Skip to main content

Summary

Over the last twenty years, paradigms for atmospheric transfer processes in plant canopies have altered in two main ways. Firstly, simple gradient-diffusion theory has ceased to be acceptable as a description of the turbulent transfer of scalars and momentum, and is being replaced by physically sounder theories. Secondly, the turbulence in and above the canopy has been recognised as coherent and organised rather than random and chaotic, and the character of this organised motion is being elucidated. This review outlines the development and implications of these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albini FB (1981) A phenomenological model for wind speed and shear stress profiles in vegetation cover layers. J Appl Meteorol 20: 1325–1335

    Article  Google Scholar 

  • Allen LH (1968) Turbulence and wind speed spectra within a Japanese Larch plantation. J Appl Meteorol 7: 73–78

    Article  Google Scholar 

  • Arnold L (1974) Stochastic differential equations: theory and applications. Wiley-Interscience, New York, 228 pp

    Google Scholar 

  • Batchelor GK (1949) Diffusion in a field of homogeneous turbulence. Aust J Sci Res 2: 437–450

    Google Scholar 

  • Brown KW, Covey W (1966) The energy-budget evaluation of the micrometeorological transfer processes within a cornfield. Agric Meteorol 3: 73–96

    Article  Google Scholar 

  • Chen F (1987) Turbulent transfer of heat and momentum over a rough vegetated surface. PhD Thesis, School of Earth Sciences, Flinders University, South Australia

    Google Scholar 

  • Coppin PA (1982) An examination of cup anemometer overspeeding. Meteorol Rdsch 35: 1–11

    Google Scholar 

  • Coppin PA (1985) Heat and mass transfer mechanisms above and within plant canopies. Third Australasian Conf on Heat and Mass Transfer, University of Melbourne, May 1985, pp 465–472

    Google Scholar 

  • Coppin PA, Raupach MR, Legg BJ (1986) Experiments on scalar dispersion within a plant canopy, part II: An elevated plane source. Boundary-Layer Meteorol 35: 167–191

    Article  Google Scholar 

  • Coppin PA, Taylor KJ (1983) A three-component sonic anemometer-thermometer system for general micrometeorological research. Boundary-Layer Meteorol 27: 27–42

    Article  Google Scholar 

  • Corrsin S (1963) Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J Atmos Sci 20: 115–119

    Article  Google Scholar 

  • Corrsin S (1974) Limitations of gradient transport models in random walks and in turbulence. Adv Geophys 18A: 25–60

    Article  Google Scholar 

  • Cowan IR (1968) Mass, heat and momentum exchange between stands of plants and their atmospheric environment. Q J R Meteorol Soc 95: 523–544

    Article  Google Scholar 

  • Crowther JH, Hutchings NJ (1985) Correlated vertical wind speeds in a spruce canopy. In: Hutchison BA, Hicks BB (eds) The forest-atmosphere interaction, D Reidel, Dordrecht, pp 543–561

    Chapter  Google Scholar 

  • Csanady GT (1973) Turbulent diffusion in the environment. D Reidel, Dordrecht, 248 pp

    Book  Google Scholar 

  • Deardorff JW (1978) Closure of second- and third-moment rate equations for diffusion in homogeneous turbulence. Phys Fluids 21: 525–530

    Article  Google Scholar 

  • Deardorff JW and Willis GE (1975) A parameterization of diffusion into the mixed layer. J Appl Meteorol 14: 1451–1457

    Article  Google Scholar 

  • de Baas AF, van Dop H, Nieuwstadt FTM (1986) An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer. Q J R Meteorol Soc 112: 165–180

    Article  Google Scholar 

  • Denmead OT (1964) Evaporation sources and apparent diffusivities in a forest canopy. J Appl Meteorol 3: 383–389

    Article  Google Scholar 

  • Denmead OT (1984) Plant physiological methods for studying évapotranspiration: problems of telling the forest from the trees. Agric Water Manage 8: 164–189

    Article  Google Scholar 

  • Denmead OT, Bradley EF (1985) Flux-gradient relationships in a forest canopy. In: Hutchison BA, Hicks BB (eds) The forest-atmosphere interaction, D Reidel, Dordrecht, pp 421–442

    Chapter  Google Scholar 

  • Denmead OT, Bradley EF (1987) On scalar transport in plant canopies. Irrig Sci 8: 131–149

    Article  Google Scholar 

  • Denmead OT, Freney JR, Simpson JR (1976) A closed ammonia cycle within a plant canopy. Soil Biol Biochem 8: 161–164

    Article  Google Scholar 

  • Denmead OT, Mcllroy IC (1970) Measurements of non-potential evaporation from wheat. Agric Meteorol 7: 282–302

    Article  Google Scholar 

  • Donaldson CduP (1973) Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants. In: Haugen DA (ed) Workshop on micrometeorology, Am Meteorol Soc, Boston, pp 313–392

    Google Scholar 

  • Druilhet A, Perrier A, Fontan J, Laurent JL (1971) Analysis of turbulent transfer in vegetation: use of thoron for measuring the diffusivity profiles. Boundary-Layer Meteorol 2: 173–187

    Article  Google Scholar 

  • Durbin PA (1983) Stochastic differential equations and turbulent dispersion. NASA reference publication 1103

    Google Scholar 

  • Durbin PA (1984) Comments on papers by Wilson et al. (1981) and Legg and Raupach (1982). Boundary-Layer Meteorol 29: 409–411

    Google Scholar 

  • Finnigan JJ (1979a) Turbulence in waving wheat. I. Mean statistics and honami. Boundary-Layer Meteorol 16: 181–211

    Article  Google Scholar 

  • Finnigan JJ (1979b) Turbulence in waving wheat. II. Structure of momentum transfer. Boundary-Layer Meteorol 16: 213–236

    Article  Google Scholar 

  • Finnigan JJ (1985) Turbulent transport in flexible plant canopies. In: Hutchison BA, Hicks BB (eds) The forest-atmosphere interaction, D Reidel, Dordrecht, pp 443–480

    Chapter  Google Scholar 

  • Finnigan JJ (1988) Air flow over complex terrain. This volume, pp Finnigan JJ, Raupach MR (1987) Transfer processes in plant canopies in relation to stomatal characteristics. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function, Stanford University Press, Stanford, CA, pp 385–429

    Google Scholar 

  • Furnival GM, Waggonner PE, Reifsnyder WE (1975) Computing the energy budget of a leaf canopy with matrix algebra and numerical integration. Agric Meteorol 14: 405–416

    Article  Google Scholar 

  • Gardiner CW (1983) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer-Verlag, Berlin, 442 pp

    Google Scholar 

  • Garratt JR (1978) Flux profile relations above tall vegetation. Q J R Meteorol Soc 104: 199–212

    Article  Google Scholar 

  • Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J R Meteorol Soc 106: 803–819

    Article  Google Scholar 

  • Garratt JR, Hicks BB (1973) Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Q J R Meteorol Soc 99: 680–687

    Article  Google Scholar 

  • Goudriaan J (1977) Crop micrometeorology: a simulation study. Pudoc, Wageningen

    Google Scholar 

  • Goudriaan J, Waggoner PE (1972) Simulating both aerial microclimate and soil temperature from observations above the foliar canopy. Neth J Agric Sci 20: 104–124

    Google Scholar 

  • Grant RH, Bertolin GE, Herrington LP (1986) The intermittent vertical heat flux over a spruce forest canopy. Boundary-Layer Meteorol 35: 317–330

    Article  Google Scholar 

  • Halldin S, Lindroth A (1986) Pine forest microclimate simulation using different diffusivities. Boundary-Layer Meteorol 35: 103–123

    Article  Google Scholar 

  • Hunt JCR, Weber AH (1979) A Lagrangian statistical analysis of diffusion from a ground-level source in a turbulent boundary layer. Q J R Meteorol Soc 105: 423–443

    Article  Google Scholar 

  • Inoue E (1955) Studies of the phenomena of waving plants (“Honami”) caused by wind. Part I. Mechanism and characteristics of waving plants phenomena. J Agric Meteorol (Japan) 11: 18–22

    Article  Google Scholar 

  • Inoue E (1963) The environment of plant surfaces. In: Environment control of plant growth, Academic Press, New York, pp 23–32

    Google Scholar 

  • Johnson CE, Biscoe PV, Clark JA, Littleton EJ (1976) Turbulent transfer in a barley canopy. Agric Meteorol 16: 17–35

    Article  Google Scholar 

  • Lamb RG (1980) Mathematical principles of turbulent diffusion modelling. In: Longhetto A (ed) Atmospheric boundary-layer physics, Elsevier, pp 173–210

    Google Scholar 

  • Launder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic Press, London, 169 pp

    Google Scholar 

  • Legg BJ (1975) Turbulent diffusion within a wheat canopy: I. Measurement using nitrous oxide. Q J R Meteorol Soc 101: 597–610

    Article  Google Scholar 

  • Legg BJ (1983) Turbulent diffusion from an elevated line source: Markov chain simulations of concentration and flux profiles. Q J R Meteorol Soc 109: 645–660

    Article  Google Scholar 

  • Legg BJ, Coppin PA, Raupach MR (1984) A three-hot-wire anemometer for measuring two velocity components in high-intensity turbulent boundary layers. J Phys E 17: 970–976

    Article  Google Scholar 

  • Legg BJ, Long IF (1975) Turbulent diffusion within a wheat canopy: II. Results and interpretation. Q J R Meteorol Soc 101: 611–628

    Article  Google Scholar 

  • Legg BJ, Raupach MR (1982) Markov-chain simulation of particle dispersion in inhomogeneous flows: the mean drift velocity induced by a gradient in Eulerian velocity variance. Boundary-Layer Meteorol 24: 3–13

    Article  Google Scholar 

  • Legg BJ, Raupach MR, Coppin PA (1986) Experiments on scalar dispersion within a plant canopy, part III: an elevated line source. Boundary-Layer Meteorol 35: 277–302

    Article  Google Scholar 

  • Lemon ER, Wright JL (1969) Photosynthesis under field conditions. XA. Assessing sources and sinks of carbon dioxide in a corn ( Zea Mays L) crop using a momentum balance approach. Agron J 61: 405–411

    Article  Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience, New York, 239 pp

    Google Scholar 

  • McNaughton KG (1976) Evaporation and advection I: evaporation from extensive homogeneous surfaces. Q J R Meteorol Soc 102: 181–191

    Article  Google Scholar 

  • Maitani T (1978) On the downward transport of turbulent kinetic energy in the surface layer over plant canopies. Boundary-Layer Meteorol 14: 571–584

    Article  Google Scholar 

  • Maitani T (1979) A comparison of turbulence statistics in the surface layer over plant canopies with those over several other surfaces. Boundary- Layer Meteorol 17: 213–222

    Article  Google Scholar 

  • Maitani T, Seo T (1985) Estimates of velocity-pressure and velocity-pressure gradient interactions in the surface layer over plant canopies. Boundary- Layer Meteorol 33: 51–60

    Article  Google Scholar 

  • Meroney RN (1968) Characteristics of wind and turbulence in and above model forests. J Appl Meteorol 7: 780–788

    Article  Google Scholar 

  • Meroney RH (1970) Wind tunnel studies of the air flow and gaseous plume diffusion in the leading edge and downstream regions of a model forest. Atmos Environ 4: 597–614

    Article  Google Scholar 

  • Meyers T, Paw UKT (1986) Testing of a higher-order closure model for modelling air flow within and above plant canopies. Boundary-Layer Meteorol 37: 297–311

    Article  Google Scholar 

  • Honin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, Vol 1. Lumley JL (ed), MIT Press, Cambridge, Mass, 769 pp

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19: 205–234

    Google Scholar 

  • Monteith JL (1981) Evaporation and surface temperature. Q J R Meteorol Soc 107: 1–27

    Article  Google Scholar 

  • Mulhearn PJ (1978) Turbulent flow over a periodic rough surface. Phys Fluids 21: 1113–1115

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc London, Ser A 193: 120–146

    Article  Google Scholar 

  • Penman HL, Long IF (1960) Weather in wheat: an essay in micrometeorology. Q J R Meteorol Soc 86: 16–50

    Article  Google Scholar 

  • Pereira AR, Shaw RH (1980) A numerical experiment on the mean wind structure inside canopies of vegetation. Agric Meteorol 22: 303–318

    Article  Google Scholar 

  • Philip JR (1964) Sources and transfer processes in the air layers occupied by vegetation. J Appl Meteorol 3: 390–395

    Article  Google Scholar 

  • Philip JR (1987) Issues in flow and transport in heterogeneous porous media. Transp Porous Media 1: 319–338

    Google Scholar 

  • Raupach MR (1979) Anomalies in flux-gradient relationships over forest. Boundary-Layer Meteorol 16: 467–486

    Article  Google Scholar 

  • Raupach MR (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108: 363–382

    Article  Google Scholar 

  • Raupach MR (1983) Near-field dispersion from instantaneous sources in the atmospheric surface layer. Boundary-Layer Meteorol 27: 105–113

    Article  Google Scholar 

  • Raupach MR (1987) A Lagrangian analysis of scalar transfer in vegetation canopies. Q J R Meteorol Soc 113: 107–120

    Article  Google Scholar 

  • Raupach MR (1988) Turbulent transfer in plant canopies. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies - their growth, form and function, Cambridge University Press, Cambridge, in press

    Google Scholar 

  • Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a plant canopy, part I: The turbulence structure. Boundary-Layer Meteorol 35: 21–52

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22: 79–90

    Article  Google Scholar 

  • Raupach MR, Thorn AS, Edwards I (1980) A wind tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol 18: 373–397

    Article  Google Scholar 

  • Sadeh WZ, Cermak JE, Kawatani T (1971) Flow over high roughness elements. Boundary-Layer Meteorol 1: 321–344

    Article  Google Scholar 

  • Sawford BL (1984) The basis for, and some limitations of, the Langevin equation in atmospheric relative dispersion modelling. Atmos Environ 18: 2405–2411

    Article  Google Scholar 

  • Sawford BL (1985) Lagrangian statistical simulation of concentration mean and fluctuation fields. J Climate Appl Meteorol 24: 1152–1166

    Article  Google Scholar 

  • Sawford BL (1986) Generalized random forcing in random-walk turbulent dispersion models. Phys Fluids 29: 3582–3585

    Article  Google Scholar 

  • Sawford BL, Guest FM (1987) Lagrangian stochastic analysis of flux-gradient relationships in the convective boundary layer. J Atmos Sci 44: 1152–1165

    Article  Google Scholar 

  • Seginer I, Mulhearn P J, Bradley EF, Finnigan JJ (1976) Turbulent flow in a model plant canopy. Boundary-Layer Meteorol 10: 423–453

    Article  Google Scholar 

  • Shaw, RH (1977) Secondary wind speed maxima inside plant canopies. J Appl Meteorol 16: 514–521

    Article  Google Scholar 

  • Shaw RH, Kidd G, Thurtell GW (1973) A miniature three-dimensional anemometer for use within and above plant canopies. Boundary-Layer Meteorol 3: 359–380

    Article  Google Scholar 

  • Shaw RH, Pereira AR (1982) Aerodynamic roughness of a plant canopy: a numerical experiment. Agric Meteorol 26: 51–65

    Article  Google Scholar 

  • Shaw RJ, Seginer I (1987) Calculation of velocity skewness in real and artificial plant canopies. Boundary-Layer Meteorol 39: 315–332

    Article  Google Scholar 

  • Shaw RH, Silversides RH, Thurtell GW (1974) Some observations of turbulence and turbulent transport within and above plant canopies. Boundary-Layer Meteorol 5: 429–449

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Climate Appl Meteorol 22: 1922–1931

    Article  Google Scholar 

  • Sigmon JT, Knoerr KR, Shaughnessy EJ (1983) Microscale pressure fluctuations in a mature deciduous forest. Boundary-Layer Meteorol 27: 345–358

    Article  Google Scholar 

  • Snyder WH, Lumley JL (1971) Some measurements of particle velocity autocorrelation functions in a turbulent flow. J Fluid Mech 48: 41–71

    Article  Google Scholar 

  • Taylor GI (1921) Diffusion by continuous movements. Proc London Math Soc A20: 196–211

    Article  Google Scholar 

  • Taylor GI (1959) The present position in the theory of turbulent diffusion. Adv Geophys 6: 101–112

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press,Cambridge, Mass, 300 pp

    Google Scholar 

  • Thom AS (1968) The exchange of momentum, mass and heat between an artificial leaf and airflow in a wind tunnel. Q J R Meteorol Soc 94: 44–55

    Article  Google Scholar 

  • Thom AS (1971) Momentum absorption by vegetation. Q J R Meteorol Soc 97: 414–428

    Article  Google Scholar 

  • Thom AS (1972) Momentum, mass and heat exchange of vegetation. Q J R Meteorol Soc 98: 124–134

    Article  Google Scholar 

  • Thom AS (1975) Momentum, mass and heat exchange of plant communities. In: Monteith JL (ed) Vegetation and the atmosphere, Vol 1, Academic Press, London, pp 57–109

    Google Scholar 

  • Thom AS, Stewart JB, Oliver HR, Gash JHC (1975) Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest. Q J R Meteorol Soc 101: 93–105

    Article  Google Scholar 

  • Thomson DJ (1984) Random walk modelling of diffusion in inhomogeneous turbulence. Q J R Meteorol Soc 110: 1107–1120

    Article  Google Scholar 

  • Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180: 529–556

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. 2nd Ed, Cambridge University Press, 429 pp

    Google Scholar 

  • Uchijima Z (1962) Studies on the microclimate within the plant communities: 1. On the turbulent transfer coefficient within plant layers. J Agric Meteorol (Tokyo) 18: 1–10

    Article  Google Scholar 

  • Uchijima Z, Wright JL (1964) An experimental study of air flow in a corn plant-air layer. Bull Nat Inst Agric Sci (Japan) All: 19–65

    Google Scholar 

  • van Dop H, Nieuwstadt FTM, Hunt JCR (1985) Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys Fluids 28: 1639–1653

    Article  Google Scholar 

  • van Kampen NG (1981) Stochastic processes in physics and chemistry. North-Holland, Amsterdam, 419 pp

    Google Scholar 

  • Waggoner PE, Furnival GM, Reifsnyder WE (1969) Simulation of the microclimate in a forest. For Sci 15: 37–45

    Google Scholar 

  • Waggoner PE, Reifsnyder WE (1968) Simulation of temperature, humidity and evaporation profiles in a leaf canopy. J Appl Meteorol 7: 400–409

    Article  Google Scholar 

  • Weil JC (1988) Atmospheric dispersion - observations and models. This volume, pp

    Google Scholar 

  • Wilson JD, Legg BJ, Thomson DJ (1983) Calculation of particle trajectories in the presence of a gradient in turbulent velocity variance. Boundary-Layer Meteorol 27: 163–169

    Article  Google Scholar 

  • Wilson JD, Thurtell GW, Kidd GE (1981a) Numerical simulation of particle trajectories in inhomogeneous turbulence, I: systems with constant turbulent velocity scale. Boundary-Layer Meteorol 21: 295–313

    Article  Google Scholar 

  • Wilson JD, Thurtell GW, Kidd GE (1981b) Numerical simulation of particle trajectories in inhomogeneous turbulence, II: systems with variable turbulent velocity scale. Boundary-Layer Meteorol 21: 423–441

    Article  Google Scholar 

  • Wilson JD, Thurtell GW, Kidd GE (1981c) Numerical simulation of particle trajectories in inhomogeneous turbulence, III: comparison of predictions with experimental data for the atmospheric surface layer. Boundary-Layer Meteorol 21: 443–463

    Article  Google Scholar 

  • Wilson JD, Ward DP, Thurtell GW, Kidd GE (1982) Statistics of atmospheric turbulence within and above a corn canopy. Boundary-Layer Meteorol 24: 495–519

    Article  Google Scholar 

  • Wilson NR, Shaw RH (1977) A higher-order closure model for canopy flow. J Appl Meteorol 16: 1198–1205

    Article  Google Scholar 

  • Wright JL, Brown KW (1967) Comparison of momentum and energy balance methods of computing vertical transfer within a crop. Agron J 59: 427–432

    Article  Google Scholar 

  • Yamada T (1982) A numerical model study of turbulent flow in and above a forest canopy. J Meteorol Soc (Japan) 60: 439–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raupach, M.R. (1988). Canopy Transport Processes. In: Steffen, W.L., Denmead, O.T. (eds) Flow and Transport in the Natural Environment: Advances and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73845-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73845-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73847-0

  • Online ISBN: 978-3-642-73845-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics