Skip to main content

Vertebrate Cholinesterases: Structure and Types of Interaction

  • Chapter
Book cover The Cholinergic Synapse

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 86))

Abstract

Cholinesterases (ChEs) hydrolyse choline esters specifically and rapidly and thus play an essential role in cholinergic transmission, e. g. at the neuromuscular junctions of vertebrates. Vertebrates possess two distinct ChEs, acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase, also called pseudocholinesterase or non-specific cholinesterase (BuChE, EC 3.1.1.8). Both these enzymes present multiple molecular variants which possess identical catalytic activity but differ in their molecular structure and interactions. The molecular variants can be differentiated by various analytical procedures. We find it useful first to classify them as molecular forms, according to their hydrodynamic parameters (sedimentation coefficient, Stokes radius), corresponding to different quaternary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Sakai M, Saisu H (1983) A monoclonal antibody against catalytic subunits of acetylcholinesterase in the electric organ of an electric ray Narke japonica. Neurosci Lett 38:61–66

    PubMed  CAS  Google Scholar 

  • Abo T, Balch CM (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127:1024–1029

    PubMed  CAS  Google Scholar 

  • Adams DH, Whittaker VP (1949) The cholinesterase of human blood. I. The specificity of the plasma enzyme and its relation to the erythrocyte Cholinesterase. Biochim Biophys Acta 3:358–366

    CAS  Google Scholar 

  • Adamson ED (1977) Acetylcholinesterase in mouse brain erythrocytes and muscle. J Neurochem 28:605–615

    PubMed  CAS  Google Scholar 

  • Allemand P, Bon S, Massoulié J, Vigny M (1981) The quaternary structure of chicken acetylcholinesterase and butyryl-cholinesterase: effect of collagenase and trypsin. J Neurochem 36:860–867

    PubMed  CAS  Google Scholar 

  • Anglister L, McMahan UJ (1983) Acetylcholinesterase in the synaptic basal lamina of damaged muscle fibers (Abstr). 2nd International Meeting on Cholinesterases, Bled, p 58

    Google Scholar 

  • Anglister L, Silman I (1978) Molecular structure of elongated forms of electric eel acetylcholinesterase. J Mol Biol 125:293–311

    PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the elderly human central nervous system. J Neurochem 47:263–277

    PubMed  CAS  Google Scholar 

  • Auditore JV, Hartmann RC (1959) Paroxysmal nocturnal hemoglobinuria. II. Erythrocyte acetylcholinesterase defect. Am J Med 27:401

    PubMed  CAS  Google Scholar 

  • Baltz T, Duvillier G, Giroud C, Richet C, Baltz D, Degaud P (1983) The variant surface glycoprotein of Trypanosoma equiperdum: identification of a phosphorylated glycopeptide as the cross-reacting antigenic determinant. FEBS Lett 158:174–178

    PubMed  CAS  Google Scholar 

  • Barrat A, Gómez-Barriocanal J, Ramirez G (1984) Two classes of collagen-tailed, asymmetric molecular forms of acetylcholinesterase in skeletal muscle: differential effects of denervation. Neurochem Int 6:403–412

    Google Scholar 

  • Barat A, Escudero E, Ramirez G (1986) Heparin and the solubilization of asymmetric acetylcholinesterase. FEBS Lett 195:209–214

    PubMed  CAS  Google Scholar 

  • Barnett P, Rosenberry TL (1978) A residual subunit fragment in the conversion of 18 S to 11 S acetylcholinesterase. Fed Proc 36:485

    Google Scholar 

  • Barton PL, Futerman AH, Silman I (1985) Arrhenius plots of acetylcholinesterase activity in mammalian erythrocytes and in Torpedo electric organ: effect of solubilization by proteinases and by a phosphatidylinositol-specific phospholipase C. Biochem J 231:237–240

    PubMed  CAS  Google Scholar 

  • Bender W, Spierer P, Hogness DS (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol 168:17–33

    PubMed  CAS  Google Scholar 

  • Berman HA, Yguerabide J, Taylor P (1980) Fluorescence energy transfer on acetylcholinesterase: spatial relationship between peripheral site and active center. Biochemistry 19:2226–2235

    PubMed  CAS  Google Scholar 

  • Birman S (1985) Determination of acetylcholinesterase activity by a new chemiluminescence assay with the natural substrate. Biochem J 225:825–828

    PubMed  CAS  Google Scholar 

  • Bon S (1982) Molecular forms of acetylcholinesterase in developing Torpedo embryos. Neurochem Int 4:577–585

    PubMed  CAS  Google Scholar 

  • Bon S, Massoulié J (1976) Molecular forms of Electrophorus acetylcholinesterase; the catalytic subunits: fragmentation, intra- and inter-subunit disulfide bonds. FEBS Lett 71:273–278

    PubMed  CAS  Google Scholar 

  • Bon S, Massoulié J (1978) Collagenase sensitivity and aggregation properties of Electrophorus acetylcholinesterase. Eur J Biochem 89:89–94

    PubMed  CAS  Google Scholar 

  • Bon S, Massoulié J (1980) Collagen-tailed and hydrophobic component of acetylcholinesterase in Torpedo marmorata electric organ. Proc Natl Acad Sci USA 77:4464–4468

    PubMed  CAS  Google Scholar 

  • Bon S, Huet M, Lemonnier M, Rieger F, Massoulié J (1976) Molecular forms of Electrophorus acetylcholinesterase: molecular weight and composition. Eur J Biochem 68:523–530

    PubMed  CAS  Google Scholar 

  • Bon S, Cartaud J, Massoulié J (1978) The dependence of acetylcholinesterase aggregation at low ionic strength upon a polyanionic component. Eur J Biochem 85:1–14

    PubMed  CAS  Google Scholar 

  • Bon S, Vigny M, Massoulié J (1979) Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc Natl Acad Sci USA 76:2546–2550

    PubMed  CAS  Google Scholar 

  • Bon S, Chang JY, Strosberg AD (1986) Identical N-terminal peptide sequences of asymmetric forms and of amphiphilic low-salt-soluble and detergent-soluble dimers of Torpedo acetylcholinesterase: comparison with bovine acetylcholinesterase. FEBS Lett 209:206–212

    PubMed  CAS  Google Scholar 

  • Bon S, Méflah K, Musset F, Grassi J, Massoulié J (1987) An immunoglobulin M monoclonal antibody, recognizing a subset of acetylcholinesterase molecules from electric organs of Electrophorus and Torpedo, belongs to the HNK-1 anti-carbohydrate family. J Neurochem 49:1720–1731

    PubMed  CAS  Google Scholar 

  • Bon S, Toutant JP, Méflah K, Massoulié J (1988 a) Amphiphilic and non-amphiphilic forms of Torpedo cholinesterases. I: Solubility and aggregation properties. J Neurochem (in press)

    Google Scholar 

  • Bon S, Toutant JP, Méflah K, Massoulié J (1988 b) Amphiphilic and non-amphiphilic forms of Torpedo cholinesterases. II: Electrophoretic variants, phosphatidylinositol-phospholipase C sensitive and insensitive forms. J Neurochem (in press)

    Google Scholar 

  • Borst P, Cross GAM (1982) Molecular basis for trypanosome antigenic variation. Cell 29:291–303

    PubMed  CAS  Google Scholar 

  • Brandan E, Inestrosa NC (1984) Binding of asymmetric forms of acetylcholinesterase to heparin. Biochem J 221:415–422

    PubMed  CAS  Google Scholar 

  • Brandan E, Inestrosa NC (1986) The synaptic form of acetylcholinesterase binds to cell-surface heparan sulfate proteoglycans. J Neurosci Res 15:185–196

    PubMed  CAS  Google Scholar 

  • Brandan E, Inestrosa NC (1987) Co-solubilization of asymmetric acetylcholinesterase and dermatan sulfate proteoglycan from the extracellular matrix of the rat skeletal muscle. FEBS Lett 213:159–163

    PubMed  CAS  Google Scholar 

  • Brandan E, Maldonado M, Garrido J, Inestrosa NC (1985) Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans. J Cell Biol 101:985–992

    PubMed  CAS  Google Scholar 

  • Brimijoin S (1983) Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog Neurobiol 21:291–322

    PubMed  CAS  Google Scholar 

  • Brimijoin S, Rakonczay Z (1986) Immunology and molecular biology of the cholinesterases: current results and prospects. Int Rev Neurobiol 28:363–410

    PubMed  CAS  Google Scholar 

  • Brimijoin S, Mintz KP, Alley MC (1983) Production and characterization of separate monoclonal antibodies to human acetylcholinesterase and butyrylcholinesterase. Mol Pharmacol 24:513–520

    PubMed  CAS  Google Scholar 

  • Brimijoin S, Mintz KP, Prendergast FG (1985) An inhibitory monoclonal antibody to rabbit brain acetylcholinesterase: evidence for binding near the catalytic site. Mol Pharmacol 28:539–545

    PubMed  CAS  Google Scholar 

  • Brockman SK, Usiak MF, Younkin SG (1986) Assembly of monomeric acetylcholinesterase in cultured rat myotubes. J Neurosci 4:131–140

    Google Scholar 

  • Brodbeck U (1986) Amphiphilic acetylcholinesterase: properties and interactions with lipids and detergents. In: Watts A, de Pont J (eds) Progress in protein-lipid interactions 2. Elsevier, Amsterdam, p 303

    Google Scholar 

  • Brzin M, Sketelj J, Klinar B (1983) Cholinesterases. In: Lathja A (ed) Handbook of neurochemistry. Plenum, New York, pp 251–292

    Google Scholar 

  • Brzin M, Barnard EA, Sket D (eds) (1984) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin

    Google Scholar 

  • Campbell DG, Gagnon J, Reid KBM, Williams AF (1981) Rat brain Thy-1 glycoprotein: the amino acid sequence, disulphide bonds and unusual hydrophobic region. Biochem J 195:15–30

    PubMed  CAS  Google Scholar 

  • Capdeville Y, Baltz T, Deregnaucourt C, Keller A-M (1986) Immunological evidence of a common structure between Paramecium surface antigens and Trypanosoma variant surface glycoproteins. Exp Cell Res 167:75–86

    Google Scholar 

  • Caras IW, Davitz MA, Rhee L, Weddell G, Martin DW Jr, Nussenzweig V (1987) Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325:545–549

    PubMed  CAS  Google Scholar 

  • Cardoso de Almeida L, Turner MJ (1983) The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature 302:349–352

    Google Scholar 

  • Cartaud J, Rieger F, Bon S, Massoulié J (1975) Fine structure of electric eel acetylcholinesterase. Brain Res 88:127–130

    PubMed  CAS  Google Scholar 

  • Cartaud J, Bon S, Massoulié J (1978) Electrophorus acetylcholinesterase: biochemical and electron microscope characterization of low ionic strength aggregates. J Cell Biol 77:315–322

    PubMed  CAS  Google Scholar 

  • Chang HW, Niebroj-Dobosz I, Bock E, Miranda AF, Bonilla E (1986) Monoclonal antibodies against two molecular species from Torpedo californica and their cross-reactivities with human acetylcholinesterase. Muscle Nerve 9:143

    Google Scholar 

  • Chatonnet A, Bacou F (1983) Acetylcholinesterase molecular forms in the fast or slow muscles of the chicken and the pigeon. FEBS Lett 161:122–126

    PubMed  CAS  Google Scholar 

  • Chemnitius JM, Haselmeyer KH, Zech R (1983) Brain cholinesterases: differentiation of target enzymes for toxic organophosphorus compounds. Biochem Pharmacol 32:1693–1699

    PubMed  CAS  Google Scholar 

  • Chou KH, Ilyas AA, Evans JE, Quarles RH, Jungalwala FB (1985) Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1. Biochem Biophys Res Commun 128:383–388

    PubMed  CAS  Google Scholar 

  • Cisson CM, McQuarrie CH, Sketelj J, McNamee MG, Wilson BW (1981) Molecular forms of acetylcholinesterase in chick embryonic fast muscle: developmental changes and effects of DFP. Dev Neurosci 4:157–164

    PubMed  CAS  Google Scholar 

  • Cohen R, Barenholz Y (1984) Characterization of the association of Electrophorus electricus acetylcholinesterase with sphingomyelin liposomes. Biochim Biophys Acta 778:94–104

    PubMed  CAS  Google Scholar 

  • Cross GAM (1987) Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell 48:179–181

    PubMed  CAS  Google Scholar 

  • Davitz MA, Low MG, Nussenzweig V (1986) Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). J Exp Med 163:1150–1161

    PubMed  CAS  Google Scholar 

  • Di Francesco C, Brodbeck U (1981) Interaction of human red cell membrane acetylcholinesterase with phospholipids. Biochim Biophys Acta 640:359–364

    PubMed  Google Scholar 

  • Di Giamberardino L, Couraud JY (1978) Rapid accumulation of high molecular weight acetylcholinesterase in transected sciatic nerve. Nature 271:170–172

    PubMed  Google Scholar 

  • Di Lauro R, Obici S, Condliffe D, Ursini VM, Musti A, Moscatelli C, Avvedimento VE (1985) The sequence of 967 amino acids at the carboxyl-end of rat thyroglobulin: location and surroundings of two thyroxine-forming sites. Eur J Biochem 148:7–11

    PubMed  Google Scholar 

  • Doctor BP, Camp S, Gentry MK, Taylor SS, Taylor P (1983) Antigenic and structural differences in the catalytic subunits of the molecular forms of acetylcholinesterase. Proc Natl Acad Sci USA 80:5767–5771

    PubMed  CAS  Google Scholar 

  • Dreyfus PA, Rieger F, Pinçon-Raymond M (1983) Acetylcholinesterase of mammalian neuromuscular junctions: presence of tailed asymmetric acetylcholinesterase in synaptic basal lamina and sarcolemma. Proc Natl Acad Sci USA 80:6698–6702

    PubMed  CAS  Google Scholar 

  • Dreyfus PA, Friboulet A, Tran LH, Rieger F (1984) Polymorphism of acetylcholinesterase and identification of new molecular forms after sedimentation analysis. Biol Cell 51:35–41

    PubMed  CAS  Google Scholar 

  • Dudai Y, Silman I (1973) The effect of Ca2+ on interaction of acetylcholinesterase with subcellular fractions of electric organ tissue from the electric eel. FEBS Lett 30:49–52

    PubMed  CAS  Google Scholar 

  • Dudai Y, Silman I (1974) The effects of solubilization procedures on the release and molecular state of acetylcholinesterase from electric organ tissue. J Neurochem 23:1177–1187

    PubMed  CAS  Google Scholar 

  • Dudai Y, Silman I, Shinitzky M, Blumberg S (1972) Purification by affinity chromatography of the molecular forms of acetylcholinesterase present in fresh electric organ tissue of electric eel. Proc Natl Acad Sci USA 69:2400–2403

    PubMed  CAS  Google Scholar 

  • Dutta-Choudhury TA, Rosenberry TL (1984) Human erythrocyte acetylcholinesterase is an amphipathic protein whose short membrane binding domain is removed by papain digestion. J Biol Chem 259:5653–5660

    PubMed  CAS  Google Scholar 

  • Eckerson HW, Oseroff A, Lockridge O, La Du BN (1983) Immunological comparison of the usual and atypical human serum Cholinesterase phenotypes. Biochem Genet 21:93–108

    PubMed  CAS  Google Scholar 

  • Edwards JA, Brimijoin S (1983) Thermal inactivation of the molecular forms of acetylcholinesterase and butyrylcholinesterase. Biochim Biophys Acta 742:509–516

    PubMed  CAS  Google Scholar 

  • Etges R, Bouvier J, Bordier C (1986) The major surface protein of Leishmania pro-mastigotes is anchored in the membrane by a myristic acid-labeled phospholipid. EMBO J 5:597–601

    PubMed  CAS  Google Scholar 

  • Fambrough DM, Engel AG, Rosenberry TL (1982) Acetylcholinesterase of human erythrocytes and neuromuscular junctions: homologies revealed by monoclonal antibodies. Proc Natl Acad Sci USA 79:1078–1082

    PubMed  CAS  Google Scholar 

  • Ferguson MAJ, Haidar K, Cross GAM (1985) Trypanosoma brucei variant surface glycoprotein has a sn-l,2-dimyristyl glycerol membrane anchor at its COOH terminus. J Biol Chem 260:4963–4968

    PubMed  CAS  Google Scholar 

  • Ferguson MAJ, Duszenko M, Lamont GS, Overath P, Cross GAM (1986) Biosynthesis of Trypanosoma brucei variant surface glycoproteins: N-glycosylation and addition of a phosphatidylinositol membrane anchor. J Biol Chem 261:356–362

    PubMed  CAS  Google Scholar 

  • Fernandez HL, Duell AJ, Festoff BW (1979) Cellular distribution of 16 S acetylcholinesterases. J Neurochem 32:581–585

    PubMed  CAS  Google Scholar 

  • Fournier D, Bergé J, Cardoso de Almeida ML, Bordier C (1988) Acetylcholinesterase from Musca domestica and Drosophila melanogaster brain are linked to membranes by a glycophospholipid anchor sensitive to an endogenous phospholipase. J Neurochem (in press)

    Google Scholar 

  • Fox GQ, Richardson GP (1978) The developmental morphology of Torpedo marmorata: electric organ-myogenic phase. J Comp Neurol 179:677–697

    PubMed  CAS  Google Scholar 

  • Fox GQ, Richardson GP (1979) The developmental morphology of Torpedo marmorata: electric organ-electrogenic phase. J Comp Neurol 185:293–314

    PubMed  CAS  Google Scholar 

  • Futerman AH, Low MG, Silman I (1983) A hydrophobic dimer of acetylcholinesterase from Torpedo californica electric organ is solubilized by phosphatidylinositol-specific phospholipase C. Neurosci Lett 40:85–89

    PubMed  CAS  Google Scholar 

  • Futerman AH, Fiorini RM, Roth E, Michaelson DM, Low MG, Silman I (1984) Solubilization of membrane-bound acetylcholinesterase by a phosphatidylinositol-specific phospholipase C: enzymatic and physicochemical studies. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects, de Gruyter, Berlin, p 99

    Google Scholar 

  • Futerman AH, Fiorini RM, Roth E, Low MG, Silman I (1985 a) Physicochemical behaviour and structural characteristics of membrane-bound acetylcholinesterase from Torpedo: effect of phosphatidylinositol-specific phospholipase C. Biochem J 226:369–377

    PubMed  CAS  Google Scholar 

  • Futerman AH, Low MG, Ackermann KE, Sherman WR, Silman I (1985 b) Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase. Biochem Biophys Res Commun 129:312–317

    PubMed  CAS  Google Scholar 

  • Futerman AH, Low MG, Michaelson DM, Silman I (1985 c) Solubilization of membrane-bound acetylcholinesterase by a phosphatidylinositol-specific phospholipase C. J Neurochem 45:1487–1494

    PubMed  CAS  Google Scholar 

  • Gennari K, Brodbeck U (1985) Molecular forms of acetylcholinesterase from human caudate nucleus: comparison of salt soluble and detergent soluble tetrameric enzyme species. J Neurochem 44:697–704

    PubMed  CAS  Google Scholar 

  • Gisiger V, Vigny M, Gautron J, Rieger F (1978) Acetylcholinesterase of rat sympathetic ganglion: molecular forms, localization and effects of denervation. J Neurochem 30:501–516

    PubMed  CAS  Google Scholar 

  • Gnagey AL, Forte M, Rosenberry TL (1987) Isolation and characterization of acetylcholinesterase from Drosophila. J Biol Chem 262:13290–13298

    PubMed  CAS  Google Scholar 

  • Gómez-Barriocanal J, Barat A, Escudero E, Rodriguez-Borrajo C, Ramirez G (1981) Solubilization of collagen-tailed acetylcholinesterase from chick retina: effect of different extraction procedures. J Neurochem 37:1239–1249

    PubMed  Google Scholar 

  • Grassi J, Vigny M, Massoulié J (1982) Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J Neurochem 38:457–469

    PubMed  CAS  Google Scholar 

  • Grassi J, Massoulié J, Timpl R (1983) Relationship of collagen-tailed acetylcholinesterase with basal lamina components: absence of binding with laminin fibronectin and collagen types IV and V and lack of reactivity with different anticollagen sera. Eur J Biochem 133:31–38

    PubMed  CAS  Google Scholar 

  • Greenberg AJ, Parker KK, Trevor AJ (1977) Immunochemical studies of mammalian brain acetylcholinesterase. J Neurochem 29:911–917

    PubMed  CAS  Google Scholar 

  • Grumet M, Hoffman S, Crossin KL, Edelman G (1985) Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction. Proc Natl Acad Sci USA 82:8075–8079

    PubMed  CAS  Google Scholar 

  • Haas R, Rosenberry TL (1985) Quantitative identification of N-terminal amino acids in proteins by radiolabeled reductive methylation and amino acid analysis: application to human erythrocyte acetylcholinesterase. Anal Biochem 148:154–162

    PubMed  CAS  Google Scholar 

  • Haas R, Brandt P, Knight J, Rosenberry TL (1986) Identification of non amino acid components in the hydrophobic membrane-binding domain at the C-terminus of human erythrocyte acetylcholinesterase. Biochemistry 25:3098–3105

    PubMed  CAS  Google Scholar 

  • Hall JC, Kankel DR (1976) Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics 83:517–533

    PubMed  CAS  Google Scholar 

  • Hall JC, Alahiotis SN, Strumpf DA, White K (1980) Behavioral and biochemical defects in temperature sensitive acetylcholinesterase mutants of Drosophila melanogaster. Genetics 96:939–965

    PubMed  CAS  Google Scholar 

  • Hall LMC, Spierer P (1986) Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5’ leader. EMBO J 5:2949–2954

    PubMed  CAS  Google Scholar 

  • Hall ZW (1973) Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J Neurol 4:343–361

    CAS  Google Scholar 

  • Hall ZW, Kelly RB (1971) Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature [New Biol] 232:62–64

    CAS  Google Scholar 

  • Hasan FB, Cohen SG, Cohen JB (1980) Hydrolysis by acetylcholinesterase: apparent molar volumes and trimethyl and methyl subsites. J Biol Chem 255:3898–3904

    PubMed  CAS  Google Scholar 

  • Hasan FB, Elkind JL, Cohen SG, Cohen JB (1981) Cationic and uncharged substrates and reversible inhibitors in hydrolysis by acetylcholinesterase (EC 3.1.1.7); the trimethyl subsite. J Biol Chem 256:7781–7785

    PubMed  CAS  Google Scholar 

  • He HT, Barbet J, Chaix JC, Goridis C (1986) Phosphatidylinositol is involved in the membrane attachment of N-CAM 120, the smallest component of the neural cell adhesion molecule. EMBO J 5:2489–2494

    PubMed  CAS  Google Scholar 

  • Helenius A, Simons K (1977) Charge shift electrophoresis: simple method for distinguishing between amphiphilic and hydrophilic proteins in detergent solution. Proc Natl Acad Sci USA 74:529–532

    PubMed  CAS  Google Scholar 

  • Hodgson AJ, Chubb IW (1983) Isolation of the secretory form of soluble acetylcholinesterase by using affinity chromatography on edrophonium-sepharose. J Neurochem 41:654–662

    PubMed  CAS  Google Scholar 

  • Holder AA (1983) Carbohydrate is linked through ethanolamine to the C-terminal amino- acid of Trypanosoma brucei variant surface glycoprotein. Biochem J 209:261–262

    PubMed  CAS  Google Scholar 

  • Hollunger EG, Niklasson BH (1973) The release and molecular state of mammalian brain acetylcholinesterase. J Neurochem 20:821–826

    PubMed  CAS  Google Scholar 

  • Ikezawa H, Nakabayashi T, Suzuki K, Nakajima M, Taguchi T, Taguchi R (1983) Complete purification of phosphatidylinositol specific phospholipase C from a strain of Bacillus thuringiensis. J Biochem (Tokyo) 93:1717–1719

    CAS  Google Scholar 

  • Inestrosa NC, Ruiz G (1985) Membrane-bound form of acetylcholinesterase activated during postnatal development of the rat somatosensory cortex. Dev Neurosci 7:120–132

    PubMed  CAS  Google Scholar 

  • Inestrosa NC, Roberts WL, Marshall T, Rosenberry TL (1987) Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterase in other tissues. J Biol Chem 262:4441–4444

    PubMed  CAS  Google Scholar 

  • Jansz HJ, Brons D, Warringa MGPJ (1959) Chemical nature of DFP-binding site of pseudocholinesterase. Biochim Biophys Acta 34:573–575

    PubMed  CAS  Google Scholar 

  • Karlsson E, Mbugua PM, Rodriguez-Ithurralde D (1984) Fasciculins, anticholinesterase toxins from the venom of the green mamba Dendroaspis angusticeps. J Physiol (Paris) 79:232–240

    CAS  Google Scholar 

  • Kása P, Rakonczay Z (1982) Histochemical and biochemical demonstration of the molecular forms of acetylcholinesterase in peripheral nerve of rat. Acta Histochem (Jena) 70:244–257

    Google Scholar 

  • Kaufmann K, Silman I (1980) Interaction of electric eel acetylcholinesterase with natural and synthetic lipids. Neurochem Int 2:205–207

    CAS  Google Scholar 

  • Keilhauer G, Faissner A, Schachner M (1985) Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature 316:728–730

    PubMed  CAS  Google Scholar 

  • Kieffer B, Goeldner M, Hirth C, Aebersold R, Chang JY (1986) Sequence determination of a peptide fragment from electric eel acetylcholinesterase, involved in the binding of quaternary ammonium. FEBS Lett 202:91–96

    CAS  Google Scholar 

  • Kim BH, Rosenberry TL (1985) A small hydrophobic domain that localizes human erythrocyte acetylcholinesterase in liposomal membranes in cleaved by papain digestion. Biochemistry 24:3586–3592

    PubMed  CAS  Google Scholar 

  • Klinar B, Kamaric L, Sketelj J, Brzin M (1985) Properties of acetylcholinesterase and nonspecific Cholinesterase in rat superior cervical ganglion and plasma. Neurochem Res 10:797–808

    PubMed  CAS  Google Scholar 

  • Koelle GB (ed) (1963) Cholinesterases and anticholinesterase agents. Springer, Berlin Göttingen Heidelberg (Handbch exp Pharmakol Ergw 15)

    Google Scholar 

  • Krenz WD, Tashiro T, Wächtler K, Whittaker VP, Witzemann V (1980) Aspects of the chemical embryology of the electromotor system of Torpedo marmorata with special reference to synaptogenesis. Neuroscience 5:617–624

    PubMed  CAS  Google Scholar 

  • Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984) Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311:153–155

    PubMed  CAS  Google Scholar 

  • Kruse J, Keilhauer G, Faissner A, Timpl R, Schachner M (1985) The J1 glycoprotein - a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature 316:146–148

    PubMed  CAS  Google Scholar 

  • La Du BN, Lockridge O (1986) Molecular biology of human serum Cholinesterase. Fed Proc 45:2965–2969

    PubMed  Google Scholar 

  • Lai J, Jedrzejczyk J, Pizzey JA, Green D, Barnard EA (1986) Neural control of the forms of acetylcholinesterase in slow mammalian muscles. Nature 321:72–74

    PubMed  CAS  Google Scholar 

  • Landauer P, Ruess KP, Liefländer M (1984) Bovine nucleus caudatus acetylcholinesterase: active site determination and investigation of a dimeric form obtained by selective proteolysis. J Neurochem 43:799–805

    PubMed  CAS  Google Scholar 

  • Lappin RI, Rubin LL (1984) Characterization of monoclonal antibodies to Torpedo acetylcholinersterase. J Cell Biol 99:22 a

    Google Scholar 

  • Lappin RL, Rubin LL, Lieberburg IM (1987) Generation of subunit specific antibody probes for Torpedo acetylcholinesterase: cross-species reactivity and use in cell-free translation. J Neurobiol 18:75–100

    PubMed  CAS  Google Scholar 

  • Latov N, Sherman WH, Nemmi R, Galassi G, Shyong JS, Penn AS, Chess L, Olarte MR, Rowland LP, Osserman EF (1980) Plasma cell dyscrasia and peripheral neuropathy with a monoclonal antibody to peripheral nerve myelin. N Engl J Med 303:618

    PubMed  CAS  Google Scholar 

  • Lazar M, Vigny M (1980) Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma × sympathetic ganglion cell hybrid cell line. J Neurochem 35:1067–1079

    PubMed  CAS  Google Scholar 

  • Lazar M, Salmeron E, Vigny M, Massoulié J (1984) Heavy isotope labeling study of the metabolism of monomeric and tetrameric acetylcholinesterase forms in the murine neuronal-like T28 hybrid cell line. J Biol Chem 259:3703–3713

    PubMed  CAS  Google Scholar 

  • Lee SL, Taylor P (1982) Structural characterization of the asymmetric (17 + 13) S species of acetylcholinesterase from Torpedo. II. Component peptides obtained by selective proteolysis and disulfide bond reduction. J Biol Chem 257:12292–12301

    PubMed  CAS  Google Scholar 

  • Lee SL, Heinemann S, Taylor P (1982 a) Structural characterization of the asymmetric (17 + 13) S forms of acetylcholinesterase from Torpedo. I. Analysis of subunit composition. J Biol Chem 257:12283–12291

    CAS  Google Scholar 

  • Lee SL, Camp SJ, Taylor P (1982 b) Characterization of a hydrophobic, dimeric form of acetylcholinesterase from Torpedo. J Biol Chem 257:12302–12309

    PubMed  CAS  Google Scholar 

  • Leff SE, Rosenfeld MG, Evans RM (1986) Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu Rev Biochem 55:1091–1117

    PubMed  CAS  Google Scholar 

  • Li ZY, Bon C (1983) Presence of a membrane-bound acetylcholinesterase form in a preparation of nerve endings from Torpedo marmorata electric organ. J Neurochem 40:338–349

    PubMed  CAS  Google Scholar 

  • Lockridge O (1984) Amino acid composition and sequence of human serum Cholinesterase: a progress report. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, p 5

    Google Scholar 

  • Lockridge O, La Du B (1986) Amino acid sequence of the active site of human serum Cholinesterase from usual, atypical and atypical-silent genotypes. Biochem Genet 24:485–498

    PubMed  CAS  Google Scholar 

  • Lockridge O, Eckerson HW, La Du BN (1979) Interchain disulfide bonds and subunit organization in human serum Cholinesterase. J Biol Chem 254:8324–8330

    PubMed  CAS  Google Scholar 

  • Lockridge O, Bartels CF, Vaughan TA, Wong CK, Norton SE, Johnson LL (1987) Complete amino-acid sequence of human serum Cholinesterase. J Biol Chem 262:549–557

    PubMed  CAS  Google Scholar 

  • Low MG, Finean JB (1977 a) Non-lytic release of acetylcholinesterase from erythrocytes by a phosphatidylinositol-specific phospholipase C. FEBS Lett 82:143–146

    PubMed  CAS  Google Scholar 

  • Low MG, Finean JB (1977 b) Release of alkaline phosphatase from membranes by a phosphatidylinositol-specific phospholipase C. Biochem J 167:281–284

    PubMed  CAS  Google Scholar 

  • Low MG, Kincade PW (1985) Phosphatidylinositol is the membrane domain of the Thy-1 glycoprotein. Nature 318:62–64

    PubMed  CAS  Google Scholar 

  • Low MG, Ferguson MA, Futerman AH, Silman I (1986) Covalently attached phosphatidylinositol as a hydrophobic anchor for membrane proteins. Trends Biochem Sci 11:212–215

    CAS  Google Scholar 

  • Lyles JM, Silman I, di Giamberardino L, Couraud JY, Barnard EA (1982) Comparison of the molecular forms of the cholinesterases in tissues of normal and dystrophic chickens. J Neurochem 38:1007–1021

    PubMed  CAS  Google Scholar 

  • MacPhee-Quigley K, Taylor P, Taylor S (1985) Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase: a comparison of NH2-terminal and active center sequences. J Biol Chem 260:12185–12189

    PubMed  CAS  Google Scholar 

  • MacPhee-Quigley K, Vedvick TS, Taylor P, Taylor S (1986) Profile of the disulfide bonds in acetylcholinesterase. J Biol Chem 261:13565–13570

    PubMed  CAS  Google Scholar 

  • Main AR, McKelly SC, Burgess-Miller SK (1977) A subunit-sized butyrylcholinesterase present in high concentrations in pooled rabbit serum. Biochem J 167:367–376

    PubMed  CAS  Google Scholar 

  • Majumbar R, Balasubramanian AS (1982) Essential and non essential phosphatidylinositol residues in acetylcholinesterase and arylacylamidase of sheep basal ganglia. FEBS Lett 146:335–338

    Google Scholar 

  • Malthiéry Y, Lissitzky S (1987) Primary structure of human thyroglobulin deduced from the sequence of its 8448 base complementary DNA. Eur J Biochem 165:491–498

    PubMed  Google Scholar 

  • Manavalan P, Taylor P, Johnson WC Jr (1985) Circular dichroism studies of acetylcholinesterase conformation: comparison of the 11 S and 5.6 S species and the differences induced by inhibitory ligands. Biochim Biophys Acta 829:365–370

    PubMed  CAS  Google Scholar 

  • Marnay A, Nachmansohn D (1938) Cholinesterase in voluntary muscle. J Physiol (Lond) 92:37–47

    CAS  Google Scholar 

  • Marsh D, Massoulié J (1985) Proteolytic digestion patterns of soluble and detergent soluble bovine caudate nucleus acetylcholinesterases. J Neurochem 44:1602–1604

    PubMed  CAS  Google Scholar 

  • Marsh D, Grassi J, Vigny M, Massoulié J (1984) An immunological study of rat acetylcholinesterase: comparison with acetylcholinesterase from other vertebrates. J Neurochem 43:204–213

    PubMed  CAS  Google Scholar 

  • Marshall LM, Sanes JR, McMahan UJ (1977) Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proc Natl Acad Sci USA 74:3073–3077

    PubMed  CAS  Google Scholar 

  • Masson P (1979) Formes moléculaires multiples de la butyrylcholinestérase du plasma humain. I. Paramètres moléculaires apparents et ébauche de la structure quaternaire. Biochim Biophys Acta 578:493–504

    PubMed  CAS  Google Scholar 

  • Massoulié J, Bon S (1982) The molecular forms of Cholinesterase in vertebrates. Annu Rev Neurosci 5:57–106

    PubMed  Google Scholar 

  • Massoulié J, Bon S, Rieger F, Vigny M (1975) Molecular forms of acetylcholinesterase. Croat Chem Acta 47:163–179

    Google Scholar 

  • Massoulié J, Bon S, Lazar M, Grassi J, Marsh D, Méflah K, Toutant JP, Vallette F, Vigny M (1984) The polymorphism of cholinesterases: classification of molecular forms; interactions and solubilization characteristics; metabolic relationships and regulations. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, p 73

    Google Scholar 

  • Massoulié J, Vigny M, Lazar M (1985) Expression of acetylcholinesterase in murine neural cells in vivo and in culture. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 619

    Google Scholar 

  • Mays C, Rosenberry TL (1981) Characterization of pepsin-resistant collagen-like tail subunit fragments of 18 S and 14 S acetylcholinesterase from Electrophorus electricus. Biochemistry 20:2810–2817

    PubMed  CAS  Google Scholar 

  • McMahan UJ, Sanes JR, Marshall LM (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271:172–174

    PubMed  CAS  Google Scholar 

  • Medof ME, Walter EI, Roberts WL, Haas R, Rosenberry TL (1986) Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry 25:6740–6747

    PubMed  CAS  Google Scholar 

  • Meedel TH, Whittaker JR (1983) Development of translationally active mRNA from larval muscle acetylcholinesterase during ascidian embryogenesis. Proc Natl Acad Sci USA 80:4761–4765

    PubMed  CAS  Google Scholar 

  • Méflah K, Bernard S, Massoulié J (1984) Interactions with lectins indicate differences in the carbohydrate composition of the membrane-bound enzymes acetylcholinesterase and 5´-nucleotidase in different cell types. Biochimie 66:59–69

    PubMed  Google Scholar 

  • Mellinger J, Belbenoît P, Ravaille M, Szabo T (1978) Electric organ development in Torpedo marmorata (chondrichtyes). Dev Biol 67:167–188

    PubMed  CAS  Google Scholar 

  • Mendel B, Mundell DB, Rudney H (1943) Studies on Cholinesterase. III. Specific tests for true Cholinesterase and pseudo-cholinesterase. Biochem J 37:473–476

    PubMed  CAS  Google Scholar 

  • Méndez B, Garrido J, Maldonado M, Jaksic FM, Inestrosa NC (1984) The electric organ of Discopyge tschudii: its innervated face and the biology of acetylcholinesterase. Cell Mol Neurobiol 4:125–142

    PubMed  Google Scholar 

  • Mercken L, Simons MJ, Swillens S, Massaer M, Vassart G (1985) Primary structure of bovine thyroglobulin deduced from the sequence of its 8,431-base complementary DNA. Nature 316:647–651

    PubMed  CAS  Google Scholar 

  • Metz J, Bradlow BA, Lewis SM, Dacie JV (1960) The acetylcholinesterase activity of the erythrocytes in paroxysmal nocturnal hemoglobinuria: relation to the severity of the disease. Br J Haematol 6:372

    PubMed  CAS  Google Scholar 

  • Millar DB, Christopher JP, Bishop WH (1979) Inhibition of acetylcholinesterase by TX-100. Biophys Chem 10:147–151

    PubMed  CAS  Google Scholar 

  • Mintz KP, Brimijoin S (1985 a) Two-step immunoaffinity purification of acetylcholinesterase from rabbit brain. J Neurochem 44:225–232

    PubMed  CAS  Google Scholar 

  • Mintz KP, Brimijoin S (1985 b) Monoclonal antibodies to rabbit brain acetylcholinesterase: selective enzyme inhibition, differential affinity for enzyme forms, and cross-reactivity with other mammalian cholinesterases. J Neurochem 45:284–292

    PubMed  CAS  Google Scholar 

  • Mintz KP, Weinshilboum RM, Brimijoin WS (1984) Evolution of butyrylcholinesterase in higher primates: an immunochemical study. Comp Biochem Physiol 79C:35–37

    CAS  Google Scholar 

  • Mooser G, Sigman DS (1974) Ligand binding properties of acetylcholinesterase determined with fluorescent probes. Biochemistry 13:2299–2307

    PubMed  CAS  Google Scholar 

  • Muensch H, Goedde HW, Yoshida A (1976) Human serum Cholinesterase subunits and number of active sites of the major component. Eur J Biochem 70:217–223

    PubMed  CAS  Google Scholar 

  • Muller F, Dumez Y, Massoulié J (1985) Molecular forms and solubility of acetylcholinesterase during the embryonic development of rat and human brain. Brain Res 331:295–302

    PubMed  CAS  Google Scholar 

  • Murray N, Steck AJ (1984) Indication of a possible role in a demyelinating neuropathy for an antigen shared between myelin and NK cells. Lancet 1 (8379):711–713

    PubMed  CAS  Google Scholar 

  • Musset F, Frobert Y, Grassi J, Vigny M, Boulla G, Bon S, Massoulié J (1987) Monoclonal antibodies against acetylcholinesterase from electric organs of Electrophorus and Torpedo. Biochimie 69:147–156

    PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, March JP, Rosenfeld SI, Austen KF (1983) Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay acceleration factor. Proc Natl Acad Sci USA 80:5066–5070

    PubMed  CAS  Google Scholar 

  • Nicolet M, Rieger F, Dreyfus P, Pinçon-Raymond M, Tran L (1984) Tailed, asymmetric acetylcholinesterase and skeletal muscle basal lamina in Vertebrates: subcellular location: hydrophilic and hydrophobic variants. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, p 129

    Google Scholar 

  • Nicolet M, Pinçon-Raymond M, Rieger F (1986) Globular and asymmetric acetylcholinesterase in frog muscle basal lamina sheath. J Cell Biol 102:762–768

    PubMed  CAS  Google Scholar 

  • Niday E, Wang CS, Alaupovic P (1977) Studies on the characterization of human erythrocyte acetylcholinesterase and its interaction with antibodies. Biochim Biophys Acta 459:180–193

    Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inayama S, Miyata T, Numa S (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–553

    PubMed  CAS  Google Scholar 

  • Ochoa ELM (1978) Redistribution of acetylcholinesterase activity from electroplax membrane fragments into phosphatidylcholine vesicles. FEBS Lett 89:317–320

    PubMed  CAS  Google Scholar 

  • Ott P (1985) Membrane acetylcholinesterases: purification, molecular properties and interactions with amphiphilic environments. Biochim Biophys Acta 822:375–392

    PubMed  CAS  Google Scholar 

  • Ott P, Brodbeck U (1978) Multiple molecular forms of acetylcholinesterase from human erythrocyte membranes: interconversion and subunit composition of forms separated by density gradient centrifugation in a zonal rotor. Eur J Biochem 88:119–125

    PubMed  CAS  Google Scholar 

  • Ott P, Brodbeck U (1984) Amphiphile dependency of the monomeric and dimeric forms of acetylcholinesterase from human erythrocyte membrane. Biochim Biophys Acta 775:71–76

    PubMed  CAS  Google Scholar 

  • Ott P, Jenny B, Brodbeck U (1975) Multiple molecular forms of purified human erythrocyte acetylcholinesterase. Eur J Biochem 57:469–480

    PubMed  CAS  Google Scholar 

  • Ott P, Lustig A, Brodbeck U, Rosenbusch JP (1982) Acetylcholinesterase from human erythrocyte membranes: dimers as functional units. FEBS Lett 138:187–189

    PubMed  CAS  Google Scholar 

  • Ott P, Ariano BH, Binggeli Y, Brodbeck U (1983) A monomeric form of human erythrocyte membrane acetylcholinesterase. Biochim Biophys Acta 729:193–199

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Müller-Eberhard JH (1983) Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci USA 80:5430–5434

    PubMed  CAS  Google Scholar 

  • Pezzementi L, Reinheimer EJ, Pezzementi ML (1987) Acetylcholinesterase from the skeletal muscle of the lamprey Petromyzon marinus exists in globular and asymmetric forms. J Neurochem 48:1753–1760

    PubMed  CAS  Google Scholar 

  • Poiana G, Scarcella G, Biagioni S, Senni MI, Cossu G (1985) Membrane acetylcholinesterase in murine muscular dystrophy in vivo and in cultured myotubes. Int J Dev Neurosci 3:331–340

    CAS  Google Scholar 

  • Prody CA, Zevin-Sonkin D, Gnatt A, Goldberg O, Soreq H (1987) Isolation and characterization of full-length cDNA clones for Cholinesterase from fetal human tissues. Proc Natl Acad Sci USA 84:3555–3559

    PubMed  CAS  Google Scholar 

  • Rakonczay Z (1986) Mammalian brain acetylcholinesterase. In: Boulton AA, Baker GB, Yu PH (eds) Neurotransmitter enzymes. Humana, Clifton, p 319 (Neuromethods, vol 5)

    Google Scholar 

  • Rakonczay Z, Brimijoin S (1985) Immunochemical differences among molecular forms of acetylcholinesterase in brain and blood. Biochim Biophys Acta 832:127–134

    PubMed  CAS  Google Scholar 

  • Rakonczay Z, Brimijoin S (1986) Monoclonal antibodies to rat brain acetylcholinesterase: comparative affinity for soluble and membrane-associated enzyme and for enzyme from different vertebrate species. J Neurochem 46:280–287

    PubMed  CAS  Google Scholar 

  • Rakonczay Z, Mallol J, Schenk H, Vincendon G, Zanetta JP (1981 a) Purification and properties of the membrane-bound acetylcholinesterase from adult rat brain. Biochim Biophys Acta 657:243–256

    PubMed  CAS  Google Scholar 

  • Rakonczay Z, Vincendon G, Zanetta JP (1981 b) Heterogeneity of rat brain acetylcholinesterase: a study by gel filtration and gradient centrifugation. J Neurochem 37:662–669

    PubMed  CAS  Google Scholar 

  • Ralston JS, Rush RS, Doctor BP, Wolfe AD (1985) Acetylcholinesterase from fetal bovine serum. Purification and characterization of soluble G4 enzyme. J Biol Chem 260:4312–4318

    PubMed  CAS  Google Scholar 

  • Ramirez G, Gómez-Barriocanal J, Barat A, Rodriguez-Borrajo C (1984) Two classes of collagen-tailed molecular forms of acetylcholinesterase. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases: fundamental and applied aspects. de Gruyter, Berlin, p 115

    Google Scholar 

  • Randall WR, Lai J, Barnard EA (1985) Acetylcholinesterase of muscle and nerve. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 595

    Google Scholar 

  • Randall WR, Tsim KWK, Lai J, Barnard EA (1987) Monoclonal antibodies against chicken brain acetylcholinesterase: their use in immunopurification and immunohisto- chemistry to demonstrate allelic variants of the enzyme. Eur J Biochem (in press)

    Google Scholar 

  • Razon N, Soreq H, Roth E, Bartal A, Silman I (1984) Characterization of activities and forms of cholinesterases in human primary brain tumors. Exp Neurol 84:681–695

    PubMed  CAS  Google Scholar 

  • Richardson GP, Witzemann V (1986) Torpedo electromotor system development: biochemical differentiation of Torpedo electrocytes in vitro. Neuroscience 17:1287–1296

    PubMed  CAS  Google Scholar 

  • Rieger F, Faivre-Bauman A, Benda P, Vigny M (1976) Molecular forms of acetylcholinesterase: their de novo synthesis in mouse neuroblastoma cells. J Neurochem 27:1059–1063

    PubMed  CAS  Google Scholar 

  • Rifkin MA, Fairlamb AH (1985) Transport of ethanolamine and its incorporation into the variant surface glycoprotein of bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol 15:245–256

    PubMed  CAS  Google Scholar 

  • Roberts WL, Rosenberry TL (1985) Identification of covalently attached fatty acids in the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase. Biochem Biophys Res Commun 133:621–627

    PubMed  CAS  Google Scholar 

  • Roberts WL, Rosenberry TL (1986) Selective radiolabelling and isolation of the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase. Biochemistry 25:3091–3098

    PubMed  CAS  Google Scholar 

  • Roberts WL, Kim BH, Rosenberry TL (1987) Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterases. Proc Natl Acad Sci USA 84:7817–7821

    PubMed  CAS  Google Scholar 

  • Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F (1983) Fasciculin, powerful anticholinesterase polypeptide from Dendroaspis angusticeps venom. Neurochem Int 5:267–274

    PubMed  CAS  Google Scholar 

  • Römer-Lüthi CR, Hajdu J, Brodbeck U (1979) Molecular forms of purified human erythrocyte membrane acetylcholinesterase investigated by cross linking with diimi-dates. Hoppe Seylers Z Physiol Chem 360:929–934

    PubMed  Google Scholar 

  • Römer-Lüthi CR, Ott P, Brodbeck U (1980) Reconstitution of human erythrocyte membrane acetylcholinesterase in phospholipid vesicles: analysis of the molecular forms by cross-linking studies. Biochim Biophys Acta 601:123–133

    PubMed  Google Scholar 

  • Rosenberry TL (1975 a) Acetylcholinesterase. Adv Enzymol 43:103–218

    PubMed  CAS  Google Scholar 

  • Rosenberry TL (1975 b) Catalysis by acetylcholinesterase: evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. Proc Natl Acad Sci USA 72:3834–3838

    PubMed  CAS  Google Scholar 

  • Rosenberry TL (1985) Structural distinctions among acetylcholinesterase forms. In: Martonosi AN (ed) The enzymes of biological membranes. Plenum, New York, p 403

    Google Scholar 

  • Rosenberry TL, Richardson JM (1977) Structure of 18 S and 14 S acetylcholinesterase: identification of collagen-like subunits that are linked by disulfide bonds to catalytic subunits. Biochemistry 16:3550–3558

    PubMed  CAS  Google Scholar 

  • Rosenberry TL, Scoggin DM (1984) Structure of human erythrocyte acetylcholinesterase: characterization of intersubunit disulfide bonding and detergent interaction. J Biol Chem 259:5643–5652

    PubMed  CAS  Google Scholar 

  • Rosenberry TL, Barnett P, Mays C (1980) The collagen-like subunits of acetylcholinesterase from the eel Electrophorus electricus. Neurochem Int 2:135–147

    CAS  Google Scholar 

  • Rosenberry TL, Barnett P, Mays C (1982) Acetylcholinesterase. Methods Enzymol 82:325–339

    PubMed  CAS  Google Scholar 

  • Rosenberry TL, Haas R, Roberts WL, Kim BH (1985) The hydrophilic domain of human acetylcholinesterase contains non amino acid components. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 651

    Google Scholar 

  • Rosenberry TL, Roberts WL, Hass R (1986) Glycolipid membrane binding-domain of human erythrocyte acetylcholinesterase. Fed Proc 45:2970–2975

    PubMed  CAS  Google Scholar 

  • Rotundo RL (1984 a) Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc Natl Acad Sci USA 81:479–483

    PubMed  CAS  Google Scholar 

  • Rotundo RL (1984 b) Purification and properties of the membrane-bound form of acetylcholinesterase from chicken brain: evidence for two distinct polypeptide chains. J Biol Chem 259:13186–13194

    PubMed  CAS  Google Scholar 

  • Rougon G, Hirsch MR, Hirn M, Guénet J-L, Goridis C (1983) Monoclonal antibody to neural cell surface protein: identification of a glycoprotein family of restricted cellular localization. Neuroscience 10:511–520

    PubMed  CAS  Google Scholar 

  • Sakai M, Saisu H, Koshigoe N, Abe T (1985 a) Detergent-soluble form of acetylcholinesterase in the electric organ of electric rays: its isolation, characterization and monoclonal antibodies. Eur J Biochem 148:197–206

    PubMed  CAS  Google Scholar 

  • Sakai M, Saisu H, Abe T (1985 b) Comparison of asymmetric forms of acetylcholinesterase from the electric organ of Narke japonica and Torpedo californica. Eur J Biochem 153:497–502

    PubMed  CAS  Google Scholar 

  • Sakai M, Koshigoe N, Saisu H, Abe T (1986) Monoclonal antibodies specific to asymmetric forms of acetylcholinesterase from the electric organ of electric rays. Biomed Res 7:1–5

    CAS  Google Scholar 

  • Sanes JR, Cheney JM (1982) Laminin, fibronectin and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J Cell Biol 93:442–451

    PubMed  CAS  Google Scholar 

  • Schumacher M, Camp S, Maulet Y, Newton M, MacPhee-Quigley K, Taylor SS, Friedman T, Taylor P (1986 a) Primary structure of Torpedo californica acetylcholinesterase deduced from cDNA sequence. Nature 319:407–409

    PubMed  CAS  Google Scholar 

  • Schumacher M, Camp S, Maulet Y, Newton M, MacPhee-Quigley K, Taylor SS, Friedman T, Taylor P (1986 b) Primary structure of acetylcholinesterase: implications for regulation and function. Fed Proc 45:2976–2981

    PubMed  CAS  Google Scholar 

  • Scott LJ, Sanes JR (1984) A lectin that selectively stains neuromuscular junctions binds to collagen-tailed acetylcholinesterase. Neurosci Abstr 10:546

    Google Scholar 

  • Seki T, Chang HC, Moriuchi T, Denome R, Ploegh H, Silver J (1985) A hydrophobic transmembrane segment at the carboxyl terminus of Thy-1. Science 227:649–651

    PubMed  CAS  Google Scholar 

  • Shukla SD (1982) Phosphatidylinositol-specific phospholipase C. Life Sci 30:1323–1335

    PubMed  CAS  Google Scholar 

  • Shukla SD (1986) Action of phosphatidylinositol specific phospholipase C on platelets: non-lytic release of acetylcholinesterase, effect on thrombin and PAF-induced aggregation. Life Sci 38:751–755

    PubMed  CAS  Google Scholar 

  • Sikorav JL, Grassi J, Bon S (1984) Synthesis in vitro of precursors of the catalytic subunits of acetylcholinesterase from Torpedo marmorata and Electrophorus electricus. Eur J Biochem 145:519–524

    PubMed  CAS  Google Scholar 

  • Sikorav JL, Vallette F, Grassi J, Massoulié J (1985) Isolation of a cDNA clone for a catalytic subunit of Torpedo marmorata acetylcholinesterase. FEBS Lett 193:159–163

    PubMed  CAS  Google Scholar 

  • Sikorav JL, Krejci E, Massoulié J (1987) cDNA sequences of Torpedo marmorata acetylcholinesterase: primary structure of the precursor of a catalytic subunit; existence of multiple 5´-untranslated regions. EMBO J 6:1865–1873

    PubMed  CAS  Google Scholar 

  • Silman I, Futerman AH (1987) Posttranslational modification as a means of anchoring acetylcholinesterase to the cell surface. Biopolymers 26:S241

    PubMed  Google Scholar 

  • Silman I, Lyles JM, Barnard E (1978) Instrinsic forms of acetylcholinesterase in skeletal muscle. FEBS Lett 94:166–170

    PubMed  CAS  Google Scholar 

  • Silman I, di Giamberardino L, Lyles J, Couraud JY, Barnard EA (1979) Parallel regulation of acetylcholinesterase and pseudocholinesterase in normal denervated and dystrophic chicken skeletal muscle. Nature 280:160–162

    PubMed  CAS  Google Scholar 

  • Silver A (1974) The Biology of cholinesterases. North-Holland, Amsterdam

    Google Scholar 

  • Sine JP, Colas B (1987) Soluble form of acetylcholinesterase from rabbit enterocytes: comparison of its molecular properties with those of the plasma membrane species. Biochimie 69:75–80

    PubMed  CAS  Google Scholar 

  • Sketelj J, Brzin M (1985) Asymmetric molecular forms of acetylcholinesterase in mammalian skeletal musceles. J Neurochem Res 14:95–103

    CAS  Google Scholar 

  • Sørensen K, Gentinetta R, Brodbeck U (1982) An amphiphile-dependent form of human brain caudate nucleus acetylcholinesterase: purification and properties. J Neurochem 39:1050–1060

    PubMed  Google Scholar 

  • Sørensen K, Gennari K, Brodbeck U, Landauer P, Liefländer M (1985) Polymorphism and immunochemical cross-reactivity of acetylcholinesterases from the brains of human, dog, hog, bovine and horse. Comp Biochem Physiol 80C:263–268

    Google Scholar 

  • Sørensen K, Brodbeck U, Rasmussen AG, Norgaard-Pedersen B (1986) Normal human serum contains two forms of acetylcholinesterase. Clin Chim Acta 158:1–6

    PubMed  Google Scholar 

  • Soreq H, Parvari R, Silman I (1982) Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and from Torpedo electric organ. Proc Natl Acad Sci USA 79:830–834

    PubMed  CAS  Google Scholar 

  • Soreq H, Parvari R, Silman I (1983) Biosynthesis of acetylcholinesterase in rat brain and Torpedo electric organ is directed by scarce mRNA species. Prog Brain Res 58:107–115

    PubMed  CAS  Google Scholar 

  • Soreq H, Zevin-Sonkin D, Razon N (1984) Expression of Cholinesterase gene(s) in human brain tissues: translational evidence for multiple mRNA species. EMBO J 3:1371–1375

    PubMed  CAS  Google Scholar 

  • Soreq H, Zevin-Sonkin D, Avni A, Hall LMC, Spierer P (1985) A human acetylcholinesterase gene identified by homology to the Ace region of Drosophila. Proc Natl Acad Sci USA 2:1827–1831

    Google Scholar 

  • Steck A, Murray N, Meier C, Page N, Perruisseau G (1983) Demyelinating neuropathy and monoclonal IgM antibody to myelin-associated glycoprotein. Neurology (NY) 33:19–23

    CAS  Google Scholar 

  • Stieger A, Cardoso de Almeida ML, Blatter MC, Brodbeck U, Bordier C (1986) The membrane-anchoring systems of vertebrate acetylcholinesterase and variant surface glycoproteins of African trypanosomes share a common antigenic determinant. FEBS Lett 199:182–186

    PubMed  CAS  Google Scholar 

  • Stieger S, Brodbeck U (1985) Amphiphilic detergent-soluble acetylcholinesterase from Torpedo marmorata: characterization and conversion by proteolysis to a hydrophilic form. J Neurochem 44:48–56

    PubMed  CAS  Google Scholar 

  • Stieger S, Brodbeck U, Reber B, Brunner J (1984) Hydrophobic labeling of the membrane binding domain of acetylcholinesterase from Torpedo marmorata. FEBS Lett 168:231–234

    PubMed  CAS  Google Scholar 

  • Stieger S, Brodbeck U, Witzemann V (1987) Inactive monomeric acetylcholinesterase in the low-salt-soluble extract of the elctric organ from Torpedo marmorata. J Neurochem 49:460–467

    PubMed  CAS  Google Scholar 

  • Sugarman J, Devine DV, Rosse WF (1986) Structural and functional difference between decay-acceleration factor and red cell acetylcholinesterase. Blood 68:680–684

    PubMed  CAS  Google Scholar 

  • Sung SC, Ruff BA (1983) Molecular forms of sucrose extractable and particulate acetylcholinesterase in the developing and adult rat brain. Neurochem Res 8:303–311

    PubMed  CAS  Google Scholar 

  • Swillens S, Ludgate M, Mercken L, Dumont JE, Vassart G (1986) Analysis of sequence and structure homologies between thyroglobulin and acetylcholinesterase: possible functional and clinical significance. Biochem Biophys Res Commun 137:142–148

    PubMed  CAS  Google Scholar 

  • Taguchi R, Suzuki K, Nakabayashi T, Ikezawa H (1984) Acetylcholinesterase release from mammalian erythrocytes by phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis and characterization of the released enzyme. J Biochem 96:437–446

    PubMed  CAS  Google Scholar 

  • Takesue Y, Yokota K, Nishi Y, Taguchi R, Ikezawa H (1986) Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphatidylinositol- specific phospholipase C. FEBS Lett 201:5–8

    PubMed  CAS  Google Scholar 

  • Taylor P, Lappi S (1975) Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry 14:1989–1997

    PubMed  CAS  Google Scholar 

  • Taylor P, Schumacher M, Maulet Y, Newton M (1986) A molecular perspective on the polymorphism of acetylcholinesterase. Trends Pharmacol Sci 7:321–323

    CAS  Google Scholar 

  • Torres JC, Inestrosa NC (1983) Heparin solubilizes asymmetric acetylcholinesterase from rat neuromuscular junction. FEBS Lett 154:265–268

    PubMed  CAS  Google Scholar 

  • Torres JC, Behrens MI, Inestrosa NC (1983) Neural 16 S acetylcholinesterase is solubilized by heparin. Biochem J 215:201–204

    PubMed  CAS  Google Scholar 

  • Toutant JP (1986) An evaluation of the hydrophobic interactions of chick muscle acetylcholinesterase by charge shift electrophoresis and gradient centrifugation. Neurochem Int 9:111–119

    PubMed  CAS  Google Scholar 

  • Toutant JP, Massoulié J (1987) Acetylcholinesterase. In: Turner AJ, Kenny AJ (eds) Mammalian ectoenzymes. Elsevier/North-Holland, Amsterdam pp 289–328

    Google Scholar 

  • Toutant JP, Massoulié J, Bon S (1985) Polymorphism of pseudocholinesterase in Torpedo marmorata tissues: comparative study of the catalytic and molecular properties of this enzyme with acetylcholinesterase. J Neurochem 44:580–592

    PubMed  CAS  Google Scholar 

  • Tse AGD, Barclay AN, Watts A, Williams AF (1985) A glycophospholipid tail at the carboxyl terminus of the Thy-1 glycoprotein of neurons and thymocytes. Science 230:1003–1008

    PubMed  CAS  Google Scholar 

  • Tsim KWK, Randall WR, Barnard EA (1988) An asymmetric form of muscle acetylcholinesterase contains three subunit types and two enzymic activities in one molecule. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Verdenhalven J, Hucho F (1985) Inhibition and photoaffinity labeling of acetylcholinesterase by phencyclidine and triphenylmethylphosphonium. In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, p 741

    Google Scholar 

  • Vigny M, Gisiger V, Massoulié J (1978) ‘Non specific’ Cholinesterase and acetylcholinesterase in rat tissues: molecular forms, structural and catalytic properties and significance of the two enzyme systems. Proc Natl Acad Sci USA 75:2588–2592

    PubMed  CAS  Google Scholar 

  • Vigny M, Bon S, Massoulié J, Gisiger V (1979) The subunit structure of mammalian acetylcholinesterase: catalytic subunits, dissociating effect of proteolysis and disulfide reduction of the polymeric forms. J Neurochem 33:559–565

    PubMed  CAS  Google Scholar 

  • Vigny M, Martin GR, Grotendorst GR (1983) Interactions of asymmetric forms of acetylcholinesterase with basement membrane components. J Biol Chem 258:8794–8798

    PubMed  CAS  Google Scholar 

  • Vincent L, Duband JL, Thiéry JP (1983) A cell surface determinant expressed early on migrating avian neural crest cells. Dev Brain Res 9:235–238

    Google Scholar 

  • Viratelle OM, Bernhard SA (1980) Major component of acetylcholinesterase in Torpedo electroplax is not basal lamina associated. Biochemistry 19:4999–5007

    PubMed  CAS  Google Scholar 

  • Watkins MS, Hitt AS, Bulger JE (1977) The binding of 18 S acetylcholinesterase to sphingomyelin and the role of the collagen-like tail. Biochem Biophys Res Commun 79:640–647

    PubMed  CAS  Google Scholar 

  • Weitz M, Bjerrum OJ, Brodbeck U (1984) Characterization of an active hydrophilic erythrocyte membrane acetylcholinesterase obtained by limited proteolysis of the purified enzyme. Biochim Biophys Acta 776:65–74

    PubMed  CAS  Google Scholar 

  • Wiedmer T, di Francesco C, Brodbeck U (1979) Effects of amphiphiles on structure and activity of human erythrocyte acetylcholinesterase. Eur J Biochem 102:59–64

    PubMed  CAS  Google Scholar 

  • Williams M (1969) Antibodies to acetylcholinesterase. Proc Natl Acad Sci USA 62:1175–1180

    PubMed  CAS  Google Scholar 

  • Witzemann V, Boustead C (1982) Changes in acetylcholinesterase molecular forms during the embryonic development of Torpedo marmorata. J Neurochem 39:747–755

    PubMed  CAS  Google Scholar 

  • Witzemann V, Boustead C (1983) Structural differences in the catalytic subunits of acetylcholinesterase forms from the electric organ of Torpedo marmorata. EMBO J 2:873–878

    PubMed  CAS  Google Scholar 

  • Younkin SG, Rosenstein C, Collins PL, Rosenberry TL (1982) Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem 257: 13630–13637

    PubMed  CAS  Google Scholar 

  • Zevin-Sonkin D, Avni A, Zisling R, Koch R, Soreq H (1985) Expression of acetylcholinesterase gene(s) in the human brain molecular cloning evidence for cross-homologous sequences. J Physiol (Paris) 80:221–228

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Massoulié, J., Toutant, JP. (1988). Vertebrate Cholinesterases: Structure and Types of Interaction. In: Whittaker, V.P. (eds) The Cholinergic Synapse. Handbook of Experimental Pharmacology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73220-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73220-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73222-5

  • Online ISBN: 978-3-642-73220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics