Skip to main content

MHD Turbulence in the Solar Wind

  • Chapter
Physics of the Inner Heliosphere II

Part of the book series: Physics and Chemistry in Space ((SPACE,volume 21))

Abstract

From the very beginning of in situ observations of the solar wind it was realized that the interplanetary medium by all appearances was usually not quiet but rather turbulent and visibly permeated by sizable fluctuations of the plasma flow velocity and density and of the magnetic field. Fluctuations occurred on all observed spatial and temporal scales, extending from the vast dimensions of the inner heliosphere and the corresponding solar wind transit time, or from the solar rotation period, down to the minute kinetic scales associated with the particles’ gyromotion, where the dissipation was assumed finally to occur. The observational studies often revealed random and nonreproducible behavior of solar wind parameters as a function of time, thus indicating properties typical of a turbulent magnetofluid. The measured fractional variances of the magnetic field components, when normalized to the mean intensity, turned out to be large, suggesting the importance of nonhnear processes that couple a large number of degrees of freedom and turbulent “eddies” of disparate scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, A., Microscale fluctuations in the solar wind, NASA SP-308, 333, 1972.

    Google Scholar 

  2. Barnes, A., J.V. Hollweg, Large-amplitude hydromagnetic waves, J. Geophys. Res., 79, 2302, 1974.

    Article  ADS  Google Scholar 

  3. Barnes, A., Hydromagnetic waves and turbulence in the solar wind, in Solar System Plasma Physics, Vol I, ed. by E.N. Parker, C.F. Kennel, L J. Lanzerotti, North-Holland, Amsterdam, 249, 1979.

    Google Scholar 

  4. Barnes, A., Turbulence and dissipation in the solar wind.Solar Wind Four, ed. by H. Rosenbauer, MPAE-Report No. W-100–81-31, 326, 1981.

    Google Scholar 

  5. Barnes, A., Interplanetary Alfvénic fluctuations: A stochastic model, J. Geophys. Res., 86, 7498, 1981.

    Article  ADS  Google Scholar 

  6. Barnes, A., Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium, in Solar-Terrestrial Physics, ed. by R.L. Carovillano and J.M. Forbes, D. Reidel, Dordrecht, 155, 1983.

    Chapter  Google Scholar 

  7. Batchelor, G.K., Theory of Homogeneous Turbulence, Cambridge University Press, 1970.

    Google Scholar 

  8. Bavassano, B., M. Dobrowolny, G. Moreno, Local instabilities of Alfvén waves in high-speed streams. Solar Phys., 57, 445, 1978.

    Article  ADS  Google Scholar 

  9. Bavassano, B., M. Dobrowolny, F. Mariani, N.F. Ness, On the polarization state of hydro- magnetic fluctuations in the solar wind, J. Geophys. Res., 86, 1271, 1981.

    Article  ADS  Google Scholar 

  10. Bavassano, B., M. Dobrowolny, G. Fanfoni, F. Mariani, N.F. Ness, Statistical properties of MHD fluctuations associated with high-speed streams from Helios-2 observations. Solar Phys., 78, 373, 1982.

    Article  ADS  Google Scholar 

  11. Bavassano, B., M. Dobrowolny, F. Mariani, N.F. Ness, Radial evolution of power spectra of interplanetary Alfvénic turbulence, J. Geophys. Res., 87, 3617, 1982.

    Article  ADS  Google Scholar 

  12. Bavassano, B., F. Mariani, Interplanetary Alfvénic fluctuations: A statistical study of the directional variations of the magnetic field, inSolar Wind Five, ed. by M. Neugebauer, NASA Conference Pubi. CP-2280, 99, 1983.

    Google Scholar 

  13. Bavassano, B., E.J. Smith, Radial variation of interplanetary Alfvénic fluctuations: Pioneer 10 and 11 observations between 1 and 5 AU, J. Geophys. Res., 91, 1706, 1986.

    Article  ADS  Google Scholar 

  14. Bavassano, B., R. Bruno, Large-scale solar wind fluctuations in the inner heliosphere at low solar activity, J. Geophys. Res., 94, 168, 1989.

    Article  ADS  Google Scholar 

  15. Bavassano, B., R. Bruno, Evidence of local generation of Alfvénic turbulence in the solar wind, J. Geophys. Res., 94, 11977, 1989.

    Google Scholar 

  16. Behannon, K.W., L.F. Burlaga, Alfvén waves and Alfvénic fluctuations in the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, MPAE-Report No. W-100–81-31, 374, 1981.

    Google Scholar 

  17. Behannon, K.W., Observations of the interplanetary magnetic field between 0.41 and 1 AU by the Mariner 10 spacecraft, Goddard Space Flight Center, GFSC Doc. 692–76-2, Greenbelt, Maryland, USA, 1976.

    Google Scholar 

  18. Behannon, K.W., Heliocentric distance dependence of the interplanetary magnetic field. Rev. Geophys. Space Phys., 16, 125, 1978.

    Article  ADS  Google Scholar 

  19. Belcher, J.W., L. Davis Jr., E.J. Smith, Large-amplitude waves in the interplanetary medium: Mariner 5, J. Geophys. Res., 74, 2303, 1969.

    Article  Google Scholar 

  20. Belcher, J.W., L. Davis, Large-amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, 1971.

    Article  ADS  Google Scholar 

  21. Belcher, J.W., R. Burchsted, Energy densities of Alfvén waves between 0.7 and 1.6 AU, J. Geophys. Res., 79, 4765, 1974.

    Article  ADS  Google Scholar 

  22. Bendat, J.S., A.G. Piersol, Random Data: Analysis and Measurement Procedures, Wiley- Interscience, 1971.

    Google Scholar 

  23. Bird, M., P. Edenhofer, Remote sensing observations of the solar corona, in Physics of the Inner Heliosphere, Vol. I, ed. by R. Schwenn and E. Marsch, Springer-Veriag, Beriin, Heidelberg, New York, 1990.

    Google Scholar 

  24. Blackman, R.B., J.W. Tukey, The Measurement of Power Spectra, Dover, New York, 1958.

    Google Scholar 

  25. Blake, D.H., J.W. Belcher, Power spectra of the interplanetary magnetic field, 0.7–1.6 AU, J. Geophys. Res., 79, 2891, 1974.

    Article  ADS  Google Scholar 

  26. Bruno, R., B. Bavassano, U. Villante, Evidence for long-period Alfvén waves in the inner solar system, J. Geophys. Res., 90, 4373, 1985.

    Article  ADS  Google Scholar 

  27. Bruno, R., M. Dobrowolny, Spectral measurements of magnetic energy and magnetic helicity between 0.29 and 0.97 AU, Annales Geophys., 4, A, 17, 1986.

    ADS  Google Scholar 

  28. Bruno, R., U. Villante, B. Bavassano, R. Schwenn, F. Mariani, In-situ observations of the latitudinal gradients of the solar wind parameters during 1976 and 1977, Solar Phys., 104, 431, 1986.

    Article  ADS  Google Scholar 

  29. Bruno, R., B. Bavassano, Latitudinal dependence of the interplanetary magnetic field spectrum, Annales Geophys., 5A, 265, 1987.

    ADS  Google Scholar 

  30. Burlaga, L.F., Hydromagnetic waves and discontinuities in the solar wind. Space Sci. Rev., 12, 600, 1971.

    Article  ADS  Google Scholar 

  31. Burlaga, L.F., Micro-scale structures in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, 1971.

    Article  ADS  Google Scholar 

  32. Burlaga, L.F., Microstructure in the interplanetary medium, NASA SP-308, 309, 1972.

    Google Scholar 

  33. Burlaga, L.F., Heliospheric magnetic fields and plasmas. Rev. Geophys. Space Phys., 21, 363, 1983.

    Article  ADS  Google Scholar 

  34. Burlaga, L.F., MHD processes in the outer heliosphere. Space Sci. Rev., 39, 255, 1984.

    Article  ADS  Google Scholar 

  35. Burlaga, L.F., K.W. Ogilvie, Magnetic and thermal pressures in the solar wind. Solar Physics, 15, 61, 1970.

    Article  ADS  Google Scholar 

  36. Burlaga, L.F., J.B. Turner, Microscale *Alfvén waves’ in the solar wmd at 1 AU, J. Geophys. Res., 81, 73, 1976.

    Article  ADS  Google Scholar 

  37. Burlaga, L.F., W.H. Mish, Large-scale fluctuations in the interplanetary medium, J. Geophys. Res., 92, 1261, 1987.

    Article  ADS  Google Scholar 

  38. Burlaga, L.F., W.H. Mish, D.A. Roberts, Large-scale fluctuations in the solar wind at 1 AU: 1978–1982, J. Geophys. Res.,94, 177, 1989.

    Article  ADS  Google Scholar 

  39. Coleman, P.J., Jr., Variations in the interplanetary magnetic field: Mariner 2, J. Geophys. Res., 71, 5509, 1966.

    ADS  Google Scholar 

  40. Coleman, PJ., Jr., Wave-like phenomena in the interplanetary plasma: Mariner 2, Planet. Space Sci., 15, 953, 1967.

    Article  ADS  Google Scholar 

  41. Coleman, PJ., Turbulence, viscosity, and dissipation in the solar wind plasma, Astrophys. J., 153, 371, 1968.

    Article  ADS  Google Scholar 

  42. Dahlburg, R.B., J.M. Picone, J.T. Karpen, Growth of correlation in compressible two- dimensional magnetofluid turbulence, J. Geophys. Res., 93, 2527, 1988.

    Article  ADS  Google Scholar 

  43. Denskat, K.U., Untersuchung von Alfvénischen Fluktuationen im Sonnenwind zwischen 0.29 AE und 1.0 AE, Dissertation (PhD thesis). Technische Universität Braunschweig, F.R. Germany, 1982.

    Google Scholar 

  44. Denskat, K.U., L.F. Burlaga, Multispacecraft observations of microscale fluctuations in the solar wind, J. Geophys. Res., 82, 2693, 1977.

    Article  ADS  Google Scholar 

  45. Denskat, K.U., F.M. Neubauer, R. Schwenn, Properties of Alfvénic fluctuations near the Sun: Helios-1 and Helios-2, inSolar Wind Five, ed. by H. Rosenbauer, MPAE-Report No. W-100–81-31, Max-Planck-Institut für Aeronomie, Lindau, F.R. Germany, 392, 1981.

    Google Scholar 

  46. Denskat, K.U., F.M. Neubauer, Statistical properties of low-frequency magnetic field fluctuations in the solar wind from 0.29 to 1.0 AU during solar minimum conditions: Helios 1 and Helios 2, J. Geophys. Res. 87, 2215, 1982.

    Article  ADS  Google Scholar 

  47. Denskat, K.U., HJ. Beinroth, F.M. Neubauer, Interplanetary magnetic field power spectra with frequencies from 2.4 x 10-5 Hz to 470 Hz from Helios observations during solar minimum conditions, J. Geophys., 54, 60, 1983.

    Google Scholar 

  48. Denskat, K.U., F.M. Neubauer, Observations of hydromagnetic turbulence in the solar wind. Solar Wind Five, ed. by M. Neugebauer, NASA Conf. Pubi., CP-2280, 81, 1983.

    Google Scholar 

  49. Derby, N.F., Jr., Modulational instability of finite-amplitude, circularly polarized Alfvén waves, Astrophys. J., 224, 1013, 1978.

    ADS  Google Scholar 

  50. Dewar, R.L., Interaction between hydromagnetic waves and a time-dependent, inhomogeneous medium, Phys. Fluids, 13, 2710, 1970.

    Article  ADS  MATH  Google Scholar 

  51. Dobrowolny, M., Kelvin-Helmholtz instability m a high-β collisionless plasma, Phys. Fluids, 15, 2263, 1972.

    Article  ADS  Google Scholar 

  52. Dobrowolny, M., A. Mangeney, P. Veltri, Properties of magnetohydrodynamic turbulence in the solar wind, Astron. Astrophys., 83, 26, 1980.

    ADS  Google Scholar 

  53. Dobrowolny, M., A. Mangeney, P. Veltri, Fully developed anisotropic turbulence in interplanetary space, Phys. Rev. Lett.,45, 144, 1980.

    Article  MathSciNet  ADS  Google Scholar 

  54. Dobrowolny, M., G. Torricelli-Ciamponi, Alfvén wave dissipation in the solar wind, Astron. Astrophys., 142, 404, 1985.

    ADS  Google Scholar 

  55. Domingo, V., (ed.). The SOHO Mission, Scientific and Technical Aspects of the Instruments, ESA SP-1104, 1988.

    Google Scholar 

  56. Elsasser, W.M., The hydromagnetic equations, Phys. Rev., 79, 183, 1950.

    Article  ADS  MATH  Google Scholar 

  57. Feldman, W.C., B. Abraham-Shrauner, J.R. Asbridge, S J. Bame, The internal plasma state of the high speed solar wind at 1 AU, in Physics of Solar Planetary Environments, Vol. I, ed. by D.A. Williams, AGU, 413, 1976.

    Google Scholar 

  58. Freeman, J.W., Estimates of solar wind heating inside 0.3 AU, Geophys. Res. Lett.,15, 1988

    Google Scholar 

  59. Freeman, J.W., R.E. Lopez, The cold solar wind, J. Geophys. Res., 90, 9885, 1985.

    Article  ADS  Google Scholar 

  60. Frisch, U., A. Pouquet, J. Léorat, A. Mazure, Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence, J. Fluid Mech., 68, 769, 1975.

    Article  ADS  MATH  Google Scholar 

  61. Goldstein, B.E., Analysis of fluctuations in the solar wind, Ph.D. thesis, MIT, Cambridge, USA, 1971.

    Google Scholar 

  62. Goldstein, B., G.L. Siscoe, Spectra and cross spectra of solar wind parameters from Mariner 5, in Solar Wind Three, ed. by C.P. Sonett, PJ. Coleman, and J.M. Wilcox, NASA Special Pubi., SP-308, 506, 1972.

    Google Scholar 

  63. Goldstein, M.L., An instability of finite-amplitude, circularly polarized Alfvén waves, Astrophys. J., 219, 700, 1978.

    ADS  Google Scholar 

  64. Goldstein, MI.., L.F. Burlaga, W.H. Matthaeus, Power spectral signatures of interplanetary corotating and transient flows, J. Geophys. Res., 89, 3747, 1984.

    Article  ADS  Google Scholar 

  65. Goldstein, M.L., D.A. Roberts, W.H. Matthaeus, Systematic errors in determining the propagation direction of interplanetary Alfvénic fluctuations, J. Geophys. Res., 91, 13, 357, 1986.

    Google Scholar 

  66. Goldstein, M.L., D.A. Roberts, W.H. Matthaeus, Numerical simulation of interplanetary and magnetospheric phenomena: The Kelvin-Helmholtz instability. Proceedings of Yosemite, Outstanding Problems in Solar System Plasma Physics: Theory and Instrumentation, in press, 1989

    Google Scholar 

  67. Granik, A.T., Large-amplitude waves in an anisotropic plasma, J. Geophys. Res., 86, 5431, 1981.

    Article  ADS  Google Scholar 

  68. Grappin, R., Onset and decay of two-dimensional magnetohydrodynamic turbulence with velocity magnetic field correlation, Phys. Fluids, 29, 2433, 1986.

    Article  ADS  MATH  Google Scholar 

  69. Grappin, R., U. Frisch, J. Léorat, A. Pouquet, Alfvénic fluctuations as asymptotic states of MHD turbulence, Astron. Astrophys., 105, 6, 1982.

    ADS  MATH  Google Scholar 

  70. Grappin, R., A. Pouquet, J. Léorat, Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation, Astron. Astrophys., 126, 51, 1983.

    ADS  Google Scholar 

  71. Grappin, R., A. Mangeney, E. Marsch, On the origin of solar wind turbulence: Helios data revisited, in Turbulence and Nonlinear Dynamics in MHD Flows, ed. by M. Meneguzzi, A. Pouquet and P.L. Sulem, Elsevier Science Publishers B.V., North-Holland, 81, 1989.

    Google Scholar 

  72. Grappin, A. Mangeney, E. Marsch, On the origin of solar wind MHD turbulence: Helios data revisited, J. Geophys. Res., 95, 8197, 1990.

    Article  ADS  Google Scholar 

  73. Gumett, D.A., Waves and Instabilities, in Physics of the Inner Heliosphere (this volume).

    Google Scholar 

  74. Heinemann, M., S. Olbert, Non-WKB Alfvén waves in the solar wind, J. Geophys. Res. 85, 1311, 1980.

    Article  ADS  Google Scholar 

  75. Hinze, J.O.,Turbulence, Second edition, McGraw-Hill, New York, 1975.

    Google Scholar 

  76. Hollweg, J.V., Transverse Alfvén waves in the solar wind: Arbitrary k, v o ,B o , and |δB|, J. Geophys. Res., 79, 1539, 1974.

    Article  ADS  Google Scholar 

  77. Hollweg, J.V., Waves and instabilities in the solar wind. Rev. Geophys. Space Phys., 13, 263, 1975.

    Article  ADS  Google Scholar 

  78. Hollweg, J.V., Some physical processes in the solar wind. Rev. Geophys. Space Phys., 16, 689, 1978.

    Article  ADS  Google Scholar 

  79. Hollweg, J.V., Surface waves on solar wind tangential discontinuities, J. Geophys. Res., 87, 8065, 1982.

    Article  ADS  Google Scholar 

  80. Hollweg, J.V., Transition region, corona, and solar wind in coronal holes, J. Geophys. Res., 91,4111, 1986.

    Article  ADS  Google Scholar 

  81. Hollweg, J.V., Small-scale MHD wave processes in the solar atmosphere and solar wind, in Proc. of the 21st ESLAB Symposium, ed. by B. Battrick and E.J. Wolfe, ESA SP-275, Boleksjo, Norway, 161, 1987.

    Google Scholar 

  82. Hollweg, J.V., M.K. Bird, H. Voli, P. Edenhofer, C.T. Stenzelried, B.L. Seidel, Possible evidence for coronal Alfvén waves, J. Geophys. Res., 87, 1, 1982.

    Article  ADS  Google Scholar 

  83. Hollweg, J.V., B. Roberts, Surface solitary waves and solitons, J. Geophys. Res., 89, 9703, 1984.

    Article  ADS  Google Scholar 

  84. Hollweg, J.V., W. Johnson, Transition region, corona, and solar wind in the coronal holes: Some two fluid models, J. Geophys. Res., 93, 9547, 1988.

    Article  ADS  Google Scholar 

  85. Holzer, T.E., The solar wind and related astrophysical phenomena, in Solar System Plasma Physics, Vol. I, ed. by E.N. Parker, C.F. Kennel, and LJ. Lanzerotti, North-Holland, Amsterdam, 101, 1979.

    Google Scholar 

  86. Holzer, T.E., T. Flà, E. Leer, Alfvén waves m stellar winds, Astrophys. J., 275, 808, 1983.

    Article  ADS  Google Scholar 

  87. Inhester, B., A drift-kinetic treatment of the parametric decay of large-amplitude Alfvén waves, J. Geophys. Res., 95, 10525, 1989.

    Article  ADS  Google Scholar 

  88. Intriligator, D.S., JH. Wolfe, Preliminary power spectra of the interplanetary plasma, Astrophys. J., 162, L187, 1970.

    Article  ADS  Google Scholar 

  89. Isenberg, P.A., J.V. Hollweg, On the preferential acceleration and heating of solar wind heavyions, J. Geophys. Res., 88, 3923, 1983.

    Article  ADS  Google Scholar 

  90. Klein, L.W., Observations of turbulence and fluctuations in the solar wind, Ph.D. thesis, Catholic University of America, Washington D.C., 1987.

    Google Scholar 

  91. Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Compt. Rend. Acad. Sci. U.R.S.S., 30, 301, 1941.

    Google Scholar 

  92. Korzhov, N.P., V.V. Mishin, V.M. Tomozov, On the role of plasma parameters and the Kelvin-Helmholtz instability in a viscous interaction of solar wind streams. Planet. Space Sci., 32, 1169, 1984.

    Article  ADS  Google Scholar 

  93. Kraichnan, R.H., Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8, 1385, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  94. Kunow, H., G. Wibberenz, G. Green, R. Muller-Mellin, M.B. Kallenrode, Energetic particles in the inner solar system, in Physics of the Inner Heliosphere (this volume).

    Google Scholar 

  95. Lacombe, C., A. Mangeney, Non-linear interaction of Alfvén waves with compressive fast magnetosonic waves, Astron. Astrophys., 88, 277, 1980.

    MathSciNet  ADS  Google Scholar 

  96. Leer, E., T.E. Holzer, T. Flà, Acceleration of the solar wind. Space Sci. Rev., 33, 161, 1982.

    Article  ADS  Google Scholar 

  97. Li, H.-S., E.G. Zweibel, The scattering of Alfvén waves by density fluctuations, Astrophys. J., 322, 248, 1987.

    Article  ADS  Google Scholar 

  98. Luttrell, A.H., A.K. Richter, Power spectra of low-frequency MHD turbulence up- and downstream of interplanetary fast shocks within 1 AU, Annales Geophys.,4, 439, 1986.

    ADS  Google Scholar 

  99. Luttrell, A.H., A.K. Richter, A study of MHD fluctuations upstream and downstream of quasi-parallel interplanetary shocks, J. Geophys. Res., 92, 2243, 1987.

    Article  ADS  Google Scholar 

  100. Luttrell, A.H., A.K. Richter, The role of Alfvénic fluctuations in MHD turbulence evolution between 0.3 and 1 AU, Proceedings of Sixth International Solar Wind Conference, Vol. I, NCAR Technical Note, 335, 1988.

    Google Scholar 

  101. Machida, S., S.R. Spangler, C.K. Goertz, Simulation of amplitude-modulated circularly polarized Alfvén waves for beta less than one, J. Geophys. Res., 92, 7413, 1987.

    Article  ADS  Google Scholar 

  102. Mariani, F., U. Yillante, R. Bruno, B. Bavassano, N.F. Ness, An extended investigation of Helios 1 and 2 observations; The interplanetary magnetic field between 0.3 and 1 AU, Solar Phys., 63, 411, 1979.

    Article  ADS  Google Scholar 

  103. Mariani, F., Bavassano, B., Villante, U., A statistical study of MHD discontinuities in the inner solar system: Helios 1 and 2, Solar Phys., 83, 349, 1983.

    Article  ADS  Google Scholar 

  104. Mariani, F., F.M. Neubauer, Interplanetary magnetic field, in Physics of the inner Heliosphere, Vol. I, ed. by R. Schwenn and E. Marsch, Springer-Veriag, Heidelberg, 1990.

    Google Scholar 

  105. Marsch, E., Acceleration potential and angular momentum of undamped MHD-waves in stellar winds, Astron. Astrophys, 164, 77, 1986.

    ADS  MATH  Google Scholar 

  106. Marsch, E., Kinetic physics of the solar wind plasma, in Physics of the Inner Heliosphere (this volume).

    Google Scholar 

  107. Marsch, E., K.-H. Miihlhauser, H. Rosenbauer, R. Schwenn, K.U. Denskat, Pronounced core temperature anisotropy, ion differential speed, and simultaneous Alfvén wave activity in slow wind at 0.3 AU, J. Geophys. Res., 86, 9199, 1981.

    Article  ADS  Google Scholar 

  108. Marsch, E., C.K. Goertz, A.K. Richter, Wave heating and acceleration of solar wind ions by cyclotron resonance, J. Geophys. Res., 87, 5030, 1982.

    Article  ADS  Google Scholar 

  109. Marsch, E., K.-H. Miihlhauser, R. Schwenn, H. Rosenbauer, W. Pilipp, F.M. Neubauer, Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87, 52, 1982.

    Article  ADS  Google Scholar 

  110. Marsch, E., A.K. Richter, Hehos observational constraints on solar wind expansion, J. Geophys. Res., 89, 6599, 1984.

    Article  ADS  Google Scholar 

  111. Marsch, E., A.K. Richter, Distribution of solar wind angular momentum between particles and magnetic field: Inferences about the Alfvén critical point from Helios observations, J. Geophys. Res., 89, 5386, 1984.

    Article  ADS  Google Scholar 

  112. Marsch, E., A. Mangeney, Ideal MHD equations in terms of compressive Elsasser variables, J. Geophys. Res., 92, 7363, 1987.

    Article  ADS  Google Scholar 

  113. Marsch, E., C.-Y. Tu, Dynamics of correlation functions with Elsasser variables for inhomogeneous MHD turbulence, J. Plasma Phys., 41, 479, 1989.

    Article  ADS  Google Scholar 

  114. Marsch, E., C.-Y. Tu, On the radial evolution of MHD turbulence in the inner heliosphere, J. Geophys. Res., 95, 8211, 1990.

    Article  ADS  Google Scholar 

  115. Marsch, E., C.-Y. Tu, Spectral and spatial evolution of compressive turbulence in the inner solar wind, J. Geophys. Res., 95, 11945, 1990.

    Google Scholar 

  116. Matthaeus, W.H., D. C. Montgomery, Selective decay hypothesis at high mechanical and magnetic Reynolds numbers, Ann. N. Y. Acad. Sci. 357, 203, 1980.

    Article  ADS  Google Scholar 

  117. Matthaeus, W.H., C. Smith, Structure of correlation tensors in homogeneous anisotropic turbulnce, Phys. Rev. A, 24, 2135, 1981.

    Article  ADS  Google Scholar 

  118. Matthaeus, WU., M.L. Goldstein, Stationarity of magnetohydrodynamic fluctuations in the solar wind, J. Geophys. Res., 87, 10347, 1982.

    Article  ADS  Google Scholar 

  119. Matthaeus, W.H., M.L. Goldstein, Measurements of the rugged invari- ants of magnetohydrodynamic turbulence in the solar wind, J. Geophys. Res., 87, 6011, 1982.

    Article  ADS  Google Scholar 

  120. Matthaeus, W.H., M.L. Goldstein, D.C. Montgomery, Turbulent generation of outward traveling interplanetary Alfvénic fluctuations, Phys. Rev. Lett., 51, 1484, 1983.

    Article  ADS  Google Scholar 

  121. Matthaeus, W.H., M.L. Goldstein, Magnetohydrodynamic turbulence in the solar wind. Solar Wind Five, ed. by M. Neugebauer, NASA CP-2280, 73, 1983.

    Google Scholar 

  122. Matthaeus, W.H., M.L. Goldstein, Low frequency l/f noise in the interplanetary magnetic field, Phys. Rev. Lett., 57, 495, 1986.

    Article  ADS  Google Scholar 

  123. Matthaeus, W.H., M.L. Goldstein, J. H. King, An interplanetary magnetic field ensemble at 1 AU, J. Geophys. Res. 91, 59, 1986.

    Article  ADS  Google Scholar 

  124. Matthaeus, W.H., M.R. Brown, Nearly incompressible magnetohydrodynamics at low Mach number, Phys. Fluids, 31, 3634, 1988.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  125. Matthaeus, W.H., Y. Zhou, Nearly incompressible MHD turbulence in the solar wind, in Turbulence and Nonlinear Dynamics in MHD Flows, ed. by M. Meneguzzi, A. Pouquet, and P.L. Sulem, Elsevier Science Publishers B.V., North-Holland, 1989.

    Google Scholar 

  126. Mavromichalaki, H., X. Moussas, J.J. Quenby, J.F. Valdes-Galicia, E.J. Smith, B.T. Thomas, Relatively stable, large-amplitude Alfvénic waves seen at 2.5 and 5.0 AU, Solar Phys., 116, 377, 1988.

    ADS  Google Scholar 

  127. Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  128. Montgomery, D.C., Theory of hydromagnetic turbulence. Solar Wind Five, ed. by M. Neugebauer, NASA CP-2280, 107, 1983.

    Google Scholar 

  129. Montgomery, D., Characteristic phenomena of magnetohydrodynamic turbulence, Proc. ESA Workshop on Future Missions in Solar, Heliospheric &Space Plasma Physics, ESA SP-235, 175, 1985.

    Google Scholar 

  130. Montgomery, D., M.R. Brown, W.H. Matthaeus, Density fluctuation spectra in magnetohydrodynamic turbulence, J. Geophys. Res., 92, 282, 1987.

    Article  ADS  Google Scholar 

  131. Musmann, G., F.M. Neubauer, E. Lammers, Radial variation of the interplanetary magnetic field between 0.3 AU and 1.0 AU; Observations by the HELIOS 1 spacecraft, J. Geophys., 42, 591, 1977.

    Google Scholar 

  132. Neubauer, F.M., H.J. Beinroth, H. Bamstorf, G. Dehmel, Initial results from the Helios 1 search coil magnetometer experiment, J. Geophys., 42, 599, 1977.

    Google Scholar 

  133. Neubauer, F.M., G. Musman, G. Dehmel, Fast magnetic fluctuations in the solar wind: Helios 1, J. Geophys. Res., 82, 3201, 1977.

    Article  ADS  Google Scholar 

  134. Neugebauer, M., C.S. Wu, J.D. Huba, Plasma fluctuations in the solar wind, J. Geophys. Res., 83, 1027, 1978.

    Article  ADS  Google Scholar 

  135. Neugebauer M., CJ. Alexander, R. Schwenn, A.K. Richter, Tangential discontinuities in the solar wind: correlated field and velocity changes and the Kelvin-Helmholtz instability, J. Geophys. Res., 91, 13694, 1986.

    Article  ADS  Google Scholar 

  136. Olbers, DJ., A.K. Richter, Wave-trains in the solar wind I, Astrophys. Space Sci., 20, 373, 1973.

    Article  ADS  Google Scholar 

  137. Ovenden, C.R., H.A. Shah, SJ. Schwartz, Alfvén solitons in the solar wind, J. Geophys. Res., 88, 6095, 1983.

    Article  ADS  Google Scholar 

  138. Panchev, S.,Random Functions and Turbulence, Pergamon Press, Oxford, 1971.

    MATH  Google Scholar 

  139. Parker, E.N.,Interplanetary Dynamical Processes, Interscience, New York, 1963.

    MATH  Google Scholar 

  140. Passot, T., A. Pouquet, Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid Mech., 181, 441, 1987.

    Article  ADS  MATH  Google Scholar 

  141. Pizzo, VJ., Quasi-steady solar wind dynamics, in Solar Wind Five, ed. by M. Neugebauer, NASA Conference Publication 2280, Washington, USA, 675, 1983.

    Google Scholar 

  142. Pouquet, A., Magnetohydrodynamic turbulence, in Astrophysical Fluid Dynamics, Les Hou- ches, ed. by J.P. Zahn and J. Zinn-Justin, Elsevier Science Publishers, 1988.

    Google Scholar 

  143. Pouquet, A., U. Frisch, J. Léorat, Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech., 77, 321, 1976.

    Article  ADS  MATH  Google Scholar 

  144. Pouquet, A., G.S. Patterson, Numerical simulation of helical magnetohydrodynamic turbulence, J. Fluid Mech., 85, 305, 1978.

    Article  ADS  MATH  Google Scholar 

  145. Pouquet, A., M. Meneguzzi, U. Frisch, Growth of correlations in magnetohydrodynamic turbulence, Phys. Rev. A, 33, 4266, 1986.

    Article  ADS  Google Scholar 

  146. Pouquet, A., P.L. Sulem, M. Meneguzzi, Influence of velocity velocity-magnetic field correlations on decaying MHD turbulence with neutral points, Phys. Fluids, 31, 2635, 1988.

    Article  ADS  Google Scholar 

  147. Richter, A.K., Interplanetary slow shocks, in Physics of the Inner Heliosphere (this volume).

    Google Scholar 

  148. Roberts, D.A., Interplanetary observational constraints on Alfvén wave acceleration of the solar wind, J. Geophys. Res., 94, 6899, 1989.

    Article  ADS  Google Scholar 

  149. Roberts, D.A., Heliocentric distance and temporal dependence of the interplanetary density- magnetic field magnitude correlation, J. Geophys. Res., 95, 1087, 1989.

    Article  ADS  Google Scholar 

  150. Roberts, D.A., M.L. Goldstein, Spectral signatures of jumps and turbulence in interplanetary speed and magnetic field data, J. Geophys. Res., 92, 10105, 1987.

    Article  ADS  Google Scholar 

  151. Roberts, D.A., L.W. Klein, M.L. Goldstein, W.H. Matthaeus, The nature evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations, J. Geophys. Res., 92, 11021, 1987.

    Google Scholar 

  152. Roberts, D.A., M.L. Goldstein, L.W. Klein, W.H. Matthaeus, Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons, J. Geophys. Res., 92, 12023, 1987.

    Google Scholar 

  153. Roberts, D.A., M.L. Goldstein, L.W. Klein, The amplitudes of interplanetary fluctuations: Stream structure, heliocentric distance, and frequency dependence, J. Geophys. Res., 95, 4203, 1989.

    Article  ADS  Google Scholar 

  154. Roberts, D.A., M.L. Goldstein, Simulation of interplanetary dynamical processes, in Proceedings of the Third International Conference on Supercomputing, Vol. I, ed. by L.P. Kartashev and S.I. Kartashev, International Supercomputing Institute, 370, 1988.

    Google Scholar 

  155. Roberts, D.A., M.L. Goldstein, W.H. Matthaeus, L.W. Klein, Observation and simulation of MHD turbulence in the solar wind, in Turbulence and Nonlinear Dynamics in MHD Flows, ed. by M. Meneguzzi, A. Pouquet, and P.L. Sulem, Elsevier Science Publishers B.V., North-Holland, 87, 1989.

    Google Scholar 

  156. Rose, H.A., P.L. Sulem, Fully developed turbulence and statistical mechanics. Le Journal de Physique, 139, 441, 1978.

    Article  MathSciNet  Google Scholar 

  157. Rosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M.D. Montgomery, K.-H. Miihlhauser, W. Pilipp, W. Voges, S.M. Zink, A survey of initial results of the Helios plasma experiment, J. Geophys., 42, 561, 1977.

    Google Scholar 

  158. Sakai, J.-I., B.U.Ò. Sonnerup, Modulational instability of finite amplitude dispersive Alfvén waves, J. Geophys. Res., 88, 9069, 1983.

    Article  ADS  Google Scholar 

  159. Sari, J.W., G.C. Valley, Interplanetary magnetic field power spectra: Mean field radial or perpendicular to radial, J. Geophys. Res., 81, 5489, 1976.

    Article  ADS  Google Scholar 

  160. Schwartz, SJ., E. Marsch, The radial evolution of a single solar wind plasma parcel, J. Geophys. Res. 88, 9919, 1983.

    Article  ADS  Google Scholar 

  161. Schwenn, R., The ‘average’ solar wind in the inner heliosphere: Structures and slow variations, in Solar Wind Five, ed. by M. Neugebauer, NASA Conf. Pubi., CP-2280, 489, 1983.

    Google Scholar 

  162. Schwenn, R., Large-scale structure of the interplanetary medium, in Physics of the Inner Heliosphere, Vol. I, ed. by R. Schwenn and E. Marsch, Springer-Veriag, Beriin, Heidelberg, New York, 1990.

    Google Scholar 

  163. Schwenn, R., K.-H. Mühlhäuser, E. Marsch, H. Rosenbauer, Two states of the solar wind at the time of solar activity minimum, H. Radial gradients of plasma parameters in fast and slow streams, in Solar Wind Four, ed. by H. Rosenbauer, Report MPAE-W-100–81-31, MPI Aeronomie, Katlenburg-Lindau, F.R.Germany, 126, 1981.

    Google Scholar 

  164. Shebalin, J.V., W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Physics, 29, 525, 1983.

    Article  ADS  Google Scholar 

  165. Shebalin, J.V., D. Montgomery, Turbulent magnetohydrodynamic density fluctutations, J. Plasma Physics, 39, 339, 1988.

    Article  ADS  Google Scholar 

  166. Smith, C.W., M.L. Goldstein, W.H. Matthaeus, Turbulence analysis of the Jovian upstream “wave” phenomena, J. Geophys. Res., 88, 5581, 1983.

    Article  ADS  Google Scholar 

  167. Spangler, S.R., The evolution of nonlinear Alfvén waves subject to growth and damping, Phys. Fluids,29, 2535, 1986.

    Article  ADS  Google Scholar 

  168. Spangler, S.R., Density fluctuations induced by nonlinear Alfvén waves, Phys. Fluids, 30, 1104, 1987.

    Article  ADS  Google Scholar 

  169. Spangler, S.R., JP. Sheerin, Properties of Alfvén solitons in a finite-beta plasma, J. Plasma Phys., 27, 193, 1982.

    Article  ADS  Google Scholar 

  170. Taylor, G.L, The spectrum of turbulence, Proc. Roy. Soc. London Ser. A, 164, 476, 1938.

    Article  ADS  Google Scholar 

  171. Terasawa, T., M. Hoshino, J.-I. Sakai, T. Hada, Decay instability of finite-amplitude circularly polarized Alfvén waves: A numerical simulation of stimulated Brillouin scattering, J. Geophys. Res., 91, 4171, 1986.

    Article  ADS  Google Scholar 

  172. Thieme, K.M., Zusammenhänge zwischen raum-zeitlichen Strukturen im Sonnenwind und seinen Quellgebieten in der Korona, Dissertation (PhD thesis), Universität Göttingen, 1990.

    Google Scholar 

  173. Thieme, K.M., E. Marsch, R. Schwenn, Relationship between structures in the solar wind and their source regions in the corona. Proceedings of the Sixth Intemational Solar Wind Conference, Vol. I, NCAR Technical Note-306, 317, 1988.

    Google Scholar 

  174. Thieme, K.M., R. Schwenn, E. Marsch, Are structures in high-speed streams signatures of coronal fine structures?. Adv. Space Res., 9, 127, 1989.

    Article  ADS  Google Scholar 

  175. Tsurutani, B.T., E.J. Smith, D.E. Jones, Waves observed upstream of interplanetary shocks, J. Geophys. Res., 88, 6545, 1983.

    Article  ADS  Google Scholar 

  176. Tsurutani, B.T., R.G. Stone (eds.), Collisionless shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph, 35, 1985.

    Google Scholar 

  177. Tu, C.-Y., The goveming equations of the variation of Alfvénic fluctuations. Chin. J. Space Sci., 3, 269, 1983.

    ADS  Google Scholar 

  178. Tu, C.-Y., A solar wind model with the power spectrum of Alfvénic fluctuations. Solar Phys., 109, 149, 1987.

    Article  ADS  Google Scholar 

  179. Tu, C.-Y., The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind, J. Geophys. Res., 93, 7, 1988.

    Article  ADS  Google Scholar 

  180. Tu, C.-Y., Explanation for the radial variation of the temperature of protons within the trailing edge of high speed streams between 1 and 5 AU, in Proceedings of the Sixth Intemational Solar Wind Conference, Vol. II, NCAR Technical Note-306, 593, 1988.

    Google Scholar 

  181. Tu, C.-Y., Z.-Y. Pu, F.-S. Wei, The power spectrum of interplanetary Alfvénic fluctuations: Derivation of the goveming equation and its solution, J. Geophys. Res., 89, 9695, 1984.

    Article  ADS  Google Scholar 

  182. Tu, C.-Y., J.W. Freeman, R.E. Lopez, The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions. Solar Phys., 119, 197, 1989.

    Article  ADS  Google Scholar 

  183. Tu, C.-Y., D.A. Roberts, MI.. Goldstein, Spectral evolution and cascade constant of solar wind Alfvénic turbulence, J. Geophys. Res., 94, 13575, 1989.

    Article  ADS  Google Scholar 

  184. Tu, C.-Y., E. Marsch, K.M. Thieme, Basic properties of solar wind MHD turbulence near 0.3 AU analysed by means of Elsasser Variables, J. Geophys. Res., 95, 11739, 1989.

    Google Scholar 

  185. Tu, C.-Y., E. Marsch, Evidence for a “background” spectrum of solar wind turbulence in the inner heliosphere, J. Geophys. Res., 95, 4337, 1990.

    Article  ADS  Google Scholar 

  186. Tu, C.-Y., E. Marsch, H. Rosenbauer, The dependence of MHD turbulence spectra on the inner solar wind stream stmcture near solar minimum, Geophys. Res. Lett., 17, 283, 1990.

    Article  ADS  Google Scholar 

  187. Tu, C.-Y., E. Marsch, Transfer equations for spectral densities of inhomogeneous MHD turbulence, J. Plasma Phys., 44, 103, 1990.

    Article  ADS  Google Scholar 

  188. Vellante, M., AJ. Lazams, An analysis of solar wind fluctuations between 1 and 10 AU, J. Geophys. Res. 92, 9893, 1987.

    Article  ADS  Google Scholar 

  189. Velli, M., R. Grappin, A. Mangeney, The effect of large scale gradients on the evolution of Alfvénic turbulence in the solar wind, in Plasma Phenomena in the Solar Atmosphere, ed. by M.A. Dubois, Editions de Physique, Orsay, in press, 1989.

    Google Scholar 

  190. Velli, M., R. Grappin, A. Mangeney, Turbulent cascade of incompressible unidirectional Alfvén waves in the interplanetary medium, Phys. Rev. Lett., 63, 1807, 1989.

    Article  ADS  Google Scholar 

  191. Veltri, P., A. Mangeney, M. Dobrowolny, Cross-helicity effects in aniso- tropic MHD turbulence, II Nuovo Cimento, 68B, 235, 1982.

    ADS  Google Scholar 

  192. Villante, U., On the role of Alfvénic fluctuations in the inner solar system, J. Geophys. Res., 85, 6869, 1980.

    Article  ADS  Google Scholar 

  193. Villante, U., M. Vellante, The radial evolution of the IMF fluctuations: A comparison with theoretical models. Solar Phys., 81, 367, 1982.

    Article  ADS  Google Scholar 

  194. Viñas, A.F., M.L. Goldstein, M.H. Acuña, Spectral analysis of magnetohydrodynamic fluctuations near interplanetary shocks, J. Geophys. Res., 89, 3762, 1984.

    Article  ADS  Google Scholar 

  195. Volk, HJ., Microstructure of the solar wind. Space Sci. Rev., 17, 255, 1975.

    Article  ADS  Google Scholar 

  196. Whang, Y.C., Alfvén waves in spiral interplanetary ñeld, J. Geophys. Res., 78, 7221, 1973.

    Article  ADS  Google Scholar 

  197. Whang, Y.C., A magnetohydrodynamic model for corotating interplanetary structures, J. Geophys. Res.,85, 2285, 1980.

    Article  ADS  Google Scholar 

  198. Whang, W.C., L.F. Burlaga, Evolution and interaction of interplanetary shocks, J. Geophys. Res.,90, 10765, 1985.

    Article  ADS  Google Scholar 

  199. Woltjer, L., A theorem on force free magnetic fields, Proc. Natl. Acad. Sci. USA, 44, 489, 1958.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  200. Woltjer, L., On hydrodynamic equilibrium, Proc. Natl. Acad. Sci. USA, 44, 833, 1958.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  201. Wong, H.K., M.L. Goldstein, Parametric instability of circularly polarized Alfvén waves including dispersion, J. Geophys. Res., 91, 5617, 1986.

    Article  ADS  Google Scholar 

  202. Zhou, Y., W.H. Matthaeus, Non-WKB evolution of solar wind fluctuations: A turbulence modeling approach, Geophys. Res. Lett.,16, 755, 1989.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marsch, E. (1991). MHD Turbulence in the Solar Wind. In: Schwenn, R., Marsch, E. (eds) Physics of the Inner Heliosphere II. Physics and Chemistry in Space, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75364-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75364-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75366-4

  • Online ISBN: 978-3-642-75364-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics