Skip to main content

The Role of Grazers in Phytoplankton Succession

  • Chapter
Plankton Ecology

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

At times, freshwater zooplankton consume phytoplankton populations at rates similar to or faster than that at which they are growing (Hargrave and Geen, 1970; Gulati, 1975; Horn, 1981; Persson, 1985; Børsheim and Anderson, 1987). Such high losses certainly must help direct seasonal succession as they force a subset of algal species to suffer high mortality rates. Some studies have concluded that losses in general (Kalff and Knoechel, 1978; Reynolds, et al., 1982) and grazing losses in particular (Porter, 1973, 1976, 1977; Lynch and Shapiro, 1981; Crumpton and Wetzel, 1982; Kerfoot, 1987) are important in seasonal succession. In addition, the influence of zooplankton on algal succession is not limited to their selective effect on algal numbers. Zooplankton also interact indirectly with phytoplankton by making some nutrients more available to them (Gliwicz, 1975; Lehman, 1980a, b; Redfield, 1980; Lehman and Scavia, 1982; Sterner, 1986a). Zooplankton thus act not only as predators in the classic sense, but they also have an effect on the competition among algae (Elser et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, P. 1987. Indirect interactions between species that share a predator: varieties of indirect effects, pp. 38–54, in Kerfoot, W.C. and Sih, A. (editors), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Axler, R.P., Redfield, G.W., and Goldman, C.R. 1981. The importance of regenerated nitrogen to phytoplankton productivity in a subalpine lake. Ecology 62: 345–354.

    Article  Google Scholar 

  • Barlow, J.P. and Bishop, J.W. 1965. Phosphate regeneration by zooplankton in Cayuga Lake. Limnology and Oceanography 10 (supplement); R15–R25.

    Google Scholar 

  • Bartell, S.M. and Kitchell, J.F. 1978. Seasonal impact of planktivory on phosphorus release by Lake Wingra zooplankton. Internationale Vereinigung für Theoritische und Angewandte Limnologie, Verhandlungen 20: 466–474.

    Google Scholar 

  • Bartram, W.L. 1980. Experimental development of a model for the feeding of neritic copepods on phytoplankton. Journal of Plankton Research 3: 1525–1551.

    Google Scholar 

  • Bergquist, A.M. and Carpenter, S.R. 1986. Limnetic herbivory: effects on phytoplankton populations and primary production. Ecology 67: 1351–1360.

    Article  Google Scholar 

  • Bergquist, A.M., Carpenter, S.R., and Latino, J.C. 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnology and Oceanography 30: 1037–1045.

    Article  Google Scholar 

  • Berman, M.S. and Richman, S. 1974. The feeding behavior of Daphnia pulex from Lake Winnebago, Wisconsin. Limnology and Oceanography 19: 105–109.

    Article  Google Scholar 

  • Bidigare, R.R. 1983. Nitrogen excretion by marine zooplankton, pp. 385–409, in Carpenter, E.J. and Capone, D.G. (editors), Nitrogen in the Marine Environment. Academic Press, New York.

    Google Scholar 

  • Bidigare, R.R. and King, F.D. 1981. The measurement of glutamate dehydrogenase activity in Praunus flexuosus and its role in the regulation of ammonium excretion. Comparative Biochemistry and Physiology 70B: 409–413.

    Google Scholar 

  • Blažka, P. 1966. The ratio of crude protein, glycogen and fat in the individual steps of the production chain. Hydrobiological Studies 1: 395–408.

    Google Scholar 

  • Blažka, P. 1967. Physiological basis of secondary production, pp. 222–228, in Edmondson, W.T. and Winberg, G.C. (editors), Secondary Productivity in Fresh Waters. IBP Handbook 17. Blackwell, Oxford.

    Google Scholar 

  • Blažka, P., Brandl, Z., and Prochazkova, L. 1982. Oxygen consumption and ammonia and phosphate excretion in pond zooplankton. Limnology and Oceanography 27: 294–303.

    Article  Google Scholar 

  • Bleiwas, A.H. and Stokes, P.M. 1985. Collection of large and small particles by Bosmina. Limnology and Oceanography 30: 1090–1092.

    Article  Google Scholar 

  • Boavida, M.J. and Heath, R.T. 1984. Are the phosphatases released by Daphnia magna components of its food? Limnology and Oceanography 29: 641–644.

    Article  CAS  Google Scholar 

  • Bogdan, K.G. and Gilbert, J.J. 1982. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: Clearance rates, selectivities, and contributions to community grazing. Limnology and Oceanography 27: 918–934.

    Article  Google Scholar 

  • Bogdan, K.G. and Gilbert, J.J. 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Sciences, U.S.A. 81: 6427–6431.

    Article  CAS  Google Scholar 

  • Bogdan, K.G. and Gilbert, J.J. 1987. Quantitative comparison of food niches in some freshwater zooplankton. A multi-tracer cell approach. Oecologia (Berlin) 72: 331–340.

    Google Scholar 

  • Bogdan, K.G. and McNaught, D.C. 1975. Selective feeding by Daphnia and Diaptomus. Internationale Vereinigung für Theroetische und Angewandte Limnologie. Verhandlungen. 19: 2935–2942.

    Google Scholar 

  • Børsheim, K.Y. and Anderson, S. 1987. Grazing and food size selection by crustacean zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. Journal of Plankton Research 9: 367–379.

    Article  Google Scholar 

  • Boyd, C.N. 1976. Selection of particle sizes by filter-feeding copepods: a plea for reason. Limnology and Oceanography 21: 175–180.

    Article  Google Scholar 

  • Brendelberger, H. 1985. Filter mesh-size and retention efficiency for small particles: comparative studies with Cladocera. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 135–146.

    Google Scholar 

  • Brendelberger, H. and Geller, W. 1985. Variability of filter structures in eight Daphnia species: mesh sizes and filtering areas. Journal of Plankton Research 7: 473–486.

    Article  Google Scholar 

  • Brendelberger, H., Herbeck, M., Lang, H., and Lampert, W. 1987. Daphnia’s filters are not solid walls. Archiv für Hydrobiologie 107: 197–202.

    Google Scholar 

  • Briand, F. and McCauley, E. 1978. Cybernetic mechanisms in lake plankton systems: how to control undesirable algae. Nature 273: 228–230.

    Article  Google Scholar 

  • Burns, C.W. 1968. The relationship between body size of filter-feeding cladocera and the maximum size of particle ingested. Limnology and Oceanography 13: 675–678.

    Article  Google Scholar 

  • Burns, C.W. and Rigler, F.H. 1967. Comparison of filtering rates of Daphnia rosea in lake water and suspensions of yeast. Limnology and Oceanography 12: 492–502.

    Article  Google Scholar 

  • Butler, E.I., Corner, E.D.S., and Marshall, S.M. 1969. On the nutrition and metabolism of zooplankton. VI. Feeding efficiency of Calanus in terms of nitrogen and phosphorus. Journal of the Marine Biological Association of the U.K. 49: 977–1001.

    Article  CAS  Google Scholar 

  • Canfield, D.E. Jr. and Watkins, C.E. III. 1984. Relationships between zooplankton abundance and chlorophyll a concentrations in Florida lakes. Journal of Freshwater Ecology 2: 335–344.

    Article  CAS  Google Scholar 

  • Carpenter, S.R. and Kitchell, J.F. 1984. Plankton community structure and limnetic primary production. The American Naturalist 124: 159–172.

    Article  Google Scholar 

  • Carpenter, S.R. and Kitchell, J.F. 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Carpenter, S.R. and Kitchell, J.F. 1987a. The temporal scale of variance in limnetic primary productivity. The American Naturalist 129: 417–433

    Article  Google Scholar 

  • Carpenter, S.R. and Kitchell, J.F. 1987b. Analysis of temporally variable processes in lake ecosystems, pp. 141–153, in Basic Issues in Great Lakes Research. Special Report No. 123, Great Lakes Research Division, Ann Arbor, MI.

    Google Scholar 

  • Chow-Frazer, P. 1986. An empirical model to predict in situ grazing rates of Diaptomus minutus Lilljeborg on small algal particles. Canadian Journal of Fisheries and Aquatic Sciences 43: 1065–1070.

    Article  Google Scholar 

  • Chow-Fraser, P. and Knoechel, R. 1985. Factors regulating in situ filtering rates of Cladocera. Canadian Journal of Fisheries and Aquatic Sciences 42: 567–576.

    Article  Google Scholar 

  • Christoffersen, K. and Jespersen, A.-M. 1986. Gut evacuation rates and ingestion rates of Eudiaptomus graciloides measured by means of the gut fluorescence method. Journal of Plankton Research 8: 973–983.

    Article  Google Scholar 

  • Conover, R.J., Durvasula, R., Roy, S., and Wang, R. 1986. Probable loss of chlorophyll- derived pigments during passage through the gut of zooplankton and some of the consequences. Limnology and Oceanography 31: 878–887.

    Article  CAS  Google Scholar 

  • Cooper, D.C. 1973. Enhancement of net primary productivity by herbivore grazing in aquatic laboratory microcosms. Limnology and Oceanography 18: 31–37.

    Article  Google Scholar 

  • Corner, E.D.S. and Davies, A.G. 1971. Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Advances in Marine Biology 9: 101–204.

    Article  Google Scholar 

  • Corner, E.D.S., Head, R.N., and Kilvington, C.C. 1972. On the nutrition and metabolism of zooplankton. VIII. The grazing of Biddulphia cells by Calanus helgolandicus. Journal of the Marine Biological Association of the U.K. 52: 847–861.

    Article  CAS  Google Scholar 

  • Corner, E.D.S., Head, R.N., Kilvington, C.C., and Pennycuick, L. 1976. On the nutrition and metabolism of zooplankton. X. Quantitative aspects of Calanus heloglandiscus feeding as a carnivore. Journal of the Marine Biological Association of the U.K. 56: 345–358.

    Article  CAS  Google Scholar 

  • Coughlan, J. 1969. The estimation of filtering rate from the clearance of suspension. Marine Biology 2: 356–358.

    Article  Google Scholar 

  • Crumpton, W. and Wetzel, R.G. 1982. Effects of differential growth and mortality in the seasonal succession of phytoplankton populations in Lawrence Lake, Michigan. Ecology 63: 1729–1739.

    Article  Google Scholar 

  • Currie, D.J. 1984. Microscale nutrient patches: do they matter to the phytoplankton? Limnology and Oceanography 29: 211–213.

    Article  Google Scholar 

  • Cushing, D.H. 1976. Grazing in Lake Erken. Limnology and Oceanography 21: 349–356.

    Article  Google Scholar 

  • Dawidowicz, P. and Gliwicz, Z.M. 1987. Biomanipulation. III. The role of direct and indirect relationship between phytoplankton and zooplankton. Wiadomosci Ekologiczne 33: 259–277.

    Google Scholar 

  • DeMott, W.R. 1982. Feeding selectivities and relative ingestion rate of Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.

    Article  Google Scholar 

  • DeMott, W.R. 1985. Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 125–134.

    Google Scholar 

  • DeMott, W.R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia (Berlin) 69: 334–340.

    Google Scholar 

  • DeMott, W.R. and Kerfott, W.C. 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.

    Article  Google Scholar 

  • Downing, J.A. 1981. In situ foraging responses of three species of littoral cladocerans. Ecological Monographs 51: 85–103.

    Article  Google Scholar 

  • Droop, M.R. 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology 9: 264–272.

    CAS  Google Scholar 

  • Duarte, C.M., Agusti, S., and Peters, H. 1987. An upper limit to the abundance of aquatic organisms. Oecologia (Berlin) 74: 272–276.

    Google Scholar 

  • Dumont, H.J. 1977. Biotic factors in the population dynamics of rotifers. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 8: 98–122.

    Google Scholar 

  • Ejsmont-Karabin, J. 1983. Ammonia nitrogen and inorganic phosphorus excretion by the plartktonic rotifers. Hydrobiologia 104: 231–236.

    Article  Google Scholar 

  • Ejsmont-Karabin, J. 1984. Phosphorus and nitrogen excretion by lake zooplankton (rotifers and crustaceans) in relationship to individual body weights of the animals, ambient temperature and presence or absence of food. Ekologia Polska 32: 3–42.

    Google Scholar 

  • Ejsmont-Karabin, J., Bownik-Dylinska, L., and Godlewska-Lipowa, W.A. 1983. Biotic structure and processes in the lake system of R. Jorka watershed (Masurian Lakeland, Poland) VII. Phosphorus and nitrogen regeneration by zooplankton as the mechanism of the nutrient supplying for bacterio- and phytoplankton. Ekologia Polska 31: 719–746.

    Google Scholar 

  • Elder, R.G. and Parker, M. 1984. Growth response of a nitrogen fixer (Anabaena flos- aquae, Cyanophyceae) to low nitrate. Journal of Phycology 20: 296–301.

    Article  CAS  Google Scholar 

  • Elser, J.J., Elser, M.M., MacKay, N., and Carpenter, S.R. 1988. Zooplankton-mediated transitions between N- and P-limited algal growth. Limnology and Oceanography 33: 1–14.

    Article  CAS  Google Scholar 

  • Elser, J.J., Goff, N.C., MacKay, N.A., St. Amand, A.L., Elser, M.M., and Carpenter, S.R. 1987. Species-specific algal responses to zooplankton: experimental and field observations in three nutrient-limited lakes. Journal of Plankton Research 9: 699–717.

    Article  Google Scholar 

  • Fahnenstiel, G.L. and Scavia, D. 1986. Dynamics of Lake Michigan phytoplankton: recent changes in surface and deep communities. Canadian Journal of Fisheries and Aquatic Sciences 44: 499–508.

    Article  Google Scholar 

  • Friedman, M.M. 1980. Comparative morphology and functional significance of co- pepod receptors and oral structures, pp. 185 - 197, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover.

    Google Scholar 

  • Friedman, M.M. and Strickler, J.R. 1975. Chemoreception and feeding in calanoid copepods. Proceedings of the National Academy of Sciences USA 72: 4185–4188.

    Article  CAS  Google Scholar 

  • Frost, B.W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography 17: 805–815.

    Article  Google Scholar 

  • Frost, B.W. 1975. A threshold feeding behavior in Calanus pacificus. Limnology and Oceanography 20: 263–266.

    Article  Google Scholar 

  • Fryer, G. 1987. The feeding mechanisms of the Daphniidae (Crustacea: Cladocera): recent suggestions and neglected considerations. Journal of Plankton Research 9: 419–432.

    Article  Google Scholar 

  • Fulton, R.S. III and Paerl, H.W. 1987. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32: 634–644.

    Article  Google Scholar 

  • Ganf, G.G. and Blažka, P. 1974. Oxygen uptake, ammonia and phosphate excretion by zooplankton of a shallow equatorial lake (Lake George, Uganda). Limnology and Oceanography 19: 313–325.

    Article  CAS  Google Scholar 

  • Ganf, G.G. and Shiel, R.J. 1985a. Particle capture by Daphnia carinata. Australian Journal of Marine and Freshwater Research 36: 371–381.

    Article  Google Scholar 

  • Ganf, G.G. and Shiel, R.J. 1985b. Feeding behavior and limb morphology of two cladocerans with small intersetular distances. Australian Journal of Marine and Freshwater Research 36: 69–86.

    Article  Google Scholar 

  • Gardner, W.S. and Miller, W.H. III. 1981. Intracellular composition and net release of free amino acids in Daphnia magna. Canadian Journal of Fisheries and Aquatic Sciences 38: 157–162.

    Article  CAS  Google Scholar 

  • Gardner, W.S. and Paffenhofer, G.-A. 1982. Nitrogen regeneration by the subtropical marine copepod Eucalanus pileatus. Journal of Plankton Research 4: 725–734.

    Article  CAS  Google Scholar 

  • Gardner, W.S. and Scavia, D. 1981. Kinetic examination of N release by zooplankters. Limnology and Oceanography 26: 801–810.

    Article  CAS  Google Scholar 

  • Geller, W. and Miiller, H. 1981. The filtration apparatus of cladocera: filter mesh-sizes and their implications of food selectivity. Oecologia (Berlin) 49: 316–321.

    Google Scholar 

  • Gerritsen, J. and Porter, K.G. 1982. The role of surface chemistry in filter feeding by zooplankton. Science 216: 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, J.J. and Bogdan, K.G. 1984. Rotifer grazing: in situ studies on selectivity and rates, pp. 97–133, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Glasser, J.W. 1984. Analysis of zooplankton feeding experiments: some methodological considerations. Journal of Plankton Research 6: 553–569.

    Article  Google Scholar 

  • Gliwicz, Z.M. 1969. Studies on the feeding of pelagic zooplankton in lakes of varying trophy. Ekologia Polska A 17: 663–707.

    Google Scholar 

  • Gliwicz, Z.M. 1975. Effect of zooplankton grazing on photosynthetic activity and com-position of phytoplankton. Internationale Vereinigung fur Theroetische und Angewandte Limnologie. Verhandlungen 19: 1490–1497.

    Google Scholar 

  • Gliwicz, Z.M. 1977. Food size selection and seasonal succession of filter feeding zoo-plankton in an eutrophic lake. Ekologia Polska 25: 179–225.

    Google Scholar 

  • Gliwicz, Z.M. 1980. Filtering rates, food size selection, and filtering rates in cladocerans—another aspect of interspecific competition in filter-feeding zooplankton, pp. 282–291, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover.

    Google Scholar 

  • Gliwicz, Z.M. and Siedlar, E. 1980. Food size limitation and algae interfering with food collection in Daphnia. Archiv für Hydrobiologie 88: 155–177.

    Google Scholar 

  • Goldman, J.C. 1984. Oceanic nutrient cycles, pp.-137–170, in Fasham, M.J. (editor), Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum Press, New York.

    Google Scholar 

  • Goldman, J.C. and Glibert, P.M. 1982. Comparative rapid ammonium uptake by four species of marine phbytoplankton. Limnology and Oceanography 27: 814–827.

    Article  CAS  Google Scholar 

  • Goldman, J.C., McCarthy, J.J., and Peavey, D.G. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.

    Article  CAS  Google Scholar 

  • Gophen, M. and Geller, W. 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia (Berlin) 64: 408–412.

    Google Scholar 

  • Grant, P.R. 1986. Interspecific competition in fluctuating environments, pp. 173–191 in Diamond, J. and Case, T.J. (editors), Community Ecology. Harper and Row, New York.

    Google Scholar 

  • Gulati, R.D. 1975. A study on the role of herbivorous zooplankton community as primary consumers of phytoplankton in Dutch lakes. Internationale Vereinigung fur Theoritische und Angewandte Limnologie. Verhandlungen 19: 1202–1210.

    Google Scholar 

  • Gulati, R.D. 1984. The zooplankton and its grazing rate as measures of trophy in the Loosdrecht Lakes. Internationale Vereinigung für Theoritische und Angewandte Limnologie. Verhandlungen 22: 863–867.

    Google Scholar 

  • Gulati, R.D. 1985. Zooplankton grazing methods using radioactive tracers: technical problems. Hydrobiological Bulletin 19: 61–69.

    Article  Google Scholar 

  • Gulati, R.D., Siewertsen, K., and Postema, G. 1982. The zooplankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95: 127–163.

    Article  Google Scholar 

  • Haney, J.F. 1971. An in situ method for the measurement of zooplankton grazing rates. Limnology and Oceanography 16: 970–977.

    Article  Google Scholar 

  • Haney, J.F. 1973. An in situ examination of the grazing activities of natural zooplankton communities. Archiv für Hydrobiologie 72: 87–132.

    Google Scholar 

  • Haney, J.F. 1985. Regulation of cladoceran filtering rates in nature by body size, food concentration, and diel feeding patterns. Limnology and Oceanography 30: 397–411.

    Article  Google Scholar 

  • Hanson, J.M. and Peters, R.H. 1984. Empirical prediction of zooplankton and profundal macrobenthos biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 41: 439–445.

    Article  CAS  Google Scholar 

  • Hargrave, B.T. and Geen, G.H. 1968. Phosphorus excretion by zooplankton. Limnology and Oceanography 13: 332–342.

    Article  CAS  Google Scholar 

  • Hargrave, B.T. and Geen, G.H. 1970. Effects of copepod grazing on two natural phy-toplankton communities. Journal of the Fisheries Research Board of Canada 27: 1395–1403.

    Article  Google Scholar 

  • Harris, E. 1959. The nitrogen cycle in Long Island Sound. Bulletin of the Bingham Oceanographic Collection 17: 31–65.

    Google Scholar 

  • Harris, E. and Riley, G.A. 1956. Oceanography of Long Island Sound, 1952–1954. VIII. Chemical composition of the plankton. Bulletin of the Bingham Oceanography Collection 15: 315–323.

    Google Scholar 

  • Harris, G.P. 1986. Phytoplankton Ecology. Structure, Function, and Fluctuation. Chapman and Hall, New York.

    Book  Google Scholar 

  • Hart, R.C. 1986. Aspects of the feeding ecology of turbid water zooplankton. In situ studies of community filtration rates in silt-laden Lake le Roux, Orange River, South Africa. Journal of Plankton Research 8: 401–426.

    Google Scholar 

  • Havens, K. and DeCosta, J. 1985. An analysis of selective herbivory in an acid lake and its importance in controlling phytoplankton community structure. Journal of Plankton Research 7: 207–222.

    Article  Google Scholar 

  • Hessen, D.O. 1985. Filtering structures and particle size selection in coexisting cladocera. Oecologia (Berlin) 66: 368–372.

    Google Scholar 

  • Holm, N.P., Ganf, G.G., and Shapiro, J. 1983. Feeding and assimilation rates for Daphnia pulex fed Aphanizomenon flos-aquae. Limnology and Oceanography 28: 677–687.

    Article  Google Scholar 

  • Horn, W. 1981. Phytoplankton losses due to zooplankton grazing in a drinking water reservoir. Internationale Revue der Gesamten Hydrobiologie 66: 787–810.

    Article  Google Scholar 

  • Horn, W. 1985a. Investigations in the food selectivity of the planktic crustaceans Daphnia hyalina, Eudiaptomus gracilis, and Cyclops vicinus. Internatinale Revue der Gesamten Hydrobiologie 70: 603–612.

    Article  Google Scholar 

  • Horn, W. 1985b. Results regarding the food of the planktic crustaceans Daphnia hyalina and Eudiaptomus gracilis. Internationale Revue der Gesamten Hydrobiologie 70: 703–709.

    Article  Google Scholar 

  • Hrbaček, J., Dvořakova, M., Kořinek, M., and Prochźkóva, L. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Internationale Vereinigung für Theoretische und Angewandte Limnologie. Verhandlungen 14: 192–195.

    Google Scholar 

  • Infante, A. and Edmondson, W.T. 1985. Edible phytoplankton and herbivorous zoo-plankton in Lake Washington. Archiv fur Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 161–171.

    Google Scholar 

  • Infante, A. and Riehl, W. 1984. The effect of Cyanophyta upon zooplankton in a eutrophic tropical lake (Lake Valencia, Venezuela). Hydrobiologia 113: 293–198.

    Article  Google Scholar 

  • Jackson, G.A. 1980. Phytoplankton growth and zooplankton grazing in oligotrophic oceans. Nature 284: 439–441.

    Article  Google Scholar 

  • Jacobs, J. 1974. Quantitative measurement of food selection: A modification of the forage ratio and Ivlev’s selectivity index. Oecologia (Berlin) 14: 413–417.

    Google Scholar 

  • Jarvis, A.C. 1986. Zooplankton community grazing in a hypertrophic lake (Hartbees- poort Dam, South Africa). Journal of Plankton Research 8: 1065–1078.

    Article  Google Scholar 

  • Johannes, R.W. and Webb, K.L. 1965. Release of dissolved amino acids by marine zooplankton. Science 150: 76–77.

    Article  PubMed  CAS  Google Scholar 

  • Kalff, J. and Knoechel, R. 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Annual Review of Ecology and Systematics 9: 475–495.

    Article  Google Scholar 

  • Kerfoot, W.C. 1987. Cascading effects and indirect pathways, pp. 57–70, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Kerfoot, W.C. and DeMott, W.R. 1984. Food web dynamics: dependent chains and vaulting, pp. 347–382, in Meyers, D.G.. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Kerfoot, W.C., DeMott, W.R., and DeAngelis, D.L. 1985. Interactions among cladocerans: food limitation and exploitative competition. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 21: 161–171.

    Google Scholar 

  • Kerfoot, W.C. and Sih, A. 1987. Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Ketchum, B.H. 1962. Regeneration of nutrients by zooplankton. Rapport et ProcésVerbaux des Réunions. Consiel Permanent International pour l’exploration de la Mer 152: 142–146.

    Google Scholar 

  • Kibby, H.V. 1971. Energetics and population dynamics of Diaptomus gracilis. Ecological Monographs 41: 311–327.

    Article  Google Scholar 

  • Kilham, S.S. 1988. Phytoplankton responses to changes in mortality rates. Internationale Vereinigung für Theoretische und Angewandte Limnologie. Verhandlungen 23: 677–682.

    Google Scholar 

  • Kilham, S.S. and Kilham, P. 1984. The importance of resource supply rates in determining phytoplankton community structure, pp. 7–27, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Kiørboe, T. and Tiselius, P.T. 1987. Gut clearance and pigment destruction in a herbivorous copepod, Arcartia tonsa, and the determination of in situ grazing rates. Journal of Plankton Research 9: 525–534.

    Article  Google Scholar 

  • Knisely, K. and Geller, W. 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia (Berlin) 69: 86–94.

    Google Scholar 

  • Knoechel, R. 1977. Analyzing the significance of grazing in Lake Erken. Limnology and Oceanography 22: 967–969.

    Article  Google Scholar 

  • Knoechel, R. and Holtby, L.B. 1986. Construction and validation of a body-length- based model for the prediction of cladoceran community filtering rates. Limnology and Oceanography 31: 1–16.

    Article  Google Scholar 

  • Koehl, M.A.R. 1984. Mechanisms of particle capture by copepods at low Reynolds numbers: possible modes of selective feeding, pp. 135–166, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Koehl, M.A.R. and Strickler, J.R. 1981. Copepod feeding currents: Food capture at low Reynolds number. Limnology and Oceanography 26: 1062–1073.

    Article  Google Scholar 

  • Lack, T.J. and Lund, J.W.G. 1974. Observations and experiments on the phytoplankton of Blelham Tam, English Lake District. I. The experimental tubes. Freshwater Biology 4: 399–415.

    Article  Google Scholar 

  • Lampert, W. 1978. Release of dissolved organic carbon by grazing zooplankton. Limnology and Oceanography 23: 831–834.

    Article  CAS  Google Scholar 

  • Lampert, W. 1986. Wer bestimmt die Struktur von pelagischen Biocoenosen? DieRolle von Phyto- und Zooplankton-Interactionen, pp. 66–73, in Siebeck, O. (editor), Elemente der Steuerung und Regulation in der Pelagialbiozönose, Akademie für Naturschutz und Landschaftspflege, Laufen/Salzac, FRG.

    Google Scholar 

  • Lampert, W. 1987. Vertical migration of freshwater zooplankton: indirect effects of vertebrate predators on algal communities, pp. 291–299, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Lampert, W., Fleckner, W., Rai, H., and Taylor, B.E. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear water phase. Limnology and Oceanography 31: 478–490.

    Article  Google Scholar 

  • Lampert, W. and Taylor, B.E. 1984. In situ grazing rates and particle selection by zooplankton: effects of vertical migration. Internationale Vereinigung für Theoretische und Angewandte Limnologie. Verhandlungen 22: 943–946.

    Google Scholar 

  • Lampert, W. and Taylor, B.E. 1985. Zooplankton grazing in a eutrophic lake: implications of diel vertical migration. Ecology 66: 68–82.

    Article  Google Scholar 

  • Lehman, J.T. 1976. The filter-feeder as an optimal forager, and the predicted shapes of feeding curves. Limnology and Oceanography 21: 501–516.

    Article  Google Scholar 

  • Lehman, J.T. 1980a. Nutrient cycling as an interface between algae and grazers in freshwater communities, pp. 251 - 263, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Lehman, J.T. 1980b. Release and cycling of nutrients between planktonic algae and herbivores. Limnology and Oceanography 25: 620–632.

    Article  CAS  Google Scholar 

  • Lehman, J.T. 1984. Grazing, nutrient release, and their impacts on the structure of phytoplankton communities, pp. 49–72, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Lehman, J.T. and Naumoski, T. 1985. Content and turnover rates of phosphorus in Daphnia pulex: effect of food quality. Hydrobiologia 128: 119–125.

    Article  CAS  Google Scholar 

  • Lehman, J.T. and Sandgren, C. 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnology and Oceanography 30: 34–46.

    Article  Google Scholar 

  • Lehman, J.T. and Scavia, D. 1982. Microscale patchiness of nutrients in plankton com-munities. Science 216: 729–730.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, J.T. and Scavia, D. 1984. Measuring the ecological significance of microscale nutrient patches. Limnology and Oceanography 29: 214–216.

    Article  Google Scholar 

  • Levins, R. 1979. Coexistence in a variable environment. The American Naturalist 114: 765–783.

    Article  Google Scholar 

  • Levitan, C. 1987. Formal stability analysis of a planktonic freshwater community, pp. 71–100, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Lewis, W.M. Jr. 1977. Comments on the analysis of grazing in Lake Erken. Limnology and Oceanography 22: 966–967.

    Article  Google Scholar 

  • Lynch, M. 1980. Aphanizomenon blooms: Alternate control and cultivation by Daphnia pulex, pp. 299–304, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Lynch, M. and Shapiro, J. 1981. Predation, enrichment, and phytoplankton community structure. Limnology and Oceanography 26: 86–102.

    Article  Google Scholar 

  • Mackas, D. and Bohrer, R. 1976. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. Journal of Experimental Marine Biology and Ecology 25: 77–85.

    Article  Google Scholar 

  • Martin, J.H. 1968. Phytoplankton-zooplankton relationships in Narragansett Bay. 3. Seasonal changes in zooplankton excretion rates in relation to phytoplankton abundance. Limnology and Oceanography 13: 63–71.

    Article  Google Scholar 

  • McCarthy, J.J. and Altabet, M.A. 1984. Patchiness in nutrient supply: implications for phytoplankton ecology, pp. 29–47, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • McCarthy, J.J. and Goldman, J.C. 1979. Nitrogenous nutrition of marine phytoplankton in nutrient depleted waters. Science 203: 670–672.

    Article  PubMed  CAS  Google Scholar 

  • McCauley, E. and Briand, F. 1979. Zooplankton grazing and phytoplankton species richness: Field tests of the predation hypothesis. Limnology and Oceanography 24: 243–252.

    Article  Google Scholar 

  • McCauley, E. and Downing, J.A. 1985. The prediction of cladoceran grazing rate spectra. Limnology and Oceanography 30: 202–212.

    Article  Google Scholar 

  • McCauley, E. and Kalff, J. 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 38: 458–463.

    Article  Google Scholar 

  • McCauley, E. and Murdoch, W.W. 1987. Cyclic and stable populations: plankton as paradigm. The American Naturalist 129: 97–121.

    Article  Google Scholar 

  • McMahon, J.W. and Rigler, F.H. 1965. Feeding rate of Daphnia magna Straus in different foods labelled with radioactive phosphorus. Limnology and Oceanography 10: 105–114.

    Article  Google Scholar 

  • McQueen, D.J. 1970. Grazing rates and food selection in Diaptomus oregonesis (Copepoda) from Marion Lake, British Columbia. Journal of the Fisheries Research Board of Canada 27: 13–20.

    Article  Google Scholar 

  • McQueen, D.G., Post, J.R., and Mills, E.L. 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.

    Article  Google Scholar 

  • Meise, C.J., Munns, W.R. Jr., and Hairston, N.G. Jr. 1985. An analysis of the feeding behavior of Daphnia pulex. Limnology and Oceanography 30: 862–870.

    Article  Google Scholar 

  • Miller, T.E. and Kerfoot, W.C. 1987. Redefining indirect effects, pp. 33–37, in Kerfoot, W.C. and Sih, A. (editors), Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Mitamura, O. and Saijo, Y. 1986. Urea metabolism and its significance in the nitrogen cycle in the euphotic layer of Lake Biwa. IV. Regeneration of urea and ammonia. Archiv für Hydrobiologie 107: 425–440.

    CAS  Google Scholar 

  • Muck, P. and Lampert, W. 1980. Feeding of freshwater filter-feeders at very low food concentrations: Poor evidence for “threshold feeding” and “optimal foraging” in Daphnia longispina and Eudiaptomus gracilis. Journal of Plankton Research 2: 367–379.

    Article  Google Scholar 

  • Muck, P. and Lampert, W. 1984. An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans. 1. Comparative feeding studies with Eudiaptomus gracilis and Daphnia longispina. Archiv für Hydrobiologie. Supplement 66: 157–179.

    Google Scholar 

  • Murdoch, W.W. and McCauley, E. 1985. Three distinct types of dynamic behavior shown by a simple planktonic system. Nature 316: 628–630.

    Article  Google Scholar 

  • Murtaugh, P.A. 1985. The influence of food concentration and feeding rate on the gut residence time of Daphnia. Journal of Plankton Research 7: 415–420.

    Article  Google Scholar 

  • Okamoto, K. 1984. Size-selective feeding of Daphnia longispina hyalina and Eudiaptomus japonicus on a natural phytoplankton assemblage with the fractionizing method. Memoirs of the Faculty of Science, Kyoto University, Series of Biology 9: 23–40.

    Google Scholar 

  • Olsen, Y. and Østgaard, K. 1985. Estimating release rates of phosphorus from zoo-plankton: Model and experimental verification. Limnology and Oceanography 30: 844–852.

    Article  CAS  Google Scholar 

  • Olsen, Y., Vrum, K.M., and Jensen, A. 1986a. Some characteristics of the carbon com-pounds released by Daphnia. Journal of Plankton Research 8: 505–517.

    Article  CAS  Google Scholar 

  • Olsen, Y., Jensen, A., Reinertsen, H., Børsheim, K.Y., Heldal, M., and Langeland, A. 1986b. Dependence of the rate of release of phosphorus by zooplankton on the P:C ratio in the food supply, as calculated by a recycling model. Limnology and Oceanography 31: 34–44.

    Article  Google Scholar 

  • Pace, M.L. 1986. Zooplankton community structure, but not biomass influences the phosphorus-chlorophyll a relationship. Canadian Journal of Fisheries and Aquatic Sciences 41: 1089–1096.

    Article  Google Scholar 

  • Paffenhöfer, G.-A. 1984. Calanoid copepod feeding: grazing on small and large particles, pp. 75 - 95, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Paffenhöfer, G.-A., Strickler, J.R., and Alcaraz, M. 1982. Suspension-feeding byherbivorous calanoid copepods: a cinematographic study. Marine Biology 67: 193–199.

    Article  Google Scholar 

  • Paloheimo, J.E. 1979. Indices of food preference by a predator. Journal of the Fisheries Research Board of Canada 36: 470–473.

    Article  Google Scholar 

  • Persson, G. 1985. Community grazing and the regulation of in situ clearance and feeding of planktonic crustaceans in lakes in the Kuskkel area, northern Sweden. Archiv für Hydrobiologie Supplement 70: 197–238.

    Google Scholar 

  • Peters, R.H. 1975. Phosphorus regeneration by natural populations of limnetic zoo-plankton. Internationale Vereingung fur Theoretische und Angewandte Limnologie. Verhandlungen 19: 273–279.

    Google Scholar 

  • Peters, R.H. 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge. 329 pp.

    Google Scholar 

  • Peters, R.H. 1984. Methods for the study of feeding, filtering and assimilation by zooplankton, pp. 336–412, in Downing, J.A. and Rigler, F.H. (editors), A Manual for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook 17, Blackwell, Oxford.

    Google Scholar 

  • Peters, R.H. and Downing, J.A. 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography 29: 763–784.

    Article  Google Scholar 

  • Peters, R.H. and Lean, D. 1973. The characterization of soluble phosphorus released by limnetic zooplankton. Limnology and Oceanography 18: 270–279.

    Article  CAS  Google Scholar 

  • Peters, R.H. and Rigler, F.H. 1973. Phosphorus release by Daphnia. Limnology and Oceanography 18: 821–839.

    Article  CAS  Google Scholar 

  • Porter, K.G. 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Article  Google Scholar 

  • Porter, K.G. 1976. Enhancement of algal growth and productivity by grazing zoo-plankton. Science 192: 1332–1334.

    Article  PubMed  CAS  Google Scholar 

  • Porter, K.G. 1977. The plant-animal interface in freshwater ecosystems. American Scientist 65: 159–170.

    Google Scholar 

  • Porter, K.G., Gerritsen, J., and Orcutt, J.D. Jr. 1982. The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia. Limnology and Oceanography 27: 935–949.

    Article  Google Scholar 

  • Porter, K.G. and McDonough, R. 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnology and Oceanography 29: 365–369.

    Article  Google Scholar 

  • Porter, K.G. and Orcutt, J.D. Jr. 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia, pp. 268–281, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Post, J.R. and McQueen, D.J. 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biology 17: 79–89.

    Article  Google Scholar 

  • Poulet, S.A. 1973. Grazing of Pseudocalanus minutus on naturally occurring particulate matter. Limnology and Oceanography 18: 564–573.

    Article  Google Scholar 

  • Poulet, S.A. and Marsot, P. 1980. Chemosensory feeding and food-gathering by omnivorous marine copepods, pp. 198–218, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Pourriot, R. 1977. Food and feeding habits of Rotifera. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 8: 243–260.

    Google Scholar 

  • Prescott, G.W. 1962. Algae of the Western Great Lakes Area. Willam C. Brown Company, Dubuque, Iowa. 977 pp.

    Google Scholar 

  • Price, H.J. and Paffenhofer, G.-A. 1985. Perception of food availability by calanoid copepods. Archiv für Limnologie Beiheft. Ergebnisse der Limnologie 21: 115–124.

    Google Scholar 

  • Redfield, G.W. 1980. The effect of zooplankton on phytoplankton productivity in the epilimnion of a subalpine lake. Hydrobiologia 70: 217–224.

    Article  Google Scholar 

  • Reynolds, C.S. 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press. 384 pp.

    Google Scholar 

  • Reynolds, C.S., Thompson, J.M., Ferguson, A.J.D., and Wiseman, S.W. 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. Journal of Plankton Research 4: 561–600.

    Article  Google Scholar 

  • Richman, S., Bohon, S.A., and Robbins, S.E. 1980. Grazing interactions among freshwater calanoid copepods, pp. 219 - 233, in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Richman, S. and Dodson, S.I. 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnology and Oceanography 28: 948–956.

    Article  Google Scholar 

  • Riemann, B., Jorgensen, N.O.G., Lampert, W., and Fuhrman, J.A. 1986. Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. Microbial Ecology 12: 247–258.

    Article  CAS  Google Scholar 

  • Rigler, F.H. 1961. The uptake and release of inorganic phosphorus by Daphnia magna Straus. Limnology and Oceanography 6: 165–174.

    Article  CAS  Google Scholar 

  • Robarts, R.D. and Zohary, T. 1984. Microcystis,aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa). Journal of Ecology 72: 1001–1017.

    Google Scholar 

  • Roman, M.R. 1983. Nitrogenous nutrition of marine invertebrates, pp. 345–383 in Carpenter, E.J. and Capone, D.G. (editors), Nitrogen in the Marine Environment. Academic Press, New York.

    Google Scholar 

  • Roughgarden, J. and Diamond, J. 1986. Overview: the role of species interactions in community ecology, pp. 333–343, in Diamond, J. and Case, T.J. (editors), Community Ecology. Harper and Row, New York.

    Google Scholar 

  • Scavia, D., Fahnenstiel, G.L., Davis, J.A., and Kreiss, R.G. Jr. 1984. Small-scale nutrient patchiness: Some consequences and a new encounter mechanism. Limnology and Oceanography 29: 785–793.

    Article  Google Scholar 

  • Scavia, D., Fahnenstiel, G.L., Evans, M.S., Jude, J.T., and Lehman, J.T. 1986. Influence of salmonine predation and weather on long-term water quality trends in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 43: 435–443.

    Article  CAS  Google Scholar 

  • Scavia, D. and Gardner, W.S. 1982. Kinetics of nitrogen and phosphorus release in varying food supplies by Daphnia magna. Hydrobiologia 96: 105–111.

    Article  CAS  Google Scholar 

  • Scavia, D. and McFarland, M.J. 1982. Phosphorus release patterns and the effects of reproductive stage and ecdysis in Daphnia magna. Canadian Journal of Fisheries and Aquatic Sciences 39: 1310–1314.

    Article  CAS  Google Scholar 

  • Schelske, C.L. and Stoermer, E.F. 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science 173: 423–424.

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg, S.A. and Carlson, R.E. 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypertrophic lake. Oikos 42: 291–302.

    Article  CAS  Google Scholar 

  • Schoenberg, S.A., Maccubbin, A.E., and Hodson, R.E. 1984. Cellulose digestion by freshwater microcrustacea. Limnology and Oceanography 29: 1132–1136.

    Article  CAS  Google Scholar 

  • Shapiro, J. 1980. The importance of trophic-level interactions to the abundance and species composition of algae in lakes, pp. 105–116, in Barica, J. and Mur, L.R. (editors), Hypertrophic Ecosystems. Junk, The Hague.

    Chapter  Google Scholar 

  • Shapiro, J. and Swain, E.B. 1983. Lessons from the silica “decline” in Lake Michigan. Science 221: 457–459.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J. and Wright, D.I. 1984. Lake restoration by biomanipulation: Round Lake, Minnesota—the first two years. Freshwater Biology 14: 371–383.

    Article  Google Scholar 

  • Siegfried, C.A. 1987. Large-bodied crustacea and rainbow smelt in Lake George, New York: trophic interactions and phytoplankton community composition. Journal of Plankton Research 9: 27–39.

    Article  Google Scholar 

  • Sommer, U. 1985. Seasonal succession of phytoplankton in Lake Constance. Bioscience 35: 351–357.

    Article  Google Scholar 

  • Sommer, U. 1986. Phytoplankton competition along a gradient of dilution rates. Oecologia (Berlin) 68: 503–506.

    Google Scholar 

  • Sommer, U. 1988. Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnology and Oceanography 33: 1037–1054.

    Article  Google Scholar 

  • Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A. 1986. The PEG-Model of seasonal successional events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Spencer, C.N. and King, D.L. 1984. Role of fish in regulation of plant and animal communities in eutrophic ponds. Canadian Journal of Fisheries and Aquatic Sciences 41: 1851–1855.

    Article  Google Scholar 

  • Spencer, C.N. and King, D.L. 1987. Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, CO2, and trophic level interactions. Hydrobiologia 144: 183–192.

    Article  Google Scholar 

  • Starkweather, P.L. 1980. Aspects of the feeding behavior and trophic ecology of suspension feeding rotifers. Hydrobiologia 73: 63–72.

    Article  Google Scholar 

  • Sterner, R.W. 1986a. Herbivores’ direct and indirect effects on algal populations. Science 231: 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Sterner, R.W. 1986b. Nutrients, Algae and Zooplankton: A Mechanistic Consideration of Direct and Indirect Effects. Ph.D. thesis, University of Minnesota, Minneapolis, Minnesota.

    Google Scholar 

  • Sterner, R.W. 1989. Resource competition during seasonal succession toward cyanobacteria. Ecology 70: 229–245.

    Article  Google Scholar 

  • Stockner, J.G. and Antia, N.J. 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Canadian Journal of Fisheries and Aquatic Sciences 43: 2472–2503.

    Article  Google Scholar 

  • Strickler, J.R. 1984. Sticky water: a selective force in copepod evolution, pp. 187–239, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado.

    Google Scholar 

  • Takahashi, M. and Ikeda, T. 1975. Excretion of ammonia and inorganic phosphorus by Euphausia pacifica and Metridia pacifica at different concentrations of phytoplankton. Journal of the Fisheries Research Board of Canada 32: 2189–2195.

    Article  CAS  Google Scholar 

  • Tátrai, I. and Istvánovics, V. 1986. The role of fish in the regulation of nutrient cycling in Lake Balaton, Hungary. Freshwater Biology 16: 417–424.

    Article  Google Scholar 

  • Taylor, W.D. 1984. Phosphorus flux through epilimnetic zooplankton from Lake Ontario: relationship with body size and significance to phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 41: 1702–1712.

    Article  Google Scholar 

  • Taylor, W.D. and D.R. Lean. 1981. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Canadian Journal of Fisheries and Aquatic Sciences 38: 1316–1321.

    Article  CAS  Google Scholar 

  • Threlkeld, S.T. 1987. Experimental evaluation of trophic-cascade and nutrient-mediated effects of planktivorous fish on plankton community structure, pp. 161–173, in Kerfoot, W.C. and Sih, A. (editors), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Thompson, J.M., Ferguson, A.J.D., and Reynolds, C.S. 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. Journal of Plankton Research 4: 545–560.

    Article  Google Scholar 

  • Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tilman, D., Kiesling, R., Sterner, R., Kilham, S.S., and Johnson, F.A. 1986. Green, bluegreen and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Archiv für Hydrobiologie 106: 473–485.

    Google Scholar 

  • Turpin, D.H., Miller, A.G., Parslow, J.S., Elrifi, I.R., and Canvin, D.T. 1985. Predicting the kinetics of dissolved inorganic carbon limited growth from the short-term kinetics of photosynthesis in Synechococcus leopoliensis (Cyanophyta). Journal of Phycology 21: 409–418.

    Article  CAS  Google Scholar 

  • Vanderploeg, H.A. 1981. Seasonal particle-size selection by Diaptomus sicilis in offshore Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences 38: 504–517.

    Article  Google Scholar 

  • Vanderploeg, H., Laird, G.A., Leibig, J.R., and Gardner, W.S. 1986. Ammonium release rates by zooplankton in suspensions of heat-killed algae and an evaluation of the flow cell method. Journal of Plankton Research 8: 341–352.

    Article  Google Scholar 

  • Vanderploeg, H.A. and Ondricek-Fallischeer, R.L. 1982. Intersetule distances are a poor predictor of particle retention efficiency in Diaptomus sicilis. Journal of Plankton Research. 4: 237–244.

    Article  Google Scholar 

  • Vanderploeg, H.A. and Paffenhöffer, G.-A. 1985. Modes of algal capture by the fresh-water copepod Diaptomus sicilis and their relation to food-size selection. Limnology and Oceanography 30: 871–885.

    Article  Google Scholar 

  • Vanderploeg, H. and Scavia, D. 1979a. Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36: 362–365.

    Article  Google Scholar 

  • Vanderploeg, H.A. and Scavia, D. 1979b. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modelling 7: 135–149.

    Article  Google Scholar 

  • Vanderploeg, H.A. and Scavia, D. 1983. Misconceptions about estimating prey preference. Canadian Journal of Fisheries and Aquatic Sciences 40: 248–250.

    Article  Google Scholar 

  • Vanderploeg, H.A., Scavia, D., and Liebig, J.R. 1984. Feeding rate of Diaptomus sicilis and its relation to selectivity and effective food concentration in algal mixtures in Lake Michigan. Journal of Plankton Research 6: 919–941.

    Article  Google Scholar 

  • Vanni, M.J. 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.

    Article  Google Scholar 

  • Vogel, S. 1981. Life in Moving Fluids: The Physical Biology of Flow. Willard Grant Press, Boston.

    Google Scholar 

  • Watts, E.C. and Young, S. 1980. Components of Daphnia feeding behavior. Journal of Plankton Research 2: 203–212.

    Article  Google Scholar 

  • Wehr, J.D., Brown, L.M., and O’Grady, K. 1987. Highly specialized nitrogen metabolism in a freshwater phytoplankter, Chrysochromulina breviturrita. Canadian Journal of Fisheries and Aquatic Sciences 44: 736–742.

    Article  CAS  Google Scholar 

  • Werner, E.E. 1986. Species interactions in freshwater fish communities, pp. 344–358, in Diamond, J. and Case, T.J., Community Ecology. Harper and Row, New York.

    Google Scholar 

  • Wetzel, R.G. 1983. Limnology. Second Edition. Saunders College Publishing, New York.

    Google Scholar 

  • Wheeler, P.A. 1983. Phytoplankton nitrogen metabolism, pp. 307–346, in Carpenter, E.J. and Capone, D.G. (editors), Nitrogen in the Marine Environment. Academic Press, New York.

    Google Scholar 

  • Wiens, J.A. 1977. On competition and variable environments. American Scientist 65: 590–597.

    Google Scholar 

  • Williams, T.G. and Turpin, D.H. 1987. Photosynthetic kinetics determine the outcome of competition for dissolved inorganic carbon by freshwater microalgae: implications for acidified lakes. Oecologia (Berlin) 73: 307–311.

    Google Scholar 

  • Wilson, D.S. 1973. Food size selection among copepods. Ecology 54: 909–914.

    Article  Google Scholar 

  • Wynne, D. and Gophen, M. 1981. Phosphatase activity in freshwater zooplankton. Oikos 37: 369–376.

    Article  CAS  Google Scholar 

  • Zánkai, P.N. and Ponyi, J.E. 1986. Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake (Lake Balaton, Hungary). Hydrobiologia 135: 131–147.

    Article  Google Scholar 

  • Zaret, R.E. 1980. The animal and its viscous environment, pp. 3–9 in Kerfoot, W.C. (editor), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Zehr, J.P., Falkowski, P.G., Fowler, J., and Capone, D.G. 1988. Coupling between ammonium uptake and incorporation in a marine diatom: experiments with the short-lived radioisotope 13N. Limnology and Oceanography 33: 518–527.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Sommer

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

About this chapter

Cite this chapter

Sterner, R.W. (1989). The Role of Grazers in Phytoplankton Succession. In: Sommer, U. (eds) Plankton Ecology. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74890-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74890-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74892-9

  • Online ISBN: 978-3-642-74890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics