Skip to main content

Image Processing by the Human Visual System

  • Conference paper
Advances in Computer Graphics

Part of the book series: EurographicSeminars ((FOCUS COMPUTER))

Abstract

The processing power of the human visual system is truly awe-inspiring. Hundreds of millions of years of natural selection have led to the evolution of a visual system whose rapidity and accuracy is quite breathtaking. Images flashed on a screen can often be identified on the basis of only 100 to 150 ms of processing (see Thorpe & Imbert, 1989). Furthermore, the number of different objects and scenes that can be identified by the average human is probably well over 100,000. Such levels of performance make the processing capacities of current image processing technology look positively feeble. And the contrast between biological and artificial vision is made even more striking when one takes into account the fact that the components used by biological visual systems, namely neurons, are several orders of magnitude slower than the components used in current electronics: neurons typically operate with a maximum pulse rate of around 100 Hz, whereas even the humble PC uses components that operate with a clock rate of 10 MHz or more.

Supported by Grants from ESPRIT (“Mucom”, 3149), MRT (“Sciences Cognitives”), and CNRS (ARI “Communication Multimédias”).”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Allman J, Miezin F, McGuinness E, (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Ann. Rev. Neurosci. 8, 407–430.

    Google Scholar 

  • Anderson JA, Rosenfeld E, (1988). Neurocomputing: Foundations of research. M.I.T. Press

    Google Scholar 

  • Arbib MA, Hanson AR, (1987). Vision, brain and cooperative computation: An Overview. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 1–86.

    Google Scholar 

  • Atkinson RC, Herrnstein RJ, Lindzey G, Luce RD, (1988). Stevens’ Handbook of experimental psychology. Second Edition. John Wiley

    Google Scholar 

  • Ballard DH, Brown CM, (1982). Computer Vision. Eaglewood Cliffs

    Google Scholar 

  • Ballard DH, (1986). Cortical connections and parallel processing: Structure and function. Behav. Brain Sci. 9, 67–120.

    Google Scholar 

  • Ballard DH, (1987). Cortical connections and parallel processing: Structure and function. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 563–621.

    Google Scholar 

  • Ballard DH, Hinton GE, Sejnowski TJ, (1983). Parallel visual computation. Nature 306, 21–26.

    Google Scholar 

  • Barlow HB, Mollon JD, (1982). The Senses. Cambridge University Press

    Google Scholar 

  • Barlow HB, (1982). Physiology of the retina. In Barlow HB & Mollon JD, (eds) The Senses. Cambridge University Press, pp 102–113.

    Google Scholar 

  • Barlow HB, Blakemore C, Pettigrew JD, (1967). The neural mechanism of binocular depth perception. J. Physiol. 193, 327.

    Google Scholar 

  • Barnard ST, Martin AF, (1982). Computational stereo. Computing Surveys 14, 553–572.

    Google Scholar 

  • Baron RJ, (1987). The cerebral computer: An introduction to the computational structure of the human brain. Lawrence Erlbaum

    Google Scholar 

  • Barrow HG, Tenenbaum JM, (1981). Interpreting line drawings as three dimensional images. Artif. Intell. 17, 75–116.

    Google Scholar 

  • Barrow HG, Tenenbaum JM, (1986). Computational approaches to vision. In Boff KR et al (eds), Handbook of Perception and Human Performance. Vol 2. Cognitive processes and John Wiley, Chap 38

    Google Scholar 

  • Beck J, (1981). Textural segmentation. In Beck J, (ed). Organization and representation in perception. Lawrence Erlbaum (Hillsdale),

    Google Scholar 

  • Bergen JR, Adelson EH, (1988). Early vision and texture perception. Nature 333, 363.

    Google Scholar 

  • Biederman I, (1972). Perceiving real world scenes. Science 177, 77–80.

    Google Scholar 

  • Biederman I, (1981). On the semantics of a glance at a scene. In Kubovy M & Pomerantz J, (eds) Perceptual organization. Lawrence Erlbaum (Hillsdale),

    Google Scholar 

  • Biederman I, (1987). Recognition-by-components: A theory of human image understanding. Psychol. Rev. 94, 115–147.

    Google Scholar 

  • Bishop PO, (1984). Processing of visual information within the retinostriate system. In Brookhart JM & Mountcastle VB, (eds) The nervous system. III. Sensory processes. American Physiological Soc., pp 341–424.

    Google Scholar 

  • Blakemore C, Campbell FW (1969) On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology, 203, 237–266.

    Google Scholar 

  • Blakemore C, Fiorentini A, Maffei L, (1972). A second neural mechanism of binocular depth discrimination. J. Physiol. 226, 725–749.

    Google Scholar 

  • Blasdel GG, Salama G, (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579.

    Google Scholar 

  • Botzel K & Grusser OJ (1989) Electric brain potentials evoked by pictures of faces and non-faces — a search for face-specific EEG potentials. Exp. Brain Research,77,349–360.

    Google Scholar 

  • Boynton RM, (1988). Color vision. Ann. Rev. Psychol. 39, 69–100.

    Google Scholar 

  • Braddick OJ, Atkinson J, (1982). Higher functions in vision. In Barlow HB & Mollon JD, (eds) The Senses. Cambridge University Press, pp 212–238.

    Google Scholar 

  • Braddick OJ, Sleigh AC, (1983). Physical and biological processing of images. Series in Information Science, 11, Springer-Verlag

    Google Scholar 

  • Brady M, Yuille A, (1987). An extremum principle for shape from contour. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 329–360.

    Google Scholar 

  • Brady M, (1982). Computational approaches to image understanding. Comput. Surveys 14, 3–71.

    Google Scholar 

  • Brown JW (1988) Neurophysiology of Visual Perception. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Bruce V, Green P (1982) Visual Perception: Physiology, Psychology and Ecology. Lawrence Erlbaum.

    Google Scholar 

  • Bruyer R, (1988). Facial recognition. La Recherche 19, 774–783.

    Google Scholar 

  • Bullier J, (1983). The maps of the brain. La Recherche 14, 1202–1215.

    Google Scholar 

  • Burr D, Ross J, (1986). Visual processing of motion. Trends Neurosci. 9, 304.

    Google Scholar 

  • Burr D, Ross J, (1987). Visual analysis during motion. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 187–208.

    Google Scholar 

  • Campbell FW, Robson JG (1968) Application of Fourier analysis to the visbility of gratings. J. Physiology, 197, 551–556.

    Google Scholar 

  • Carr TH, (1986). Perceiving visual language. In Boff KR et al (eds), Handbook of Perception and Human Performance. Vol 2. Cognitive processes and John Wiley, Chap 29

    Google Scholar 

  • Churchland PS, Sejnowski TJ, (1988). Perspectives on cognitive neuroscience. Science 242, 741–745.

    Google Scholar 

  • Cowey A, (1979). Cortical maps and visual perception. The Grindley memorial lecture. Quart. J. Exp. Psychol. 31, 1–17.

    Google Scholar 

  • Damasio AR, Damasio H, (1986). The anatomical substrate of prosopagnosia. In Bruyer R, (ed). The neuropsychology of face perception and facial expression. Lawrence Erlbaum, pp 31–38.

    Google Scholar 

  • Desimone R, Schein SJ, Moran J, Ungerleider LG, (1985). Contour, color and shape analysis beyond the striate cortex. Vision Res. 25, 441–452.

    Google Scholar 

  • DeValois RL, DeValois KK, (1988). Spatial vision. Oxford Psychology Series, 14, Oxford University Press

    Google Scholar 

  • DeValois RL, Jacobs GH, (1984). Neural mechanisms of colour vision. In Brookhart JM & Mountcastle VB, (eds) The nervous system. III. Sensory processes. American Physiological Soc., pp 425–456.

    Google Scholar 

  • DeYoe EA, Van Essen DC, (1988). Concurrent processing streams in monkey visual cortex. Trends Neurosci. 11, 219.

    Google Scholar 

  • Dobbins A, Zucker SW, Cynader MS, (1987). Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature 329, 438.

    Google Scholar 

  • Dowling JE, Dubin MW, (1984). The vertebrate retina. In Brookhart JM & Mountcastle VB, (eds) The nervous system. III. Sensory processes. American Physiological Soc., pp 317–340.

    Google Scholar 

  • Egalhaaf M, Hausen K, Reichardt W, Wehrhahn C, (1988). Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci. 11, 351–358.

    Google Scholar 

  • Feldman JA (1985) Four frames suffice: A provisional model of vision and space. Behavioural and Brain Sciences, 8, 265–289.

    Google Scholar 

  • Feldman JA, Ballard DH, (1982). Connectionist models and their properties. Cognitive Science 6, 205–254.

    Google Scholar 

  • Feldman JA, (1986). Connectionist models and parallelism in high level vision. In Rosenfeld A, (ed). Human and Machine Vision. II. Academic Press, pp 86–108.

    Google Scholar 

  • Feldman JA, (1987). A functional model of vision and space. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 531–562.

    Google Scholar 

  • Fester D, Koch C, (1987). Neuronal connections underlying orientation selectivity in cat visual cortex. Trends Neurosci. 10, 487.

    Google Scholar 

  • Fischler MA & Firschein O (1987) Readings in Computer Vision: Issues, Problems, Principles and Paradigms. Morgan Kaufman.

    Google Scholar 

  • Fodor J, (1983). The modularity of mind. Cambridge MA: MIT Press.

    Google Scholar 

  • Fow PR, Miezin FM, Allman JM, Van Essen DC, Raichle ME, (1987). Retinotopic organization of human visual cortex mapped with positron-emission tomography. J. Neurosci. 7, 913–922.

    Google Scholar 

  • Frisby J, (1980). Seeing: Illusion, brain and mind. Oxford University Press

    Google Scholar 

  • Frost BJ, Nakayama K, (1983). Single visual neurons coding opposing motion independent of direction. Science 220, 744.

    Google Scholar 

  • Frost BJ, (1985). Neural mechanisms for detecting object motion and figure-ground boundaries, contrasted with self-motion detecting systems. In Ingle DJ et al (eds), Brain mechanisms and spatial vision. Nijhoff (Holland), pp 415–450.

    Google Scholar 

  • Fukushima K, (1975). Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 20, 121–136.

    Google Scholar 

  • Fukushima K, (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202.

    MathSciNet  MATH  Google Scholar 

  • Fukushima K, (1986). A neural network model for selective attention in visual pattern recognition. Biol. Cybern. 55, 5–16.

    MATH  Google Scholar 

  • Gardner JC, Douglas RM, Cynader MS, (1985). A time-based stereoscopic depth mechanism in the visual cortex. Brain Res. 327, 154–157.

    Google Scholar 

  • Gibson JJ, (1950). The perception of the visual world. Houghton Mifflin

    Google Scholar 

  • Gibson JJ, (1966). The senses considered as perceptual systems. Houghton Mifflin

    Google Scholar 

  • Gilchrist AL, (1979). The perception of surface black and whites. Sci. Amer. 240, 112–124.

    Google Scholar 

  • Goodglass H, (1980). Disorders of naming after brain damage. American Scientist 68, 647–655.

    Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific oscillations in orientation columns of cat visual cortex. Proc. National Academy of Sciences, 86, 1698–1702.

    Google Scholar 

  • Gregory RL, (1970). The intelligent eye. Weidenfield &; Nicholson

    Google Scholar 

  • Grimson WEL, (1982). A computational theory of visual surface interpolation. Phil. Trans. Roy. Soc. Lond. B 298, 395.

    Google Scholar 

  • Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN, (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361.

    Google Scholar 

  • Gross CG, (1973). Inferotemporal cortex and vision. Prog. Physiol. Psychol. 5, 77–123.

    Google Scholar 

  • Grossberg S, Mingolla E, (1985). Neural dynamics of perceptual grouping: Textures, boundaries and emergent segmentations. Perception Psychophysics 38, 141–171.

    Google Scholar 

  • Grossberg S, (1987). Cortical dynamics of three-dimensional form, color and brightness perception: I. Monocular theory. Percept. Psychophys. 41, 87–116.

    Google Scholar 

  • Grossberg S, (1987). Cortical dynamics of three-dimensional form, color and brightness perception: II. Binocular theory. Percept. Psychophys. 41, 117–158.

    Google Scholar 

  • Hammond P, (1986). Visual cortical processing: textural sensitivity and its implications for classical views. In Rose D & Dobson VG, (eds) Models of the visual cortex. John Wiley, pp 326–333.

    Google Scholar 

  • Hart J, Berndt RS, Caramazza A, (1985). Category-specific naming deficit after cerebral infarction. Nature 316, 439–440.

    Google Scholar 

  • Heit C, Smith ME, Halgren E, (1988). Neural coding of individual words and faces by the human hippocampus and amygdala. Nature 333, 773.

    Google Scholar 

  • Hildreth EC, Koch C, (1987). The analysis of visual motion: From computational theory to neuronal mechanisms. Ann. Rev. Neurosci. 10, 477–534.

    Google Scholar 

  • Hildreth EC, (1984). The computation of the velocity field. Proc Roy Soc Lond B 221, 189–220.

    Google Scholar 

  • Hinton GE, Anderson JA, (1981). Parallel models of associative memory. Lawrence Erlbaum (Hillsdale)

    Google Scholar 

  • Hinton GE, Parsons LM, (1988). Scene-based and viewer-centered representations for comparing shapes. Cognition 30, 1–36.

    Google Scholar 

  • Hochberg J, (1984). Perception. In Brookhart JM & Mountcastle VB, (eds) The nervous system. III. Sensory processes. American Physiological Soc., pp 75–102.

    Google Scholar 

  • Hochberg J, (1986). Representation of motion and space in video and cinematic displays. In Boff KR et al (eds), Handbook of Perception and Human Performance. Vol 1. Sensory processes and John Wiley, Chap 22

    Google Scholar 

  • Hochberg J, (1988). Visual perception. In Atkinson RC et al (eds), Stevens’ Handbook of experimental psychology. Second Edition. John Wiley, pp 195–276.

    Google Scholar 

  • Hochstein S, Spitzer H, (1984). Zero-crossing detectors in primary visual cortex. Biol. Cybern. 51, 195–200.

    Google Scholar 

  • Hoffman DD, Bennett BM, (1986). The computation of structure from fixed-axis motion: Rigid structure. Biol. Cybern. 54, 71–84.

    MathSciNet  MATH  Google Scholar 

  • Hoffman JE, (1986). The psychology of perception. In LeDoux JE & Hirst W, (eds) Mind and brain: Dialogues in cognitive neuroscience. Cambridge University Press, pp 7–32.

    Google Scholar 

  • Horn BKP, Schunck BG, (1981). Determing optical flow. Artif. Intel!. 17, 185–204.

    Google Scholar 

  • Hubel DH, (1982). Exploration of the primary visual cortex, 1955–1978: A review. Nature 299, 515–523.

    Google Scholar 

  • Hubel DH, (1988). Eye, Brain and Vision. W.H. Freeman

    Google Scholar 

  • Humpheys GW, Bruce V (1989) Visual Cognition. Lawrence Erlbaum Associates.

    Google Scholar 

  • Humphreys GW, Quinlan PT, (1988). Normal and pathological processes in visual object constancy. In Humphreys GW & Riddoch MJ, (eds) Visual object processing: A cognitive neuropsychological perspective. Lawrence Erlbaum (Hillsdale), pp 43–106.

    Google Scholar 

  • Humphreys GW, Riddoch MJ, (1987a). On telling your fruit from your vegetables: A consideration of category- specific deficits after brain damage. Trends Neurosci. 10, 145.

    Google Scholar 

  • Humphreys GW, Riddoch MJ, (1987b). To see but not to see: A case study of visual agnosia. Lawrence Erlbaum

    Google Scholar 

  • Humphreys GW, Riddoch MJ, (1988). Visual object processing: A cognitive neuropsychological perspective. Lawrence Erlbaum (Hillsdale)

    Google Scholar 

  • Hurlbert AC, Poggio TA, (1988). Synthesizing a color algorithm from examples. Science 239, 482.

    Google Scholar 

  • Ikeuchi K, Horn BKP, (1981). Numerical shape from shading and occuding boundaries. Artif. Intell. 17, 141–184.

    Google Scholar 

  • Intraub H, (1980). Presentation rate and the representation of briefly glimpsed pictures in memory. J. Exp. Psychol. Hum. Learn. Mem. 6, 1–12.

    Google Scholar 

  • Intraub H, (1981). Rapid conceptual identification of sequentially presented pictures. J. Exp. Psychol. Hum. Perc. Perf. 7, 604–610.

    Google Scholar 

  • Jameson D, Hurvich LM (1989) Essay concerning color constancy. Annual Review of Psychology, 40, 1–22.

    Google Scholar 

  • Johansson G, (1975). Visual motion perception. Sci. Amer. 232, 76–88.

    Google Scholar 

  • Jolicoeur P, (1985). The time to name distorted natural objects. Memory Cognition 13, 289–303.

    Google Scholar 

  • Julesz B, Schumer RA, (1981). Early visual perception. Ann. Rev. Psychol. 32, 575–627.

    Google Scholar 

  • Julesz B, (1971). Foundations of cyclopean perception. University of Chicago Press

    Google Scholar 

  • Julesz B, (1981). Textons, the elements of texture perception and their interactions. Nature 290, 91–97.

    Google Scholar 

  • Julesz B, (1984). A brief outline of the texton theory of human vision. Trends Neurosci. 7, 41–44.

    Google Scholar 

  • Julesz B, (1986). Stereoscopic vision. Vision Res. 26, 1601.

    Google Scholar 

  • Kaas JH, (1987). The organization of neocortex in mammals: Implications for theories of brain function. Ann. Rev. Psychol. 38, 129–152.

    Google Scholar 

  • Kanade T, (1981). Recovery of the three-dimensional shape of an object from a single view. Artif. Intell. 17, 409–460.

    Google Scholar 

  • Kendrick KM, Baldwin BA (1987) Cells in temporal lobe of conscious sheep can respond preferentiallyh to the sight of faces. Science, 236, 448.

    Google Scholar 

  • Knudsen EI, du Lac S, Esterley SD, (1987). Computational maps in the brain. Ann. Rev. Neurosci. 10, 41–66.

    Google Scholar 

  • Koch C, Poggio T, (1986). The synaptic veto mechanism: Does it underlie direction and orientation selectivity in the visual cortex? In Rose D & Dobson VG, (eds) Models of the visual cortex. John Wiley, pp 408–419.

    Google Scholar 

  • Koenderink JJ, (1985). Space, form and optical deformations. In Ingle DJ et al (eds), Brain mechanisms and spatial vision. Nijhoff (Holland), pp 31–58.

    Google Scholar 

  • Kosslyn SM, Flynn RA, Amsterdam JA, Wang G (1990) Components in high-level vision: A cognitive neuroscience analysis and account of neurological syndromes. Cognition 34, 203–278.

    Google Scholar 

  • Kulikowkski JJ, Kranda K, (1987). Image analysis performed by the visual system: Feature versus Fourier analysis and adaptable filtering. In Pettigrew JD et al (eds), Visual neuroscience. Cambridge University Press, pp 381–404.

    Google Scholar 

  • Land EH, (1977). The retinex theory of colour vision. Sci. Amer. 237, 108–128.

    MathSciNet  Google Scholar 

  • Lawton D, Rieger J, Steenstrup M, (1987). Computational techniques in motion processing. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 419–488.

    Google Scholar 

  • Lee DN, (1980). The optic flow field: the foundation of vision. Phil. Trans. Roy. Soc. Lond. B 290, 169–179.

    Google Scholar 

  • Lehky SR, Sejnowski T, (1988). Network model of shape-from-shading: neural function arises from both receptive and projective fields. Nature 333, 452.

    Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47, 1940–1951.

    Google Scholar 

  • Levick WR, (1987). Sampling of information space by retinal ganglion cells. In Pettigrew JD et al (eds), Visual neuroscience. Cambridge University Press, pp 33–43.

    Google Scholar 

  • Levine MD, (1985). Vision in man and machine. McGraw-Hill

    Google Scholar 

  • Longuet-Higgins HC, (1981). A computer algorithm for reconstructing a scene from two projections. Nature 293, 133.

    Google Scholar 

  • Longuet-Higgins HC, (1986). The reconstruction of a plane surface from two perspective projections. Proc. Roy. Soc. Lond. B 227, 388–410.

    Google Scholar 

  • Marr D, Hildreth E (1980) Theory of edge detection. Proc. Royal Society of London, 207, 187–217.

    Google Scholar 

  • Marr D, Nishihara HK, (1978). Representation and recognition of three-dimensional shapes. Proc. Roy. Soc. Lond. B 200, 269–294.

    Google Scholar 

  • Marr D, Poggio T, (1976). Cooperative computation of stereo disparity. Proc. Roy. Soc. Lond. B 275,.

    Google Scholar 

  • Marr D, Poggio T, (1979). A computational theory of human stereo vision. Proc. Roy. Soc. Lond. B 204, 301–328.

    Google Scholar 

  • Marr D, Ullman S, (1981). Directional selectivity and its use in early visual processing. Proc. Roy. Soc. Lond. B 211, 151–180.

    Google Scholar 

  • Marr D, Vaina L, (1982). Representation and recognition of the movements of shapes. Proc. Roy. Soc. Lond. B 214, 501–524.

    Google Scholar 

  • Marr D, (1982). Vision. W.H. Freeman

    Google Scholar 

  • Marr D, Hildreth E, (1980). Theory of edge detection. Proc. Roy. Soc. Lond. B 207, 187–217.

    Google Scholar 

  • Marrocco RT, (1986). The neurobiology of perception. In LeDoux JE & Hirst W, (eds) Mind and brain: Dialogues in cognitive neuroscience. Cambridge University Press, pp 33–79.

    Google Scholar 

  • Maunsell JHR, Newsome WT, (1987). Visual processing in monkey extrastriate cortex. Ann. Rev. Neurosci. 10, 363–402.

    Google Scholar 

  • Mayhew JEW, Frisby JP, (1981). Psychophysical and computational studies towards a theory of human stereopsis. Artif. Intell. 17, 349–386.

    Google Scholar 

  • Mayhew JEW, Longuet-Higgins HC, (1982). A computational model of binocular depth perception. Nature 297, 376.

    Google Scholar 

  • McCarthy RA, Warrington EK, (1988). Evidence for modality-specific meaning systems in the brain. Nature 334, 428.

    Google Scholar 

  • McClelland JL, Rumelhart DE, (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375–407.

    Google Scholar 

  • McClelland JL, Rumelhart DE, (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 2. Psychological and biological models. MIT Press

    Google Scholar 

  • McLeod P, (1987). Visual reaction time and high-speed ball games. Perception 16, 49–60.

    Google Scholar 

  • Meadows JC, (1974). Disturbed perception of colours associated with localized cerebral lesions. Brain 97, 615–632.

    Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA, (1983). Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–416.

    Google Scholar 

  • Mollon JD, (1982a). Colour vision and colour blindness. In Barlow HB & Mollon JD, (eds) The Senses. Cambridge University Press, pp 165–191.

    Google Scholar 

  • Mollon JD, (1982b). Colour vision. Ann. Rev. Psychol. 33, 41–86.

    Google Scholar 

  • Morris RGM (1989) Parallel distributing processing: Implications for Psychology and Neurobiology. Oxford: Oxford University Press.

    Google Scholar 

  • Morton J (1979) Word recognition. In J Morton & J Marshall (eds). Psychololinguistics Series, 2, 107–156.

    Google Scholar 

  • Movshon JA, Adelson EH, Gizzi MS & Newsome WT (1985) The analysis of moving visual patterns. Exp. Brain Res. Suppl.,11, 117–152.

    Google Scholar 

  • Nagel HH, (1987). On the estimation of optical flow: Relations between different approaches and some new results. Artif. Intell. 33, 299–324.

    Google Scholar 

  • Nakayama K, (1985). Biological motion processing. Vision Res. 25, 625.

    Google Scholar 

  • Newsome WT, Wurtz RH, (1988). Probing visual cortical function with discrete chemical lesions. Trends Neurosci. 11, 394–399.

    Google Scholar 

  • Oldfield RC, (1966). Things, words and the brain. Q. J. Exp. Psychol. 18, 340–353.

    Google Scholar 

  • Orban GA, (1984). Neuronal operations in the visual cortex. Studies of Brain Function, 11, Springer-Verlag (Berlin)

    Google Scholar 

  • Palmer S, Rosch E, Chase P, (1981). Canonical perspective and the perception of objects. In Long J & Baddeley A, (eds) Attention and Performance. IX. Lawrence Erlbaum (Hillsdale), pp 135–151.

    Google Scholar 

  • Palmer SE, (1975). The effects of contextual scenes on the identification of objects. Memory Cognition 3, 519–526.

    Google Scholar 

  • Perrett DI, Mistlin AJ, Chitty AJ, (1987). Visual neurons responsive to faces. Trends Neurosci. 10, 358.

    Google Scholar 

  • Perrett DI, Rolls ET, Caan W, (1982). Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 467, 329–342.

    Google Scholar 

  • Perrett DI, Rolls ET, Caan WC (1982) Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research, 467, 329–342.

    Google Scholar 

  • Perrett DI, Smith PAJ, Potter DD, Mistlin AJ, Head AS (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. Roy. Soc. Lond. 223, 293–317.

    Google Scholar 

  • Peterhans E, von der Heydt R, Baumgartner G, (1987). Neuronal responses to illusory contour stimuli reveal stages of visual cortical processing. In Pettigrew JD et al (eds), Visual neuroscience. Cambridge University Press, pp 343–351.

    Google Scholar 

  • Petersen SE, Fox BT, Posner MI, Mintun M, Raichle ME, (1988). Positron emission tomographic studies of the cortical anatomy of single word processing. Nature 331, 585–589.

    Google Scholar 

  • Pettigrew JD, (1987). The evolution of binocular vision. In Pettigrew JD et al (eds), Visual neuroscience. Cambridge University Press, pp 208–222.

    Google Scholar 

  • Phillips CG, Zeki S, Barlow HB, (1984). Localization of function in the cerebral cortex: past, present and future. Brain 107, 327.

    Google Scholar 

  • Pinker S, (1984). Visual cognition: An introduction. Cognition 18, 1–63.

    Google Scholar 

  • Poggio GF, Poggio T, (1984). The analysis of stereopsis. Ann Rev. Neurosci. 7, 379–412.

    Google Scholar 

  • Poggio T, Koch C, (1987). Synapses that compute motion. Sci. Amer. 256, 46–71.

    Google Scholar 

  • Poggio T, (1984). Vision by man and machine. Sci. American 250, 106–117.

    Google Scholar 

  • Poggio T, (1986). Early vision: From computational structure to algorithms and parallel hardware In Rosenfeld A, (ed). Human and Machine Vision. II. Academic Press, pp 190–206.

    Google Scholar 

  • Poggio T, Gamble EB, Little JJ, (1988). Parallel integration of vision modules. Science 242, 436–439.

    MathSciNet  MATH  Google Scholar 

  • Posner MI, Petersen SE, Fox PT, Raichle ME, (1988). Localization of cognitive operations in the brain. Science 240, 1627–1631.

    Google Scholar 

  • Potter MC, Faulconer BA, (1975). Time to understand pictures and words. Nature 253, 437–438.

    Google Scholar 

  • Potter MC, (1975). Meaning in visual search. Science 187, 965–966.

    Google Scholar 

  • Priest HF, Cutting JE, Torrey CC, Regan D, (1985). Visual flow and direction of locomotion. Science 227, 1063.

    Google Scholar 

  • Ramachandran VS, Anstis SM, (1983). Perceptual organisation in moving patterns. Nature 304, 529–531.

    Google Scholar 

  • Ramachandran VS, Anstis SM, (1986). The perception of apparent motion. Sci. Amer. 254, 102–109.

    Google Scholar 

  • Ramachandran VS, (1988). Perceiving shape from shading. Sci. Amer. 259, 76–83.

    Google Scholar 

  • Ramachandran VS, (1988). Perception of shape from shading. Nature 331, 163.

    Google Scholar 

  • Regan D, Beverley KI, (1979). Visually guided locomotion: Psychophysical evidence for a neural mechanism sensitive to flow patterns. Science 205, 311–313.

    Google Scholar 

  • Regan D, Beverley KI, (1981). How do we avoid confounding the direction we are looking and the direction we are moving. Science 215, 194.

    Google Scholar 

  • Regan D, Beverley KIB, Cynader M, (1979). The visual perception of motion in depth. Sci. Amer. 241, 136–150.

    Google Scholar 

  • Reichardt W, (1987). Evaluation of optical motion information by movement detectors. J. Comp. Physiol. A 161, 533–548.

    Google Scholar 

  • Rhodes G, Brennan S, Carey S, (1987). Identification and ratings of caricatures: Implications for mental representation of faces. Cognitive Psychol. 19, 473–497.

    Google Scholar 

  • Richards W (1988) Natural computation. MIT Press.

    Google Scholar 

  • Richards W, Ullman S, (1987). Image understanding 1985–86. Ablex Publ. Corp. (Norwood)

    Google Scholar 

  • Riddoch MJ, Humphreys GW, (1988). Picture naming. In Humphreys GW & Riddoch MJ, (eds) Visual object processing: A cognitive neuropsychological perspective. Lawrence Erlbaum (Hillsdale), pp 107–144.

    Google Scholar 

  • Robinson DL, Petersen SE, (1986). The neurobiology of attention. In LeDoux JE & Hirst W, (eds) Mind and brain: Dialogues in cognitive neuroscience. Cambridge University Press, pp 142–171.

    Google Scholar 

  • Robson JG, (1975). Receptive fields: Neural representations of the spatial and intensive attributes of the visual image. Handbook Perception 5, 81–112.

    Google Scholar 

  • Rock I, (1984). Perception. W.H. Freeman (New York)

    Google Scholar 

  • Rogers B, Graham M, (1979). Motion parallax as an independant cue for depth perception. Perception 8, 125–134.

    Google Scholar 

  • Rolls ET, Burton MJ, Mora F (1976) Hypothalamic neuronal responses associated with the sight of food. Brain Research, 111, 53–66.

    Google Scholar 

  • Rolls ET, Perrett DI, Caan AW, Wilson FAW, (1981). Neuronal responses related to visual recognition. Brain 105, 611–646.

    Google Scholar 

  • Rolls ET, Sanghera MJ, Roper-Hall A (1979) The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain, 164, 121–135.

    Google Scholar 

  • Rose D, Dobson VG, (1986). Models of the visual cortex. John Wiley

    Google Scholar 

  • Rosenfeld A, (1986). Human and Machine Vision. II. Perspectives in Computing, 13, Academic Press

    Google Scholar 

  • Rumelhart DE, McClelland JL, (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1. Foundations. MIT Press

    Google Scholar 

  • Sakitt B, Barlow HB, (1982). A model for the economical coding of visual image in the cerebral cortex. Biol. Cybern. 43, 97–108.

    Google Scholar 

  • Schiller PH, (1986). The central visual system. Vision Res. 26, 1351–1388.

    Google Scholar 

  • Schwab EC, Nusbaum HC, (1986). Pattern recognition by humans and machines. Volume 2. Visual Perceptioin. Academic Press

    Google Scholar 

  • Sejnowski TJ, Hinton GE, (1987). Separating figure from ground with a Boltzmann machine. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 703–724.

    Google Scholar 

  • Sejnowski TJ, Koch C, Churchland PS, (1988). Computational Neuroscience. Science 241, 1299–1306.

    Google Scholar 

  • Sekular R, Blake R, (1984). Perception. New York: Knopf

    Google Scholar 

  • Shapley R, Perry VH, (1986). Cat and monkey retinal cells and their visual functional roles. Trends Neurosci. 9, 229.

    Google Scholar 

  • Shepard RN, Judd SA, (1976). Perceptual illusion of rotation of three-dimensional objects. Science 171, 701–703.

    Google Scholar 

  • Shepard RN, Zare SL, (1983). Path guided apparent motion. Science 220, 632.

    Google Scholar 

  • Siegel RA, Andersen RA, (1988). Perception of three-dimensional structure from motion in monkey and man. Nature 331, 259.

    Google Scholar 

  • Simpson PK (1990) Artificial neural systems: Foundations, paradigms, applications and implementations. New York: Pergamon.

    Google Scholar 

  • Smyth MM, Morris PE, Levy P, Ellis AW, (1987). Cognition in action. Lawrence Erlbaum

    Google Scholar 

  • Spillman L, Werner JS (1990) Visual Perception: The Neurophysiological Foundations. San Diego: Academic Press.

    Google Scholar 

  • Spoehr KT, Lehmkuhle SW, (1982). Visual information processing. W.H. Freeman (San Francisco)

    Google Scholar 

  • Stevens KA, (1981). The information content of texture gradients. Biol. Cybern. 42, 95–105.

    Google Scholar 

  • Stevens KA, (1988). Visual object processing from a computational perspective. In Humphreys GW & Riddoch MJ, (eds) Visual object processing: A cognitive neuropsychological perspective. Lawrence Erlbaum (Hillsdale), pp 17–42.

    Google Scholar 

  • Thorpe S.J. & Imbert M. (1989) Biological constraints on connectionist modelling. In Pfeifer R (ed) “Connectionism in perspective”. Amsterdam: Elsevier.

    Google Scholar 

  • Thorpe S.J. & Pouget A. (1989) Coding of orientation by the visual cortex: Neural network modelling. In Pfeifer R (ed) “Connectionism in perspective”. Amsterdam: Elsevier.

    Google Scholar 

  • Thorpe S.J. (1988) Traitement de l’image chez l’homme. Techniques et Sciences Informatique, 7, 517–525.

    Google Scholar 

  • Thorpe S.J. (1989) Coding of simple stimuli by the human visual system. In Kulikowski J.J. (ed.) “Seeing Contour and Colour”, Oxford, Pergamon Press. pp 338–345.

    Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison SP, (1983). The orbitofrontal cortex: Neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93–115.

    Google Scholar 

  • Todd J, (1985). The analysis of three-dimensional structure from moving images. In Ingle DJ et al (eds), Brain mechanisms and spatial vision. Nijhoff (Holland), pp 73–94.

    Google Scholar 

  • Tootell RBH, Silverman MS, DeValois RL, (1981). Spatial frequency columns in primary visual cortex. Science 214, 813.

    Google Scholar 

  • Treisman A, (1986). Features and objects in visual processing. Sci. Amer. 255, 114–125.

    Google Scholar 

  • Treisman A, (1986). Properties, parts and objects. In Boff KR et al (eds), Handbook of Perception and Human Performance. Vol 2. Cognitive processes and John Wiley, pp Chap 35

    Google Scholar 

  • Treismen A & Gelade G (1980) A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

    Google Scholar 

  • Ullman S, (1983). The measurement of visual motion. Trends Neurosci. 6, 177.

    Google Scholar 

  • Ullman S, (1984). Visual routines. Cognition 18, 97–159.

    Google Scholar 

  • Ullman S, (1986). Artificial intelligence and the neurosciences. Trends Neurosci. 9, 530.

    Google Scholar 

  • Van Essen DC, Maunsell JHR, (1983). Hierarchical organization and functional streams in visual cortex. Trends Neuroscience 6, 370–375.

    Google Scholar 

  • Voorhees H, Poggio T, (1988). Early vision and texture perception. Nature 333, 364.

    Google Scholar 

  • Waltz D, (1975). Understanding line drawings of scenes with shadows. In Winston PH, (ed). The psychology of computer vision. Academic Press (New York), pp 19–91.

    Google Scholar 

  • Warrington EK, (1982). Neuropsychological studies of object recognition. Phil. Trans. Roy. Soc. B 298, 15–33.

    Google Scholar 

  • Wasserman PD (1989) Neural Computing: Theory and Practice. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Wässle H, (1987). Sampling of visual space by retinal ganglion cells. In Pettigrew JD et al (eds), Visual neuroscience. Cambridge University Press, pp 19–32.

    Google Scholar 

  • Watt R, (1988). Visual processing: Computational psychophysical and cognitive research. Essays in Cognitive Psychology, Lawrence Erlbaum

    Google Scholar 

  • Weisstein N, Wong E, (1986). Figure-ground organization and the spatial and temporal responses of the visual system. In Schwab EC & Nusbaum HC, (eds) Pattern recognition by humans and machines. Volume 2. Visual Perception. Academic Press, pp 31–64.

    Google Scholar 

  • Weisstein N, Wong E, (1987). Figure-ground organization affects the early visual processing of information. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 209–230.

    Google Scholar 

  • Wilding JM, (1982). Perception: From sense to object. Hutchinson

    Google Scholar 

  • Wilson HR, (1983). Psychophysical evidence for spatial channels. In Braddick OJ & Sleigh AC, (eds) Physical and biological processing of images. Springer-Verlag, pp 88–99.

    Google Scholar 

  • Winston PH, (1975). The psychology of computer vision. Academic Press (New York)

    Google Scholar 

  • Wise SP, Desimone R, (1988). Behavioral neurophysiology: Insights into seeing and grasping. Science 242, 736–740.

    Google Scholar 

  • Witkin AP, (1981). Recovering surface shape and orientation from texture. Artif. Intell. 17, 17–46.

    Google Scholar 

  • Yellot JI, Wandell BA, Cornsweet TN, (1984). The beginnings of visual perception: the retinal image and its initial encoding. In Brookhart JM & Mountcastle VB, (eds) The nervous system. III. Sensory processes. American Physiological Soc., pp 257–316.

    Google Scholar 

  • Young AW & Ellis HD (1989) Handbook of research on face procesing. Amsterdam: North Holland.

    Google Scholar 

  • Zeki S, Shipp S, (1988). The functional logic of cortical connections. Nature 335, 311–316.

    Google Scholar 

  • Zeki S, (1980). The representation of colours in the cerebral cortex. Nature 284, 412–418.

    Google Scholar 

  • Zihl J, von Cramon D, Mai N, (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106, 313–340.

    Google Scholar 

  • Zucker SW, Hummel RA, (1986). Receptive fields and the representation of visual information. Human Neurobiol. 5, 121–128.

    Google Scholar 

  • Zucker SW, (1987). The diversity of perceptual grouping. In Arbib MA & Hanson AR, (eds) Vision, brain and cooperative computation. M.I.T. Press, pp 231–262.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 EUROGRAPHICS The European Association for Computer Graphics

About this paper

Cite this paper

Thorpe, S.J. (1991). Image Processing by the Human Visual System. In: Garcia, G., Herman, I. (eds) Advances in Computer Graphics. EurographicSeminars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76286-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76286-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76288-8

  • Online ISBN: 978-3-642-76286-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics