Skip to main content

Abstract

Chitin, the (l→4)-β-linked homopolymer of N-acetyl-D-glucosamine, is a characteristic component of the cell walls of nearly all zoopathogenic and phytopathogenic fungi, and also of the skeletal structures of most invertebrates. As vertebrates and higher plants do not produce this polysaccharide, chitin metabolism is an attractive target for antifungal agents and pesticides (Gooday 1977). A clear analogy is with the peptidoglycan of bacterial walls, the synthesis of which is inhibited by many antibacterial agents, notably the β-lactams, and the structure of which is attacked by the defensive enzyme, lysozyme. In the case of chitin we find that nature has exploited the potential of chitin as a target, with the antifungal antibiotics, polyoxins and nikkomycins, produced by streptomycetes isolated from soil, and with chitinases being used as defense enzymes by plants and animals. The antifungal actions to be discussed here, of the very specific polyoxins and nikkomycins and of purified chitinases, are ample proof of the essential nature of chitin in fungal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Gooday GW (1980) A rapid chitin synthase preparation for the assay of potential fungicides and insecticides. Biotech Lett 2: 75–78

    Article  CAS  Google Scholar 

  • Adams DJ, Gooday GW (1983) Chitin synthesis as a target — current progress. In: Lyr H, Polter C (eds) VI Int Symp Systemische Fungizide und antifungale Verbindungen. Abh Akad Wiss DDR 1982 Nr 1N. Akademie-Verlag, Berlin, pp 39–45

    Google Scholar 

  • Avron B, Deutsch RM, Mirelman D (1982) Chitin synthesis inhibitors prevent cyst formation by Entamoeba trophozoites. Biochem Biophys Res Commun 108: 815–821

    Article  PubMed  CAS  Google Scholar 

  • Azuma T, Saita Y, Isoni K (1977) Polyoxin analogs. II. Synthesis and biological activity of aminoacyl derivatives of polyoxin C and L. Chem Pharm Bull 25: 1740–1748

    PubMed  CAS  Google Scholar 

  • Barkai-Golan R, Mirelman D, Sharon N (1979) Studies on growth inhibition by lectins of Penicillia and Aspergilli. Arch Microbiol 116: 119–124

    Article  Google Scholar 

  • Barrett-Bee K, Hamilton M (1984) The detection and analysis of chitinase activity from the yeast form of Candida albicans. J Gen Microbiol 130: 1857–1861

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (1973) Fundamental aspects of hyphal morphogenesis. In: Ashworth JM, Smith JE (eds) Microbial differentiation. Symp Soc Gen Microbiol, vol 23. Cambridge Univ Press, Cambridge, pp 245–268

    Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1972) Inhibition of Mucor rouxii by polyoxin D: effects on chitin synthetase and morphological development. J Gen Microbiol 71: 301–309

    CAS  Google Scholar 

  • Bartnicki-Garcia S, Ruiz-Herrera J, Bracker CE (1979) Chitosomes and chitin synthesis. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Symp Br Mycol Soc, vol 2. Cambridge Univ Press, Cambridge, pp 149–168

    Google Scholar 

  • Becker JM, Covert NL, Shenbagamurthi P, Steinfeld AS, Naider F (1983) Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrob Agents Chemother 23:926–929

    PubMed  CAS  Google Scholar 

  • Becker JM, Marcus S, Tullock J, Miller D, Krainer E, Khare RK, Naider F (1988) Use of chitin-synthesis inhibitor nikkomycin to treat disseminated candidiosis in mice. J Infect Dis 157: 212–214

    Article  PubMed  CAS  Google Scholar 

  • Boehm JC, Kingsbury WD (1986) Rapid and convenient syntheses of polyoxin peptides containing N-methylated peptide bonds. J Org Chem 51: 2307–2314

    Article  CAS  Google Scholar 

  • Bowers B, Levin G, Cabib E (1974) Effect of polyoxin D on chitin synthesis and septum formation in Saccharomyces cerevisiae. J Bacteriol 119: 564–575

    PubMed  CAS  Google Scholar 

  • Bulawa CE, Slater M, Cabib E, Au-Young J, Sburlati A, Adair WC, Robbins PW (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46: 213–225

    Article  PubMed  CAS  Google Scholar 

  • Cabib E (1987) The synthesis and degradation of chitin. Adv Enzymol 59: 59–101

    PubMed  CAS  Google Scholar 

  • Cabib E, Duran A, Bowers B (1979) Localized activation of chitin synthase in the initiation of yeast septum formation. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Symp Br Mycol Soc, vol 2. Cambridge Univ Press, Cambridge, pp 189–201

    Google Scholar 

  • Calcott PH, Fatig RO (1984) Inhibition of chitin metabolism by avermectin in susceptible organisms. J Antibiot 37: 253–259

    PubMed  CAS  Google Scholar 

  • Chiew YY, Shepherd MG, Sullivan PA (1980) Regulation of chitin synthesis during germ-tube formation in Candida albicans. Arch Microbiol 125: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Chiew YY, Sullivan PA, Shepherd MG (1982) The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans. Can J Biochem 60: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Coudron TA, Kroha MJ, Ignoffo CM (1984) Levels of chitinolytic activity during development of three entomopathogenic fungi. Comp Biochem Physiol 79B: 339–348

    Google Scholar 

  • Dähn U, Hagenmaier H, Höhne H, König WA, Wolf G, Zähner H (1976) Stoffwechselprodukte von Mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer Hemmstoff der Chitin Synthese bei Pilzen. Arch Microbiol 107: 143–160

    Article  PubMed  Google Scholar 

  • Davies DAL, Pope AMS (1978) Mycolase, a new kind of systemic antimycotic. Nature (London) 273: 235–236

    Article  CAS  Google Scholar 

  • Duran A, Cabib E (1978) Solubilization and partial purification of yeast chitin synthetase. J Biol Chem 235: 4419–4425

    Google Scholar 

  • Elango N, Correa JV, Cabib E (1982) Secretory nature of yeast chitinase. J Biol Chem 257: 1398–1400

    PubMed  CAS  Google Scholar 

  • Emmer G, Ryder NS, Grassberger MA (1985) Synthesis of new polyoxin derivatives and their activity against chitin synthase from Candida albicans. J Med Chem 28: 278–281

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Misato T (1969) Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine: chitin N-acetylglucosaminyltransferase in Neurospora crassa. Biochem Biophys Res Commun 37: 718–722

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Kakiki K, Misato T (1970 a) Feedback inhibition of L glutamine D fructose-6 phosphate amido transferase by UDP N acetylglucosamine in Neurospora crassa. J Bacteriol 103: 588–594

    CAS  Google Scholar 

  • Endo A, Kakiki K, Misato T (1970 b) Mechanism of action of the antifungal agent polyoxin D. J Bacteriol 104: 189–196

    CAS  Google Scholar 

  • Fiedler HP, Kurth R, Langhärig J, Delzer J, Zähner H (1982) Nikkomycins: microbial inhibitors of chitin synthetase. J Chem Tech Biotechnol 32: 271–280

    CAS  Google Scholar 

  • Furter R, Rast DM (1985) A comparison of the chitin synthase-inhibitory and antifungal efficacy of nucleoside-peptide antibiotics: structure: activity relationships. FEMS Microbiol Lett 28: 205–211

    Article  CAS  Google Scholar 

  • Gonneau M, Yadan JC, Sarthou P, Le Goffic F (1986) Nikkomycin X as inhibitor of Candida albicans growth. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York London, pp 203–205

    Chapter  Google Scholar 

  • Gooday GW (1977) Biosynthesis of the fungal wall — mechanisms and implications. The first Fleming lecture. J Gen Microbiol 99: 1–11

    PubMed  CAS  Google Scholar 

  • Gooday GW ( 1979 a) Chitin synthesis and differentiation in Coprinus cinereus. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Symp Br Mycol Soc, vol 2. Cambridge Univ Press, Cambridge, pp 204–223

    Google Scholar 

  • Gooday GW (1979b) The action of polyoxin on fungi. In: Lyr H, Polter C (eds) V Int Symp Systemfungizide. Abh Akad Wiss DDR 1979 Nr 2N. Akademie-Verlag, Berlin, pp 159–168

    Google Scholar 

  • Gooday GW (1983) The microbial synthesis of cellulase, chitin and chitosan. In: Bushell ME (ed) Microbial polysaccharides. Prog Indust Microbiol, vol 18. Elsevier, Amsterdam, pp 85–127

    Google Scholar 

  • Gooday GW, Rousset-Hall A de, Hunsley D (1976) The effect of polyoxin D on chitin synthesis in Coprinus cinereus. Trans Br Mycol Soc 67: 77–83

    Article  Google Scholar 

  • Gooday GW, Woodman J, Casson EA, Browne CA (1985) Effect of nikkomycin on chitin spine formation in the diatom Thalassiosira fluviatilis, and observations on its peptide uptake. FEMS Microbiol Lett 28: 335–340

    Article  CAS  Google Scholar 

  • Gooday GW, Humphreys AM, Mcintosh WH (1986) Roles of chitinases in fungal growth. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York London, pp 83–91

    Chapter  Google Scholar 

  • Gooday GW, Brydon LJ, Chappell LH (1988) Chitinase in female Onchocerca gibsoni and its inhibition by allosamidin. Mol Biochem Parasitol 29: 223–225

    Article  PubMed  CAS  Google Scholar 

  • Gordiner PM, Brezner J, Tanenbaum SW (1987) Chitin metabolism: not a target of avermectin/milbemycin activity in insects. J Antibiot 40: 110–112

    Google Scholar 

  • Gow LA, Selitrennikoff CP (1984) Chitin synthetase of Neurospora crassa: inhibition by nikkomycin, polyoxin and UDP. Curr Microbiol 11: 211–216

    Article  CAS  Google Scholar 

  • Gow NAR, Gooday GW (1983) Ultrastructure of chitin in hyphae of Candida albicans and other dimorphic and mycelia fungi. Protoplasma 115: 52–58

    Article  Google Scholar 

  • Gray TRG, Baxby P (1968) Chitin decomposition in soil. II. The ecology of chitinoclastic microorganisms in forest soil. Trans Br Mycol Soc 51: 293–309

    Article  Google Scholar 

  • Hänseier E, Nyhlen LE, Rast DM (1983) Isolation and properties of chitin synthetase from Agaricus bisporus mycelium. Exp Mycol 7: 17–30

    Article  Google Scholar 

  • Hagenmaier H, Keckeisen A, Zähner H, König WA (1979) Stoffwechselprodukte von Mikroorganismen, 182. Aufklärung der Struktur des Nukleosidantibiotikums Nikkomycin X. Liebigs Ann Chem 1979: 1494–1502

    Article  Google Scholar 

  • Hagenmaier H, Keckeisen A, Dehler W, Fiedler H, Zähner H, König WA (1981) Stoffwechselprodukte von Mikroorganismen, 199. Konstitutionsaufklärung der Nikkomycine I, J, M und N. Liebigs Ann Chem 1981: 1018–1024

    Article  Google Scholar 

  • Hector RF, Braun PC (1986) Synergistic action of nikkomycins X and Z with papulacandin B on whole cells and regenerating protoplasts of Candida albicans. Antimicrob Agents Chemother 29: 389–394

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Ruiz-Herrera L (1983) Light response in Phycomyces blakesleeanus: Evidence for roles of chitin biosynthesis and breakdown. Exp Mycol 7: 362–369

    Article  CAS  Google Scholar 

  • Hilenski LKL, Naider F, Becker JM (1986) Polyoxin D inhibits colloidal gold-wheat germ agglutinin labelling of chitin in dimorphic forms of Candida albicans. J Gen Microbiol 132: 1441–1457

    PubMed  CAS  Google Scholar 

  • Hori M, Kakiki K, Suzuki S, Misato T (1971) Studies on the mode of action of polyoxins. Part III. Relation of polyoxin structure to chitin synthetase inhibition. Agric Biol Chem 35: 1280–1291

    Article  CAS  Google Scholar 

  • Hori M, Eguchi J, Kakiki K, Misato T (1974 a) Studies on the mode of action of polyoxins. VI. Effect of polyoxin B on chitin synthesis in polyoxin-sensitive and resistant strains of Alternaria kikuchiana. J Antibiot 27: 26–266

    Google Scholar 

  • Hori M, Kakiki K, Misato T (1974 b) Further study on the relation of polyoxin structure to chitin synthetase inhibition. Agric Biol Chem 38: 691–698

    Article  CAS  Google Scholar 

  • Hori M, Kakiki K, Misato T (1974 c) Interaction between polyoxin and active center of chitin synthetase. Agric Biol Chem 38: 699–705

    Article  CAS  Google Scholar 

  • Hori M, Kakiki K, Misato T (1977) Antagonistic effect of dipeptides on the uptake of polyoxin A by Alternaria kikuchiana. J Pestic Sei 2: 139–150

    Article  CAS  Google Scholar 

  • Humphreys AM, Gooday GW (1984 a) Properties of chitinase activities from Mucor mucedo: evidence for a membrane-bound zymogenic form. J Gen Microbiol 130: 1359–1366

    CAS  Google Scholar 

  • Humphreys AM, Gooday GW (1984 b) Phospholipid requirement of microsomal chitinase from Mucor mucedo. Curr Microbiol 11: 187–190

    Article  CAS  Google Scholar 

  • Isono K, Nagatsu J, Kawashiwa Y, Suzuki S (1965) Studies on polyoxins, antifungal antibiotics. Part 1. Isolation and characterisation of polyoxins A and B. Agric Biol Chem 29: 848–854

    Article  CAS  Google Scholar 

  • Isono K, Nagutsu J, Kobinata K, Sasaki K, Suzuki S (1967) Studies of polyoxins, antifungal antibiotics. Part V. Isolation and characterisation of polyoxins C, D, E, F, G, H and I. Agric Biol Chem 31: 190–199

    Article  CAS  Google Scholar 

  • Isono K, Asahi K, Suzuki A (1969) Studies on polyoxins, antifungal antibiotics. XIII. The structure of polyoxins. J Am Chem Soc 91: 7490–7505

    Article  PubMed  CAS  Google Scholar 

  • Isono K, Azuma T, Suzuki S (1971a) Polyoxin analogs. I. Synthesis of aminoacyl derivatives of 5′-amino-5′-deoxyuridine. Chem Pharm Bull 19: 505–512

    CAS  Google Scholar 

  • Isoni K, Suzuki S, Azuma T (1971b) Semi-synthetic polyoxins: aminoacyl derivatives of polyoxin C and their in vitro activity. Agric Biol Chem 35: 1986–1989

    Article  Google Scholar 

  • Iten W, Matile P (1970) Role of chitinase and other lysosomal enzymes of Coprinus lagopus in the autolysis of fruiting bodies. J Gen Microbiol 61: 301–309

    CAS  Google Scholar 

  • Izawa Y, Uchida M, Sugimoto T, Asai T (1985) Inhibition of chitin biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens Stal. Pestic Biochem Physiol 24:343–347

    Article  CAS  Google Scholar 

  • Kelly P, Trewavas A J, Lewis LN, Durbin ML, Sexton R (1987) Translatable messenger RNA changes in ethylene induced abscission zones of Phaseolus vulgaris ( Red Kidney ). Plant Cell Environ 10: 11–16

    Article  CAS  Google Scholar 

  • Kobinata K, Oramoto M, Nishii M, Kusakabe H, Nakamura G, Isono K (1980) Neopolyoxin A, neopolyoxin B and neopolyoxin C, new chitin synthetase inhibitors. Agric Biol Chem 44: 1709–1722

    Article  CAS  Google Scholar 

  • Kodama O, Yamada H, Akatsuka T (1979) Kitazin P, inhibitor of phosphatidylcholine biosynthesis in Pyricularia oryzae. Agric Biol Chem 43: 1719–1725

    Article  CAS  Google Scholar 

  • König WA, Hass W, Dehler W, Fiedler HP, Zähner H (1980) Stoffwechselprodukte von Mikroorganismen, 189. Strukturaufklärung und Partialsynthese des Nukleosidantibiotikums Nikkomycin B. Liebigs Ann Chem 1980: 622–628

    Article  Google Scholar 

  • Koga D, Isogai A, Sakuda S, Matsumoto S, Suzuki A, Kimura S, Ide A (1987) Specific inhibition of Bombyx mori chitinase by allosamidin. Agric Biol Chem 51: 471–476

    Article  CAS  Google Scholar 

  • Kramer KJ, Koga D (1986) Insect chitin. Physical state, synthesis, degradation and metabolic regulation. Insect Biochem 16: 851–877

    Article  CAS  Google Scholar 

  • Lindsay GJH (1986) The significance of chitinolytic enzymes and lysozyme in rainbow trout (Salmo gairdneri) defence. Aquaculture 51: 169–173

    Article  CAS  Google Scholar 

  • Lunblad G, Elander M, Lind J, Slettengren K (1979) Bovine serum chitinase. Eur J Biochem 100: 455–460

    Article  Google Scholar 

  • Mahadevan PR, Mahadkar UR (1970) Role of enzymes in growth and morphology of Neurospora crassa: cell wall bound enzymes and their possible role in branching. J Bacteriol 101: 941–947

    PubMed  CAS  Google Scholar 

  • Marks EP, Leighton T, Leighton F (1982) Modes of action of chitin synthesis inhibitors. In: Coats JR (ed) Insecticide mode of action. Academic Press, London New York, pp 281–313

    Google Scholar 

  • McCarthy P, Troke PF, Gull K (1985) Mechanism of action of nikkomycin and the peptide transport system of Candida albicans. J Gen Microbiol 131: 775–780

    PubMed  CAS  Google Scholar 

  • Metraux JP, Boller T (1986) Local and systemic induction of chitinase EC 3.2.1.14 in cucumber Cucumis sativus cultivar Wisconsin plants in response to viral, bacterial and fungal infections. Physiol Mol Plant Pathol 28: 161–170

    Article  CAS  Google Scholar 

  • Milewski S, Chmara H, Borowski E (1983) Growth inhibitory effect of antibiotic tetaine on yeast and mycelial forms of Candida albicans. Arch Microbiol 135: 130–136

    Article  PubMed  CAS  Google Scholar 

  • Milewski S, Chmara H, Andruszkiewicz R, Borowski E (1984) Synthetic derivatives of 3N-fumaroyl-L-2,3-diaminopropanoic acid inactivate glucosamine synthetase from Candida albicans. Biochem Biophys Acta 828: 247–254

    Google Scholar 

  • Milewski S, Chmara H, Borowski E (1986 a) Antibiotic tetaine — a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans. Arch Microbiol 145: 234–240

    Article  CAS  Google Scholar 

  • Milewski S, Chmara H, Borowski E (1986 b) Anticapsin: an active site directed inhibitor of glucosamine-6-phosphate synthetase from Candida albicans. Drugs Exp Clin Res 12: 577–583

    CAS  Google Scholar 

  • Minke R, Blackwell J (1978) The structure of α-chitin. J Mol Biol 120: 167–181

    Article  PubMed  CAS  Google Scholar 

  • Mirelman D, Galun E, Sharon N, Lotan R (1975) Inhibition of fungal growth by wheat germ agglutinin. Nature (London) 256: 414–416

    Article  CAS  Google Scholar 

  • Misato T, Kakiki K (1977) Inhibition of fungal cell wall synthesis and cell membrane function. In: Siegal MR, Sisler HD (eds) Antifungal compounds, vol 2. Dekker, New York Basel, pp 277–300

    Google Scholar 

  • Misato T, Ko K, Yamaguqhi U (1977) Use of antibiotics in agriculture. Adv Appl Microbiol 21: 53–88

    Article  PubMed  CAS  Google Scholar 

  • Mitani M, Inoue Y (1968) Antagonists of antifungal substance polyoxin. J Antibiot 21: 492–496

    PubMed  CAS  Google Scholar 

  • Mitsui T (1986) Mode of inhibition of chitin synthesis by diflubenzuron. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York London, pp 193–196

    Chapter  Google Scholar 

  • Mol PC, Wessels JGH (1987) Linkages between glucosaminoglycan and glucan determine alkali-insolubility of the glucan in walls of Saccharomyces cerevisiae. FEMS Microbiol Lett 41: 91–99

    Article  Google Scholar 

  • Müller H, Furter R, Zähner H, Rast DM (1981) Metabolic products of microorganisms 203. Inhibition of chitosomal chitin synthetase and growth of Mucor rouxii by nikkomycin Z, nikkomycin X and polyoxin A: a comparison. Arch Microbiol 130: 195–197

    Article  Google Scholar 

  • Naider F, Shenbagamurthi P, Steinfeld AS, Smith HA, Boney C, Becker JM (1983) Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrob Agents Chemother 24: 787–796

    PubMed  CAS  Google Scholar 

  • Nishimura M, Kohmoto K, Udagawa H (1973) Field emergence of fungicide tolerant strains of Alternaria kikuchiana. Rep Tottori Mycol Inst 10: 677–686

    Google Scholar 

  • Nozawa Y, Yaginuma H, Ozeki K (1985) Advances in the concept of molecular mechanism for antifungal action by amphotericin B. In: Arai T (ed) Filamentous microorganisms. Biomedical aspects. Jpn Sci Soc Press, Tokyo, pp 345–354

    Google Scholar 

  • Onishi JC, Miller TW (1985) The lack of antifungal activity by avermectin B1a. J Antibiot 38: 1568–1572

    PubMed  CAS  Google Scholar 

  • Oranusi NA, Trinci APJ (1985) Growth of bacteria on chitin cell walls and fungal biomass, and the effect of extracellular enzyme produced by these cultures on the antifungal activity of amphotericin B. Microbios 43: 17–30

    PubMed  CAS  Google Scholar 

  • Orlean P (1987) Two chitin synthases in Saccharomyces cerevisiae. J Biol Chem 262: 5732–5739

    PubMed  CAS  Google Scholar 

  • Ortega JKE, Gamow RI, Ahlquist CN (1975) Phycomyces: A change in mechanical properties after a light stimulus. Plant Physiol 55: 333–337

    Article  PubMed  CAS  Google Scholar 

  • Payne JW, Shallow DA (1985) Studies on drug targeting in the pathogenic fungus Candida albicans: peptide transport mutants resistant to polyoxins, nikkomycins and bacilysin. FEMS Microbiol Lett 28: 55–60

    Article  CAS  Google Scholar 

  • Pegg GF, Young DH (1982) Purification and characterisation of chitinase enzymes from healthy and Verticillium albo-atrum-infected tomato plants and from V. albo-atrum. Physiol Plant Pathol 21: 389–409

    Article  CAS  Google Scholar 

  • Polachek Y, Rosenberger RF (1978) The distribution of autolysins in hyphae of Aspergillus nidulans: existence of a lipid mediated attachment to hyphal walls. J Bacteriol 135: 741–754

    Google Scholar 

  • Poli F, Pancaldi S, Vannini GL (1986) The effect of monesin on chitin synthesis in Candida albicans blastospores. Eur J Cell Biol 42:79–83

    PubMed  CAS  Google Scholar 

  • Pope AMS, Davies DAL (1979) The influence of carbohydrates on the growth of fungal pathogens in vitro and in vivo. Postgrad Med J 55:674–676

    Article  PubMed  CAS  Google Scholar 

  • Porter CA, Jaworski EG (1966) The synthesis of chitin by particulate preparations of Allomyces macrogynus. Biochemistry 5: 1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Prick G, Diekmann H (1979) A chitin-binding lectin in Neurospora crassa. FEMS Microbiol Lett 6: 427–429

    Article  CAS  Google Scholar 

  • Rast DM, Bartnicki-Garcia S (1981) Effects of amphotericin B, nystatin, and other polyene antibiotics on chitin synthase. Proc Natl Acad Sci USA 78: 1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Reyes F, Calatayud J, Martinez MJ (1988) Chitinolytic activity in the autolysis of Aspergillus nidulans. FEMS Microbiol Lett 49: 239–243

    Article  CAS  Google Scholar 

  • Rico H, Miragall F, Sentandreau R (1985) Abnormal formation of Candida albicans produced by Calcofluor White: an ultrastructural and stereologic study. Exp Mycol 9: 241–253

    Article  CAS  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–178

    CAS  Google Scholar 

  • Roncero C, Duran A (1985) Effect of Calcofluor White and Congo Red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163: 1180–1185

    PubMed  CAS  Google Scholar 

  • Rosenberger RF (1979) Endogenous lytic enzymes and wall metabolism. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Symp Br Mycol Soc, vol 2. Cambridge Univ Press, Cambridge, pp 265–278

    Google Scholar 

  • Rousset-Hall A de, Gooday GW (1975) A kinetic study of a solubilized chitin synthetase preparation from Coprinus cinereus. J Gen Microbiol 89: 146–154

    Google Scholar 

  • Sakuda S, Isogai A, Makita T, Matsumoto S, Suzuki AM, Koga A, Koseki K, Kodama H, Noma M (1986 a) Structures of allosamidins, novel insect chitinase inhibitors, produced by microorganisms. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 28: 65–72

    Google Scholar 

  • Sakuda S, Isogai A, Matsumoto S, Suzuki A, Koseki K (1986 b) The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces sp. Tetrahedron Lett 27: 2475–2478

    Article  CAS  Google Scholar 

  • Sakuda S, Isogai A, Matsumoto S, Suzuki A ( 1987a) Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor. J Antibiot 40: 296–300

    CAS  Google Scholar 

  • Sakuda S, Isogai A, Makita T, Matsumoto S, Koseki K, Kodama H, Suzuki A (1987 b) Structures of Allosamidins, novel insect chitinase inhibitors, produced by actinomycetes. Agric Biol Chem 51: 3251–3259

    Article  CAS  Google Scholar 

  • Sburlati A, Cabib E (1986) Chitin synthetase 2, a presumptive participant in septum formation in Saccharomyces cerevisiae. J Biol Chem 261: 15147–15152

    PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature (London) 324: 365–367

    Article  CAS  Google Scholar 

  • Selitrennikoff CP (1979) Competitive inhibition of Neurospora crassa chitin synthetase by tunicamycin. Arch Biochem Biophys 195: 243–244

    Article  PubMed  CAS  Google Scholar 

  • Selitrennikoff CP (1984) Calcofluor White inhibits Neurospora chitin synthetase activity. Exp Mycol 8: 269–272

    Article  CAS  Google Scholar 

  • Selitrennikoff CP (1985) Chitin synthetase activity of Neurospora crassa: effect of Primulin and Congo red. Exp Mycol 9: 179–182

    Article  CAS  Google Scholar 

  • Shenbagamurthi P, Smith HA, Becker JM, Steinfeld A, Naider F (1983) Design of anticandidal agents: synthesis and biological properties of analogues of polyoxin L. J Med Chem 26: 1518–1522

    Article  PubMed  CAS  Google Scholar 

  • Sietsma JH, Wessels JGH (1979) Evidence for covalent linkages between chitin and β–glucan in a fungal wall. J Gen Microbiol 114: 99–108

    CAS  Google Scholar 

  • Sietsma JH, Wessels JGH (1981) Solubility of (1–3)-β-D-(l–6)-β-D-glucan in fungal walls: importance of presumed linkage between glucan and chitin. J Gen Microbiol 125: 209–212

    PubMed  CAS  Google Scholar 

  • Smith HA, Shenbagamurthi P, Naider F, Kundu B, Becker JM (1986 a) Hydrophobic polyoxins are resistant to intracellular degradation in Candida albicans. Antimicrob Agents Chemother 29: 33–39

    CAS  Google Scholar 

  • Smith HA, Shenbagamurthi P, Naider F, Kundu B, Becker JM ( 1986 b) New synthetic polyoxin analogs for chitin synthesis inhibition. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York London, pp 197–202

    Chapter  Google Scholar 

  • Somers PJB, Yao RC, Doolin LR, McGowan MJ, Fakuda DS, Mynderse JS (1987) Method for the detection and quantitation of chitinase inhibitors in fermentation broths; isolation and insect life cycle. Effect of A82516. J Antibiot 40:1751–1756

    CAS  Google Scholar 

  • Sonnenberg ASM, Sietsma JH, Wessels JGH (1982) Biosynthesis of alkali-insoluble cell-wall glucan in Schizophyllum commune protoplasts. J Gen Microbiol 128: 2667–2674

    CAS  Google Scholar 

  • Srivastava AK, Defago G, Boller T (1985) Secretion of chitinase by Aphanocladium album, a hyper-parasite of wheat. Experientia 41: 1612–1613

    Article  PubMed  CAS  Google Scholar 

  • Tracey MV (1955) Chitinase in some Basidiomycetes. Biochem J 61: 579–586

    PubMed  CAS  Google Scholar 

  • Uramoto M, Kobinata K, Isono K, Higashijima T, Miyazawa T, Jenkins EE, McCloskey JA (1980) Structures of neopolyoxins A, B, and C. Tetrahedron Lett 21: 3395–3398

    Article  CAS  Google Scholar 

  • Uramoto M, Kobinata K, Isono K, Higashijima T, Miyazawa T, Jenkins EE, McCloskey JA (1982) Chemistry of the neopolyoxins, pyrimidine and imidazoline nucleoside peptide antibiotics. Tetrahedron 38: 1559–1608

    Article  Google Scholar 

  • Usai T, Hayashi Y, Nanjo F, Sakai K, Ishido Y (1987) Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochem Biophys Acta 923: 302–309

    Article  Google Scholar 

  • Vermeulen CA, Wessels JGH (1984) Ultrastructural differences between wall apices of growing and non-growing hyphae of Schizophyllum commune. Protoplasma 12: 123–131

    Article  Google Scholar 

  • Vermeulen CA, Wessels JGH (1986) Chitin biosynthesis by a fungal membrane preparation. Evidence for a transient non-crystalline state of chitin. Eur J Biochem 158: 411–415

    Article  PubMed  CAS  Google Scholar 

  • Wessels JGH, Sietsma JH (1981) Fungal cell walls: a survey. In: Tanner W, Loewus FA (eds) Plant carbohydrates. II. Extracellular carbohydrates. Encycl Plant Physiol, N Ser, vol 13B. Springer, Berlin Heidelberg New York, pp 352–394

    Google Scholar 

  • Willems AGH, Brouwer MS, Jongsma B (1986) Benzoylaryl ureas: insecticidal compounds interfering with chitin synthesis. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York London, pp 131–138

    Chapter  Google Scholar 

  • Yadan J, Gonneau M, Sarthou P, Le Goffic F (1984) Sensitivity to nikkomycin in Candida albicans: role of peptide permeases. J Bacterid 160: 884–888

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gooday, G.W. (1990). Inhibition of Chitin Metabolism. In: Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W., Copping, L.G. (eds) Biochemistry of Cell Walls and Membranes in Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74215-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74215-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74217-0

  • Online ISBN: 978-3-642-74215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics