Skip to main content

Squalene Epoxidase — Enzymology and Inhibition

  • Conference paper
Biochemistry of Cell Walls and Membranes in Fungi

Abstract

Squalene occupies a key position in the biosynthetic sequence from acetate to ergosterol (Fig. 1), being the first lipophilic intermediate in the pathway. The conversion of this 30-carbon hydrocarbon to the tetracyclic lanosterol structure was originally thought to occur in one step without intermediates. Tchen and Bloch (1957) showed that rat liver extracts require oxygen and reduced pyridine nucleotide to perform cyclisation of squalene. Yeast cells were also shown to require oxygen for ergosterol biosynthesis (Andreasen and Stier 1953) and to accumulate squalene under anaerobic conditions (Klein 1955). Subsequently, the intermediate 2,3-oxidosqualene was discovered (Corey et al. 1966; Van Tamelen et al. 1966) and squalene is now known to be converted by a two-step sequence of epoxidation and subsequent cyclisation involving two separate enzymes. The first of these enzymes, squalene epoxidase (EC 1.14.99.7), was initially described by Yamamoto and Bloch (1970) using rat liver extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreasen AA, Stier TJB (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol 41: 23–36

    Article  PubMed  CAS  Google Scholar 

  • Astruc M, Tabacik C, Descomps B, Crastes de Paulet A (1977) Squalene epoxidase and oxidosqualene lanosterol-cyclase activities in cholesterogenic and non-cholesterogenic tissues. Biochim Biophys Acta 487: 204–211

    PubMed  CAS  Google Scholar 

  • Balliano G, Viola F, Ceruti M, Cattel L (1988) Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylazasqualene and derivatives. Biochim Biophys Acta 959: 9–19

    PubMed  CAS  Google Scholar 

  • Bard M, Woods RA, Haslam JM (1974) Porphyrin mutants of Saccharomyces cerevisiae: correlated lesions in sterol and fatty acid biosynthesis. Biochem Biophys Res Commun 56: 324–330

    Article  PubMed  CAS  Google Scholar 

  • Barrett-Bee KJ, Lane AC, Turner RW (1986) The mode of action of tolnaftate. J Med Vet Mycol 24: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Bird CW, Lynch JM, Port FJ, Reid WW, Brooks CJW, Middleditch BS (1971) Steroids and squalene in Methylococcus capsulatus grown on methane. Nature (London) 230: 473

    Article  CAS  Google Scholar 

  • Bloch KE (1979) Speculations on the evolution of sterol structure and function. CRC Crit Rev Biochem 7: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Buttke TM, Pyle AL (1982) Effects of unsaturated fatty acid deprivation on neutral lipid synthesis in Saccharomyces cerevisiae. J Bacteriol 152: 747–756

    PubMed  CAS  Google Scholar 

  • Caras IW, Friedlander EJ, Bloch K (1980) Interactions of supernatant protein factor with components of the microsomal squalene epoxidase system. Binding of supernatant protein factor to anionic phospholipids. J Biol Chem 255: 3575–3580

    PubMed  CAS  Google Scholar 

  • Chin J, Bloch K (1984) Role of supernatant protein factor and anionic phospholipid in squalene uptake and conversion by microsomes. J Biol Chem 259: 11735–11738

    PubMed  CAS  Google Scholar 

  • Corey EJ, Russey WE, Ortiz de Montellano PR (1966) 2,3-Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene. J Am Chem Soc 88:4750–4751

    Article  CAS  Google Scholar 

  • Dempsey ME, Meyer GM (1977) Purification of yeast sterol carrier protein. Fed Proc 36: 779

    Google Scholar 

  • Duriatti A, Bouvier-Nave P, Benveniste P, Schuber F, Delprino L, Balliano G, Cattel L (1985) In vitro inhibition of animal and higher plants 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dihydro-squalene and derivatives, and by other ammonium-containing molecules. Biochem Pharmacol 34: 2765–2777

    Article  PubMed  CAS  Google Scholar 

  • Eilenberg H, Shechter I (1984) A possible regulatory role of squalene epoxidase in Chinese hamster ovary cells. Lipids 19: 539–543

    Article  PubMed  CAS  Google Scholar 

  • Etemadi AH, Popjak G, Cornforth JW (1969) Assay of the possible organisation of particle-bound enzymes with squalene synthetase and squalene oxidocyclase systems. Biochem J 111: 445–451

    PubMed  CAS  Google Scholar 

  • Ferguson JB, Bloch K (1977) Purification and properties of a soluble protein activator of rat liver squalene epoxidase. J Biol Chem 252: 5381–5385

    PubMed  CAS  Google Scholar 

  • Friedlander EJ, Caras I J, Lin LFH, Bloch K (1980) Supernatant protein factor facilitates intermembrane transfer of squalene. J Biol Chem 255: 8042–8045

    PubMed  CAS  Google Scholar 

  • Georgopoulos AG, Petranyi G, Mieth H, Drews J (1981) In vitro activity of naftifine, a new antifungal agent. Antimicrob Agents Chemother 19: 386–389

    PubMed  CAS  Google Scholar 

  • Goad LJ, Holz GG, Beach DH (1985) Effect of the allylamine antifungal drug SF 86–327 on the growth and sterol synthesis of Leishmania mexicana mexicana promastigotes. Biochem Pharmacol 34: 3785–3788

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TW (1979) Biosynthesis of terpenoids. Ann Rev Plant Physiol 30: 369–404

    Article  CAS  Google Scholar 

  • Hata S, Nishino T, Ariga N, Katsuki H (1982) Effect of detergents on sterol synthesis in a cell-free system of yeast. J Lip Res 23: 803–810

    CAS  Google Scholar 

  • Jahnke L, Klein HP (1983) Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol 155: 488–492

    PubMed  CAS  Google Scholar 

  • Kaken Pharmaceutical Co Ltd (1985) European Patent Application No 0164697

    Google Scholar 

  • Karst F, Lacroute F (1974) Yeast mutant requiring only a sterol as growth supplement. Biochem Biophys Res Commun 59: 370–376

    Article  PubMed  CAS  Google Scholar 

  • Klein HP (1955) Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J Bacteriol 69: 620–627

    PubMed  CAS  Google Scholar 

  • Klein HP, Volkmann CM, Leaffer MA (1967) Subcellular sites involved in lipid synthesis in Saccharomyces cerevisiae. J Bacteriol 94: 61–65

    PubMed  CAS  Google Scholar 

  • Maycock AL, Abeles RH, Salach JI, Singer TP (1976) The structure of the covalent adduct formed by the interaction of 3-dimethylamino-l-propyne and the flavine of mitochondrial amine oxidase. Biochemistry 15: 114–125

    Article  PubMed  CAS  Google Scholar 

  • Mbaya B, Karst F (1987) In vitro assay of squalene epoxidase of Saccharomyces cerevisiae. Biochem Biophys Res Commun 147:556–564

    Article  CAS  Google Scholar 

  • Morin RJ, Srikantaiah MV (1982) Inhibition of rat liver sterol formation by isoprenoid and conjugated ene compounds. Pharmacol Res Commun 14: 941–947

    Article  PubMed  CAS  Google Scholar 

  • Morita T, Nozawa Y (1985) Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J Invest Dermatol 85: 434–437

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Bloch K (1975) Solubilization and partial characterization of rat liver squalene epoxidase. J Biol Chem 250:1571–1579

    PubMed  CAS  Google Scholar 

  • Ono T, Ozasa S, Hasegawa F, Imai Y (1977) Involvement of NADPH-cytochrome c reductase in the rat liver squalene epoxidase system. Biochim Biophys Acta 486: 401–407

    PubMed  CAS  Google Scholar 

  • Ono T, Nakazono K, Kosaka H (1982) Purification and partial characterization of squalene epoxidase from rat liver microsomes. Biochim Biophys Acta 709: 84–90

    Article  PubMed  CAS  Google Scholar 

  • Paltauf F, Daum G, Zuder G, Hoegenauer G, Schulz G, Seidl G (1982) Squalene and ergosterol biosynthesis in fungi treated with naftifine, a new antimycotic agent. Biochim Biophys Acta 712: 268–273

    CAS  Google Scholar 

  • Petranyi G, Ryder NS, Stuetz A (1984) Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224: 1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Petranyi G, Meingassner JG, Mieth H (1987 a) Antifungal activity of the allylamine derivative terbinafine in vitro. Antimicrob Agents Chemother 31: 1365–1368

    CAS  Google Scholar 

  • Petranyi G, Stuetz A, Ryder NS, Meingassner JG, Mieth H ( 1987 b) Experimental antimycotic activity of naftifine and terbinafine. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. JR Prous Science Publishers, Barcelona, p 441–450

    Google Scholar 

  • Petranyi G, Meingassner JG, Schaude M (1988) Experimental chemotherapeutic activity of SDZ 87–469, a new allylamine antimycotic. Poster presentation at 10th ISHAM Congress, Barcelona 1988

    Google Scholar 

  • Poralla K (1982) Considerations on the evolution of steroids as membrane components. FEMS Microbiol Lett 13:131–135

    Article  CAS  Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1980) Non-specific lanosterol and hopanoid biosynthesis by a cell-free system from the bacterium Methylococcus capsulatus. Eur J Biochem 112: 557–560

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130: 1137–1150

    CAS  Google Scholar 

  • Ryder NS (1984) Selective inhibition of squalene epoxidation by allylamine antimycotic agents. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier, Amsterdam, pp 313–321

    Google Scholar 

  • Ryder NS (1985 a) Specific inhibition of fungal sterol biosynthesis by SF 86–327, a new allylamine antimycotic agent. Antimicrob Agents Chemother 27:252–256

    CAS  Google Scholar 

  • Ryder NS (1985 b) Effect of allylamine antimycotic agents on fungal sterol biosynthesis measured by sterol side-chain methylation. J Gen Microbiol 131:1595–1602

    CAS  Google Scholar 

  • Ryder NS (1986) Biochemical mode of action of the allylamine antimycotic agents naftifine and terbinafine. In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elsevier, Amsterdam, pp 89–99

    Google Scholar 

  • Ryder NS (1987 a) Squalene epoxidase as the target of antifungal allylamines. Pestic Sci 21:281–288

    Article  CAS  Google Scholar 

  • Ryder NS ( 1987 b) Mechanism of action of the allylamine antimycotics. In: Fromtling RA (ed) Recent trends in the discovery, development and evaluation of antifungal agents. JR Prous Science Publishers, Barcelona, pp 451–459

    Google Scholar 

  • Ryder NS, Dupont MC (1984) Properties of a particulate squalene epoxidase from Candida albicans. Biochim Biophys Acta 794: 466–471

    PubMed  CAS  Google Scholar 

  • Ryder NS, Dupont MC (1985) Inhibition of squalene epoxidase by allylamine antimycotic compounds: a comparative study of the fungal and mammalian enzymes. Biochem J 230: 765–770

    PubMed  CAS  Google Scholar 

  • Ryder NS, Troke PF (1982) The activity of naftifine as a sterol synthesis inhibitor in Candida albicans. In: Periti P, Grassi GG (eds) Current chemotherapy and immunotherapy. American Society for Microbiology, Washington, pp 1016–1017

    Google Scholar 

  • Ryder NS, Seidl G, Troke PF (1984) Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans. Antimicrob Agents Chemother 25: 483–487

    PubMed  CAS  Google Scholar 

  • Ryder NS, Seidl G, Petranyi G, Stuetz A (1985) Mechanism of the fungicidal action of SF 86–327, a new allylamine antimycotic agent. In: Ishigami J (ed) Recent advances in chemotherapy. University of Tokyo Press, Tokyo, pp 2558–2559

    Google Scholar 

  • Ryder NS, Frank I, Dupont MC (1986 a) Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob Agents Chemother 29: 858–860

    CAS  Google Scholar 

  • Ryder NS, Dupont MC, Frank I (1986 b) Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dtfiydrosqualene. FEBS Lett 204: 239–242

    Article  CAS  Google Scholar 

  • Sandoz Ltd (1987) German Patent DE 3702039 A1

    Google Scholar 

  • Schaude M, Ackerbauer H, Mieth H (1987) Inhibitory effect of antifungal agents on germ tube formation in Candida albicans. Mykosen 30: 281–287

    PubMed  CAS  Google Scholar 

  • Schuster I (1985) The interaction of representative members from two classes of antimycotics — the azoles and the allylamines — with cytochromes P-450 in steroidogenic tissues and liver. Xenobiotica 15: 529–546

    Article  PubMed  CAS  Google Scholar 

  • Senjo M, Ishibashi T, Imai Y (1985) Regulation of rat liver microsomal squalene epoxidase: inactivation of the supernatant protein factor by nucleotides. Arch Biochem Biophys 238: 584–587

    Article  PubMed  CAS  Google Scholar 

  • Srikantaiah MV, Hansbury E, Loughran ED, Scallen TJ (1976) Purification and properties of sterol carrier protein 1. J Biol Chem 251: 5496–5504

    PubMed  CAS  Google Scholar 

  • Stuetz A (1987) Allylamine derivatives — a new class of active substances in antifungal chemotherapy. Angew Chem Int Ed Engl 26: 320–328

    Article  Google Scholar 

  • Stuetz A, Petranyi G (1984) Synthesis and antifungal activity of (E)-N-(6,6-demethyl-2-hepten-4-ynyl)-N-methyl-l naphthalene-methanamine (SF 86–327) and related allylamine derivatives with enhanced oral activity. J Med Chem 27: 1539–1543

    Article  CAS  Google Scholar 

  • Stuetz A, Georgopoulos A, Granitzer W, Petranyi G, Berney D (1986) Synthesis and structure-activity relationships of naftifine-related allylamine antimycotics. J Med Chem 29: 112–125

    Article  CAS  Google Scholar 

  • Stuetz A, Nussbaumer P, Petranyi G (1988) SDZ 87–469: synthesis and structure-activity relationships of a novel allylamine antimycotic. Poster presentation at 10th ISHAM Congress, Barcelona 1988

    Google Scholar 

  • Tai HH, Bloch K (1972) Squalene epoxidase of rat liver. J Biol Chem 247: 3767–3773

    PubMed  CAS  Google Scholar 

  • Taylor FR, Kandutsch AA, Gayen AK, Nelson JA, Nelson SS, Phirwa S, Spencer TA (1986) 24,25-Epoxysterol metabolism in cultured mammalian cells and repression of 3-hydroxy-3-methyl-glutaryl-CoA reductase. J Biol Chem 261:15039–15044

    PubMed  CAS  Google Scholar 

  • Tchen TT, Bloch K (1957) On the conversion of squalene to lanosterol in vitro. J Biol Chem 226: 921–939

    PubMed  CAS  Google Scholar 

  • Van Tamelen EE, Heys JR (1975) Enzymic epoxidation of squalene variants. J Amer Chem Soc 97: 1252–1253

    Article  Google Scholar 

  • Van Tamelen EE, Willett JD, Clayton RB, Lord KE (1966) Enzymic conversion of squalene 2,3-oxide to lanosterol and cholesterol. J Amer Chem Soc 88: 4752–4754

    Article  Google Scholar 

  • Wood SG, Gottlieb D (1978) Evidence from cell–free systems for differences in the sterol biosynthetic pathway of Rhizoctonia solani and Phytophthora cinnamomi. Biochem J 170: 355–363

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Bloch K (1970) Studies on squalene epoxidase of rat liver. J Biol Chem 245: 1670–1674

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryder, N.S. (1990). Squalene Epoxidase — Enzymology and Inhibition. In: Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., Copping, L.G. (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74215-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74215-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74217-0

  • Online ISBN: 978-3-642-74215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics