    Google Scholar 

  • Bourg ACM, Vedy JC (1986) Expected speciation of trace metals in gravitational water of acid soil profiles. Geoderma. 38:279–292

    CAS  Google Scholar 

  • Bourg ACM, Joss S, Schindler PW (1979) Ternary surface complexes. (2) Complex formation in the system Silica — Cu(II) — 2,2’bipyridyl. Chimia 33:19–21

    CAS  Google Scholar 

  • Bowers AR (1982) Adsorption characteristics of various heavy metals at the oxide-solution interface: effect of complex formation. PhD Thesis, Univ of Delaware, Newark

    Google Scholar 

  • Brown DW, Hem JD (1984) Development of a model to predict the adsorption of lead from solution on a natural streambed sediment. US Geological Survey Water-Supply Paper 2187, 35pp

    Google Scholar 

  • BrĂĽmmer G, Tiller KG, Herms U, Clayton PM (1983) Adsorption-desorption and/or precipitation-dissolution processes of zinc in soils. Geoderma 31:337–354

    Google Scholar 

  • Buffle J (1980) A critical comparison of studies of complex formation between copper (II) and fulvic substances of natural waters. Anal Chim Acta 118:29–44

    CAS  Google Scholar 

  • Bunzl K, Schmidt W, Sansoni B (1976) Kinetics of ion exchange in soil organic matter IV. Adsorption and desorption of Pb2+, Cu2+, Cd2+, Zn2+ and Ca2+ by peat. J Soil Sci 27:32–41

    CAS  Google Scholar 

  • Calvet R (1981) Etude du comportement physico-chimique de mĂ©taux lourds et des pesticides et de leur transport dans les sols. Report Institut Nat Rech Agronomique, Paris, grant 77.53 Ministère Environnement 104 pp

    Google Scholar 

  • Cavallaro N, McBride MB (1978) Copper and cadmium adsorption by acid and calcareous soils. Soil Sci Soc Am J 42:550–555

    CAS  Google Scholar 

  • Cavallaro N, McBride MB (1984) Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions. Soil Sci Soc Am J 48:1050–1054

    CAS  Google Scholar 

  • Chapman BM, Jones DR, Jung RF (1983) Processes controlling metal ion attenuation in acid mine drainage streams. Geochim Cosmochim Acta 47:1957–1973

    CAS  Google Scholar 

  • Cheshire ML, Berrow ML, Goodman BA, Mundie CM (1981) The nature and origin of the organic matter-metal complexes of soil. In: Migration Organo-MinĂ©rales dans les Sols TempĂ©rĂ©s (Colloques Internationaux du CNRS n° 303) pp 241–246

    Google Scholar 

  • Christensen TH (1984a) Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH and calcium. Water, Air and Soil Pollut 21:105–114

    CAS  Google Scholar 

  • Christensen TH (1984b) Cadmium soil sorption at low concentrations: II. Reversibility, effect of changes in solute composition and effect of soil aging. Water, Air and Soil Pollut 21:115–125

    CAS  Google Scholar 

  • Christensen TH (1985a) Cadmium soil sorption at low concentrations: III. Prediction and observation of mobility. Water, Air and Soil Pollut 26:255–264

    CAS  Google Scholar 

  • Christensen TH (1985b) Heavy metal competition for soil sorption sites at low concentrations. Proc Internat Conf Heavy Metals in the Environment, Sept 1985, Athens, Vol 2, pp 394–397

    CAS  Google Scholar 

  • Cleveland JM, Rees TF (1981) Characterization of plutonium in Maxey Flats radioactive trench leachates. Science 212:1506–1510

    CAS  Google Scholar 

  • Davis JA (1984a) personal communication

    Google Scholar 

  • Davis JA (1984b) Complexation of trace metals by adsorbed natural organic matter. Geochim Cosmochim Acta 48:679–691

    CAS  Google Scholar 

  • Davis JA, Leckie JO (1978) Surface ionization and complexation at the oxide-water interface: (2) Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. J Colloid Interface Sci 67:90–107

    CAS  Google Scholar 

  • Davis JA, Leckie JO (1980) Surface ionization and complexation at the oxide-water interface: (3) Adsorption of anions. J Colloid Interface Sci 74:32–43

    CAS  Google Scholar 

  • Davis JA, James RO, Leckie JO (1978) Surface ionization and complexation at the oxide-water interface: (1) Computation of electrical double layer properties in simple electrolytes. J Colloid Interface Sci 63:480–499

    CAS  Google Scholar 

  • Doner HE (1978) Chloride as a factor in mobilities of Ni(II), Cu(II) and Cd(II) in soil. Soil Sci Soc Am J 42:882–885

    CAS  Google Scholar 

  • Dyrssen D, Wedborg M (1980) Major and minor elements, chemical speciation in estuarine waters. In: Olausson E, Cato I (eds) Chemistry and Biogeochemistry of Estuaries, Wiley, New York, pp 71–119

    Google Scholar 

  • Egozy Y (1980) Adsorption of cadmium and cobalt on montmorillonite as a function of solution composition. Clays Clay Miner 28:311#x2013;318

    CAS  Google Scholar 

  • Ellaway M, Beckett R, Hart B (1980) Behaviour of iron and manganese in the Yarra Estuary, Aust J Mar Freshwater Res 31:597–609

    CAS  Google Scholar 

  • Elliott HA (1983) Adsorption behavior of cadmium in response to soil surface charge. Soil Sci 136:317–321

    CAS  Google Scholar 

  • Elliott HA, Huang CP (1979) The adsorption characteristics of Cu(II) in the presence of chelating agents. J Colloid Interface Sci 70:29–45

    CAS  Google Scholar 

  • Elliott HA, Huang CP (1980) Adsorption of some copper (II)-amino acid complexes at the solid-solution interface: Effects of ligand and surface hydrophobicity. Environ Sci Technol 14:87–93

    CAS  Google Scholar 

  • Elliott HA, Huang CP (1981) Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Res 15:849–855

    CAS  Google Scholar 

  • Florence TM, Batley GE (1980) Chemical speciation in natural waters. Crit Rev Anal Chem 9:219–296

    CAS  Google Scholar 

  • Garcia-Miragaya J, Page AL (1976) Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of Cd by montmorillonite. Soil Sci Soc Am J 40:658–663

    CAS  Google Scholar 

  • Garrels RM, Thompson ME (1962) A chemical model for seawater at 25°C and one atmosphere total pressure. Am J Sci 260:57–66

    CAS  Google Scholar 

  • Gomez A, Juste C (1981) MobilitĂ© du cadmium, du mercure, du nickel et du plomb associĂ©s Ă  des acides humiques ou Ă  des anions minĂ©raux dans des colonnes de sable. In: Migrations Organo-MinĂ©rales dans les Sols TempĂ©rĂ©s (Colloques Internationaux du CNRS n° 303) pp 291–296

    Google Scholar 

  • Gotoh S, Patrick Jr WH (1972) Transformation of manganese in a waterlogged soil as affected by redox potential and pH. Soil Sci Soc Am Proc 36:738–742

    Google Scholar 

  • Gotoh S, Patrick Jr WH (1974) Transformation of iron in a waterlogged soil as influenced by redox potential and pH. Soil Sci Soc Am Proc 38:66–71

    Google Scholar 

  • Heinrichs H, Mayer R (1980) The role of forest vegetation in the biogeochemical cycles of heavy metals. J Environ Qual 9:111–118

    CAS  Google Scholar 

  • Hem JD (1972) Chemistry and occurrence of cadmium and zinc in surface water and groundwater. Water Resour Res 8:661–679

    CAS  Google Scholar 

  • Hohl H, Stumm W (1976) Interaction of Pb2+ with hydrous ÎłAl2O3. J Colloid Interface Sci 55:281–288

    CAS  Google Scholar 

  • Hunter KA (1983) The adsorptive properties of sinking particles in the deep ocean. Deep Sea Res 30:669–675

    CAS  Google Scholar 

  • Jedwab J (1979) Copper, zinc and lead minerals suspended in ocean waters. Geochim Cosmochim Acta 43:101–110

    CAS  Google Scholar 

  • Jenne EA (1968) Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: The significant role of hydrous Mn and Fe oxides. Am Chem Soc Symp Ser 93:337–387

    Google Scholar 

  • Jenne EA, Ball JW, Matter Burchard J, Vivit DV, Barks JH (1980) Geochemical modeling apparent solubility controls on Ba, Zn, Cd, Pb and F in waters of the Missouri Tri-State mining area. Proc 14th Conf Trace Substances in Environmental Health, June 2–5, 1980, Columbia, Missouri, pp 353–361

    Google Scholar 

  • Jurinak JJ, Bauer N (1956) Thermodynamics of zinc adsorption on calcite, dolomite and magnesite type minerals. Soil Sci Soc Am Proc 20:466–471

    CAS  Google Scholar 

  • Khalid RA, Gambrell RP, Patrick Jr WH (1975) Sorption and release of mercury by Mississippi River sediment as affected by pH and redox potential. In: Biological implications of metals in the environment, ERDA series 42. Available from Hanford Life Sciences Symp, Richland, Washington; CONF-750929

    Google Scholar 

  • Khalid RA, Gambrell RP, Patrick Jr WH (1979) Chemical mobilization of cadmium in an estuarine sediment as affected by pH and redox potential. Proc Internat Conf Heavy Metals in the Environment, Sept 1979, London: 320–324

    Google Scholar 

  • Korte NE, Skopp J, Niebla EE, Fuller WH (1975) A baseline study on trace metal elution from diverse soil types. Water, Air, Soil Pollut 5:149–156

    CAS  Google Scholar 

  • Kramer CJM, Duinker JC (eds) (1984) Complexation of trace metals in natural waters. Martinus Nijhoff/Dr W Junk Publ, The Hague, 448 pp

    Google Scholar 

  • Kuo S, McNeal BL (1984) Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide. Soil Sci Soc Am J 48:1040–1044

    CAS  Google Scholar 

  • Kurdi F, Doner HE (1983) Zinc and copper sorption and interaction in soils. Soil Sci Soc Am J 47:873–876

    CAS  Google Scholar 

  • Leckie JO, Benjamin MM, Hayes K, Kaufman G, Altman S (1980) Adsorption/coprecipitation of trace elements from water with iron oxyhydroxide. Final Report, EPRIRP-910, Electric Power Res Inst, Palo Alto, Calif

    Google Scholar 

  • Li YH (1981) Ultimate removal mechanisms of elements from the ocean. Geochim Cosmochim Acta 45:1659–1664

    CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, 449 pp

    Google Scholar 

  • Lion LW, Altman RS, Leckie JO (1982) Trace-metal adsorption characteristics of estuarine particulate matter: evaluation of contributions of Fe-Mn oxide and organic surface coatings. Environ Sci Technol 16:660–666

    CAS  Google Scholar 

  • Long DT, Angino EE (1977) Chemical speciation of Cd, Cu, Pb and Zn in mixed freshwater, seawater and brine solutions. Geochim Cosmochim Acta 41:1183–1191

    CAS  Google Scholar 

  • Lyons WB, Gaudette HE, Armstrong PB (1979) Evidence for organically associated iron in nearshore pore fluids. Nature 282:202–203

    CAS  Google Scholar 

  • MacLaren RG, Swift RS, Williams JG (1981) The adsorption of copper by soil materials at low equilibrium solution concentrations. J Soil Sci 32:247–256

    Google Scholar 

  • MacNauthton MG, James RO (1974) Adsorption of aqueous mercury (II) complexes at the oxide/water interface. J Colloid Interface Sci 47:431–440

    Google Scholar 

  • Mantoura RFC, Dickson A, Riley JP (1978) The complexation of metals with humic materials in natural waters. Estuar Coastal Mar Sci 6:387–408

    CAS  Google Scholar 

  • Mattigod SV (1981) Speciation of heavy metals in soils. Proc. Internat Conf Heavy Metals in the Environment, Sept 1981, Amsterdam, pp 721–727

    Google Scholar 

  • Mattigod SV, Sposito G, Page AL (1981) Factors affecting the solubilities of trace metals in soils. In: Dowdy RH, Ryan JA, Volk VV, Baker DE (eds) Chemistry in the soil environment, Am Soc Agronomy and Soil Sci Soc Am, Madison, pp 203–221

    Google Scholar 

  • Mayer R (1978) Z Pflanzenernährung Bodenk 141:11–20, cited in Christensen (1984b)

    CAS  Google Scholar 

  • McBride MB (1980) Chemisorption of Cd2+ on calcite surfaces. Soil Sci Soc Am J 44:26–28

    CAS  Google Scholar 

  • McBride MB, Blasiak JJ (1979) Zinc and copper solubility as a function of pH in an acid soil. Soil Sci Soc Am J 43:866–870

    CAS  Google Scholar 

  • Means JL, Grerar DA, Duguid JO (1978) Migration of radioactive wastes: radionuclide mobilization by complexing agents. Science 200:1477–1481

    CAS  Google Scholar 

  • Morel FMM, Westall JC, Yeasted JG (1981) Adsorption models: a mathematical analysis in the framework of general equilibrium calculations. In: Anderson MA, Rubin AJ (eds) Adsorption of inorganics at solid-liquid interfaces. Ann Arbor Sci Publ, Ann Arbor, pp 263–294

    Google Scholar 

  • Mouvet C, Bourg ACM (1983) Speciation (including adsorbed species) of copper, lead, nickel and zinc in the Meuse River. Observed results compared to values calculated with a chemical equilibrium computer program. Water Res 17:641–649

    CAS  Google Scholar 

  • Murali V, Aylmore LAG (1980) No-flow equilibration and adsorption dynamics during ionic transport in soils. Nature 283:467–469

    Google Scholar 

  • Nordstrom DK, Ball JW (1984) Chemical models, computer programs and metal complexation in natural waters. In: Kramer CJM, Duinker JC (eds) Complexation of trace metals in natural waters, M Nijhoff, Dr W Junk Publ, The Hague pp 149–164

    Google Scholar 

  • Nordstrom DK, and eighteen co-authors (1979) A comparison of computerized chemical models for equilibrium calculations in aqueous systems. In: Jenne EA (ed) Chemical modelling in aqueous systems. Am Chem Soc Symp Ser 93:857–892

    CAS  Google Scholar 

  • Norrish K (1968) Some phosphate minerals of soils. Trans 9th Int Congr Soil Sci Amer, Elsevier, New York, 2:713–723

    CAS  Google Scholar 

  • Nyffeler UP, Li YH, Santschi PM (1984) A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. Geochim Cosmochim Acta 48:1513–1522

    CAS  Google Scholar 

  • Parks GA (1967) Aqueous surface chemistry of oxides and complex oxide minerals; isoelectric point and zero point of charge. In: Equilibrium concepts in natural water systems, Adv in Chemistry Series n° 67 ACS, Wash, DC, pp 121–159

    Google Scholar 

  • Reimers RS, Krenkel PA (1974) Kinetics of mercury adsorption and desorption in sediments. J Wat Poll Control Fed 46:352–365

    CAS  Google Scholar 

  • Rhoads EA, Huang CP (1983) The adsorption of zinc (II) onto synthetic aluminosilicates. Report, Grant CEE 8104728, US National Science Foundation

    Google Scholar 

  • Salomons W (1983) Trace metal cycling in a polluted lake (IJsselmeer, the Netherlands). Delft Hydraulics Laboratory Report S 357/EEC contract no 199-7-1 ENV N. 50 pp

    Google Scholar 

  • Salomons W (1984) Contaminants in sediment: Out of sight out of mind? Proc Internat Conf Environmental Contamination, July 1984, London, pp 766–774

    Google Scholar 

  • Salomons W (1985) Dredged material and mine tailings: Similarities in behavior and impact. Proc Internat Conf Heavy Metals in the Environment, Sept 1985, Athens, Vol 2, p 23

    Google Scholar 

  • Salomons W, Eysink W (1981) Pathways of mud and particulate trace metals from rivers to the Southern North Sea. In: Nio SD, Schuettenhelm RTE Weering TCE van (eds) Holocene Marine Sedimentation in the North Sea Basin. Spec Publ Int Assoc Sedimentol 5:429–450

    Google Scholar 

  • Salomons W, Foerstner U (1984) Metals in the hydrocycle, Springer, Berlin, 349 pp

    Google Scholar 

  • Salomons W, Van Pagee JA (1981) Prediction of NTA levels in river systems and their effects on metal concentration. Int Conf. Heavy metals in the environment, Amsterdam: 694–697

    Google Scholar 

  • Salomons W, van Driel W, Kerdijk H, Boxma R (1982) Help! Holland is plated by the Rhine (environmental problems associated with contaminated sediments). Effects of waste disposal on groundwater. Proc Exeter Symp IHAS 139:255–269

    Google Scholar 

  • Salomons W, de Rooij NM, Kerdijk H, Bril J (1988) Sediments as a source for contaminants. In press

    Google Scholar 

  • Santillan-Medrano J, Jurinak JJ (1975) The chemistry of lead and cadmium in soil: Solid phase formation. Soil Sci Soc Amer Proc 39:851–856

    CAS  Google Scholar 

  • Santschi PH, Nyffeler UP, Li YH, O’Hara P (1984) Radionuclide cycling in natural waters: Relevance of sorption kinetics. Proc 3rd Internat Symp Interactions between sediments and water, Aug 1984, Geneva: 18–27

    Google Scholar 

  • Schindler PW, FĂĽrst B, Dick R, Wolf PU (1976) Ligand properties of surface silanol groups: Surface complex formation with Fe3+, Cu2+, Cd2+ and Pb2+. J Colloid Interface Sci 55:469–475

    CAS  Google Scholar 

  • Schmitt HV, Sticher H (1986) Long-term trend analysis of heavy metal content and translocation in soils. Geoderma, 38:145–208

    Google Scholar 

  • Sholkovitz ER, Copland D (1982) The chemistry of suspended matter in Esthwaite Water, a biologically productive lake with seasonally anoxic hypolimnion. Geochim Cosmochim Acta 46:393–410

    CAS  Google Scholar 

  • Sibley TH, Morgan JJ (1975) Equilibrium speciation of trace metals in freshwater: seawater mixtures. Proc Internat Conf. Heavy metals in the environment, Oct 1975, Toronto, Vol 1:323–338

    Google Scholar 

  • Sigg L (1986) Surface chemical aspects of the distribution and fate of metal ions in lakes. Lecture given on Jan 24, 1986, Workshop on Aquatic Surface Chemistry, EAWAG, Ermatingen, Switzerland, (abstract) pp 67–70

    Google Scholar 

  • Sigg L, Stumm W (1981) The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface. Colloids and Surfaces 2:101–117

    CAS  Google Scholar 

  • Sigg L, Stumm W, Zinder B (1984) Chemical processes at the particle-water interface; implications concerning the form of occurrence of solute and adsorbed species. In: Kramer CJM, Duinker JC (eds) Complexation of trace metals in natural waters, M Nijhoff/Dr. W Junk Publ, The Hague: 251–266

    Google Scholar 

  • Smock LA, Kuenzler E (1983) Seasonal changes in the forms and species of iron and manganese in a seasonally inundated floodplain swamp. Water Res 17:1287–1294

    CAS  Google Scholar 

  • Sposito G (1983) The chemical forms of trace metals in soils. In: Thornton I (ed) Applied environmental geochemistry, Academic Press, London: 123–170

    Google Scholar 

  • Stumm W, Morgan JJ (1970) Aquatic chemistry, 1st ed, Wiley, New York, 583 pp

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd ed, Wiley, New York, 780 pp

    Google Scholar 

  • Stumm W, Hohl H, Dalang F (1976) Interaction of metal ions with hydrous oxide surfaces. Croat Chem Acta 48:491–504

    CAS  Google Scholar 

  • Stumm W, Kummert R, Sigg L (1980) A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces. Croat Chem Acta 53:291–312

    CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    CAS  Google Scholar 

  • Theis TL, Singer PC (1974) Complexation of iron (II) by organic matter and its effect on iron (II) oxygenation. Environ Sci Technol 8:569–572

    CAS  Google Scholar 

  • Thornber MR, Nickel EH (1976) Supergene alteration of sulfides. II. The composition of associated carbonates. Chem Geol 17:45–72

    CAS  Google Scholar 

  • Tipping E, Griffith JR, Hilton J (1983) The effect of adsorbed humic substances on the uptake of copper (II) by goethite, Croat Chem Acta 56:613–621

    CAS  Google Scholar 

  • Turner DR, Whitfield M, Dickson AG (1981) The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure. Geochim Cosmochim Acta 45:885–881

    Google Scholar 

  • Vuceta J (1978) Adsorption of Pb(II) and Cu(II) on quartz from aqueous solutions: influence of pH, ionic strength and complexing ligands. PhD Thesis, California Institute of Technology, Pasadena, California

    Google Scholar 

  • Vuceta J, Morgan JJ (1978) Chemical modeling of trace metals in fresh waters: role of complexation and adsorption. Environ Sci Technol 12:1302–1309

    CAS  Google Scholar 

  • Whitfield M, Turner DR (1979) Water-rock partition coefficients and the composition of seawater and river water. Nature 278:132–137

    CAS  Google Scholar 

  • Wilson DE (1978) An equilibrium model describing the influence of humic materials on the speciation of Cu2+, Zn2+ and Mn2+ in fresh waters. Limnol Oceanog 23:499–507

    CAS  Google Scholar 

  • Woods TL, Garreis RM (1986) Use of oxidized copper minerals as environmental indicators. Applied Geochemistry 1:181–187

    CAS  Google Scholar 

  • Zirino A, Yamamoto S (1972) A pH-dependent model for the chemical speciation of copper, zinc, cadmium and lead in seawater. Limnol Oceanog 17:661–671

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bourg, A.C.M. (1988). Metals in Aquatic and Terrestrial Systems: Sorption, Speciation, and Mobilization. In: Salomons, W., Förstner, U. (eds) Chemistry and Biology of Solid Waste. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72924-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72924-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72926-3

  • Online ISBN: 978-3-642-72924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics