Skip to main content

Cosmic Strings and Galaxy Formation

  • Conference paper
High Energy Astrophysics
  • 127 Accesses

Abstract

Recently it has repeatetly been claimed [1] that there is now a successful “standard model” for galaxy formation. This model involves: (i) cold dark matter WithΩ0 = 1, (ii) primordial Gaussian fluctuations With a Harrison-Zel’dovich spectrum, and (iii) biasing, which presumes that galaxies only form in the rare peaks of density perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., the contributions of M. Davies, C. Frenk, andM.Rees at the IAU Symposium Nr. 130, Balatonfüred (14.–21. 6.1987), to be published.

    Google Scholar 

  2. For an earlier review, see A. Vilenkin, Phys.Rep. 121, 263 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  3. A.A. Abrikosov, Zh.Eksp.Theor.Fiz. 32, 1442 (1957)

    Google Scholar 

  4. A.A. Abrikosov, [Sov.Phys. JETP 13, 451 (1961)].

    Google Scholar 

  5. H.B. Nielsen and P. Olesen, Nucl.Phys. B61, 45 (1973).

    Article  ADS  Google Scholar 

  6. See, for example, N. Straumann, in Proceedings of the 1982SIN Spring School: Beyond the Standard Model. E. Witten, Phys.Lett. 153B, 243 (1985).

    ADS  MathSciNet  Google Scholar 

  7. M. Spivak, “Differential Geometry”, Vol, IV, Chap. 9, Publish or Perish 1970–75.

    Google Scholar 

  8. A. Albrecht and N. Turok, Phys.Rev.Lett. 54, 1868 (1985).

    Article  ADS  Google Scholar 

  9. T. Vachaspati and A. Vilenkin, Phys.Rev. D31, 3052 (1985).

    ADS  Google Scholar 

  10. [10]Quartic terms induce in general an effective position-and polarisation-dependent photon mass term, which vanishes outside the string and whose Compton wave length within the string is of the order of the string width.

    Google Scholar 

  11. ntFor further details see T. Vachaspati, A.E. Everett, and A. Vilenkin, Phys.Rev. D30, 2046 (1984). To our knowledge, there does not yet exist a satisfactory detailed calculation for the electromagnetic radiation.

    Google Scholar 

  12. E.P.S. Shellard, Nucl.Phys. B283, 624 (1987).

    Article  ADS  Google Scholar 

  13. See, e.g., N. Straumann, “General Relativity and Relativistic Astrophysics”, Texts and Monographs in Physics, Springer (Berlin), 1984.

    Google Scholar 

  14. J.R. Gott, Ap.J. 288, 422 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  15. It has been shown recently (R. Gregory, Damtp preprint, 1987) that the full coupled gravity-string field equations imply an asymptotically conical structure for a general local string.

    Google Scholar 

  16. N. Turok, Phys.Lett. B126, 437 (1983).

    ADS  Google Scholar 

  17. T. Vachaspati, Phys.Rev. D35, 1767 (1987).

    ADS  Google Scholar 

  18. T. Vachaspati and A. Vilenkin, Phys.Rev. D30, 2036 (1984).

    ADS  Google Scholar 

  19. The numerical simulations have not yet reached a satisfactory status and there are still some controversies going on.

    Google Scholar 

  20. The number density R dn/dR~R−3 of loops of sizes ~ R in the interval ΔR~ R is diluted by the expansion with the factor (a(R)/a(t))3.

    Google Scholar 

  21. P.J.E. Peebles, “The large-scale structure of the universe”, Princeton Univ. Press 1980 (§12).

    Google Scholar 

  22. N. Turok and R. Brandenberger, Phys.Rev. D33, 2175 (1986).

    ADS  Google Scholar 

  23. N. Turok, CERN/ESO Winter School on Cosmology and Particle Physics, 1987, Imperial/TP/86-87/23.

    Google Scholar 

  24. R. Brandenberger et al., Dampt preprint, Duly 1987.

    Google Scholar 

  25. Treating the spherical model in perturbation theory, one finds easily for where is the average density of a given mass shell, for the same initial conditions: Thus the growing mode reached at tm the value = 1.06.

    Google Scholar 

  26. N. Turok, Phys.Rev. Lett. 55, 1801 (1985).

    Article  ADS  Google Scholar 

  27. S. Shechtman, Ap.J.Suppl. 57, 77 (1985).

    Article  ADS  Google Scholar 

  28. N. Bahcall and W. Burgett, Ap.3. (Letters) 300, L35 (1986).

    Article  ADS  Google Scholar 

  29. A. Vilenkin, Ap.J. 282, L51 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  30. B. Paczynski, Nature 319, 567 (1986).

    Article  ADS  Google Scholar 

  31. see also: C.J. Hogan, 13th Texas Symposium on Relativistic Astrophysics, p. 324 (World Scientific 1987).

    Google Scholar 

  32. N. Kaiser and A. Stebbins, Nature 310, 391 (1984).

    Article  ADS  Google Scholar 

  33. B. Mashhoon, Mon.Not.R.astr.Soc. 199, 659 (1982).

    ADS  Google Scholar 

  34. B. Bertotti, B.J. Carr, and M.J. Rees, Mon. Not. R.astr. Soc. 203, 945 (1983)

    ADS  Google Scholar 

  35. C.J. Hogan and M.R. Rees, Nature 311, 109 (1984).

    Article  ADS  Google Scholar 

  36. L.A. RaWley, D.H. Taylor, M.M. Davis, D.W.Allan, Princeton preprint, 1987.

    Google Scholar 

  37. A rough estimate is obtained as follows: Loops decaying at time t during the radiation era have size R~Gμt and produce gravitational Waves of frequency ~R−1 and energy density.

    Google Scholar 

  38. R. Brandenberger, A. Albrecht, and N. Turok, Nucl.Phys. B277, 605 (1986).

    Article  ADS  Google Scholar 

  39. E. Witten, Nucl. Phys. B246, 557 (1985).

    Article  ADS  Google Scholar 

  40. J. Ostriker, C. Thompson, and E. Witten, Phys.Lett. 3180, 231 (1986).

    Google Scholar 

  41. E. Witten, 13th Texas Symposium on Relativistic Astrophysics, World Scientific 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Straumann, N. (1988). Cosmic Strings and Galaxy Formation. In: Börner, G. (eds) High Energy Astrophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73560-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73560-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73562-2

  • Online ISBN: 978-3-642-73560-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics