Skip to main content

Structuring Knowledge in a Graph

  • Conference paper
Human-Computer Interaction

Abstract

The idea that knowledge is a commodity that can be used by machines in various ways forms the entry to our discussion of knowledge based systems. We will limit ourselves to those systems that are in an active dialogue with their human user. As a consequence, the use and structuring of knowledge in autonomous systems, like robots or visual pattern recognizers, will not be discussed. In general, knowledge-based systems cannot be considered as models of human cognition. Rather, they should provide an extension of the user’s cognitive abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker R.R. (1984). Construct analysis as a method of knowledge integration of Cognitive Graphs. (Memorandum no. 463), University of Technology, Enschede.

    Google Scholar 

  • Brachman R.J. (1983). What ISA is and isn’t: An analysis of taxonomic links in semantic networks. IEEE Transactions on Computers, Special Issue on Knowledge Representation, 16 (10), pp. 30–35.

    Google Scholar 

  • Buissink J.V. (1982). De kennisgraaf als instrument voor de opslag van kennis en de vorming van theoriëen. Sociological Institute, University of Groningen.

    Google Scholar 

  • By R. de (1985). Semantische aspekten van paden in kennisgrafen. Univ. of Technology, Enschede.

    Google Scholar 

  • Davis R. (1982). Teiresias: Applications of meta-level knowledge. In: Knowledge-based Systems in Artificial Intelligence. R. Davis & D.B. Lenat (Ed.), McGraw-Hill, New York. pp. 227–490.

    Google Scholar 

  • Davis R., Buchanan B. & Shortliffe E. (1977). Production rules as a representation for a knowledge-based consultation program. Artificial Intelligence. 8, pp. 15–45.

    Article  MATH  Google Scholar 

  • Harris Z. (1982). A grammar of English on mathematical principles. Wiley, New York.

    Google Scholar 

  • Hoede C. (1986). Similarity in knowledge graphs. Department of Applied Mathematics, Twente University of Technology, Enschede.

    Google Scholar 

  • Krantz D.H., Luce R.D., Suppes P. & Tversky A. (1971). Foundations of measurement: Vol. I Additive and polynomial representations, Academic Press, New York.

    MATH  Google Scholar 

  • Kuipers B. (1984). Commonsense reasoning about causality: Deriving behavior from structure. Artificial Intelligence, 19, pp. 39–88.

    Google Scholar 

  • Lenat D.B. (1983). EURISKO: a program that learns new heuristics and domain concepts. Artificial Intelligence, 21, pp. 61–98.

    Article  Google Scholar 

  • McDermott J. (1982). R1: A rule-based configurer of computer systems. Artificial Intelligence, 19, pp. 39–88.

    Article  Google Scholar 

  • Pfanzagl, J. (1968). Theory of measurement. Physica-Verlag, Wurzburg.

    MATH  Google Scholar 

  • Riet R.P. van (1983). Knowledge bases — de databanken van de toekomst. Informatie, 25, pp. 16–23.

    Google Scholar 

  • Robinson J.A. (1965). A machine-oriented logic based on the resolution principle. Journal of the ACM, 12 (1), p. 23.

    Article  MATH  Google Scholar 

  • Ryle G. (1949). The Concept of Mind. Hutchinson, London.

    Google Scholar 

  • Sager N. (1981). Natural language information processing: A computer grammar of english and its applications. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Simon H.A. (1977). Models of discovery and other topics in the methods of science. Reidel, Dordrecht.

    MATH  Google Scholar 

  • Vries Robbé P.F. de (1978). Medische besluitvorming: een aanzet tot formele besluitvorming. Dissertation. University of Groningen.

    Google Scholar 

  • Vries Robbé P.F. de & Vries P.H. de (1985). Epistemology of medical expert systems. In: Medical decision making, diagnostic strategies and expert systems. J.H. v. Bemmel, S. Grèmy & J. Zvárová, (Eds.), North-Holland, Amsterdam, pp. 89–94.

    Google Scholar 

  • Winograd T. (1980). Extended inference modes in reasoning by computer systems. Artificial Intelligence, 13, pp. 5–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Winston P.H. (1975). Learning structural descriptions from examples. In: The Psychology of Computer Vision. P. Winston (Ed.). McGraw-Hill, New York, pp. 157–209.

    Google Scholar 

  • Wrightson M. (1976). The documentary coding method. In: The Structure of Decision. R. Axelrod (Ed.). Princeton University Press, Princeton, pp. 291–332

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stokman, F.N., de Vries, P.H. (1988). Structuring Knowledge in a Graph. In: van der Veer, G.C., Mulder, G. (eds) Human-Computer Interaction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73402-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73402-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73404-5

  • Online ISBN: 978-3-642-73402-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics