Skip to main content

An Overview of Predictive Learning and Function Approximation

  • Conference paper
From Statistics to Neural Networks

Part of the book series: NATO ASI Series ((NATO ASI F,volume 136))

Abstract

Predictive learning has been traditionally studied in applied mathematics (function approximation), statistics (nonparametric regression), and engineering (pattern recognition). Recently the fields of artificial intelligence (machine learning) and connectionism (neural networks) have emerged, increasing interest in this problem, both in terms of wider application and methodological advances. This paper reviews the underlying principles of many of the practical approaches developed in these fields, with the goal of placing them in a common perspective and providing a unifying overview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Akaike, H. (1974). A new look at statistical model identification. IEEE Trans. Auto. Control 19 716–723.

    Article  MATH  MathSciNet  Google Scholar 

  • Barron, A. (1984) Predicted squared error: a criterion for automatic model selection. In Self-Organizing Methods in Modeling. S. Farrow, ed., Marcel Dekker, New York.

    Google Scholar 

  • Bates, D. M. and Watts, D. G. (1988). Nonlinear Regression Analysis and its Applications. Wiley, New York, NY.

    Book  MATH  Google Scholar 

  • Bellman, R. E. (1961). Adaptive Control Proceses. Princeton University Press.

    Google Scholar 

  • Breiman, L. (1991). The II-method for estimating multivariate functions from noisy data. Technometrics 33 125–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA.

    MATH  Google Scholar 

  • Breiman L. and Friedman, J. H. (1994). A new approach to multiple outputs through stacking. Stanford University, Department of Statistics, Technical Report LCS114.

    Google Scholar 

  • Breiman, L. and Spector, P. (1989). Submodel selection and evaluation in regression X random case. Internat. Statist. Rev. (to appear).

    Google Scholar 

  • Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31 317–403.

    MathSciNet  Google Scholar 

  • Denker, J. S. and Le Cun, Y. (1991). Transforming neural-net output levels to probability distributions. In Advances in Neural Information Processing Systems 3. Lippmann, Moody, and Touretzky eds. Morgan Kaufman, San Mateo, CA.

    Google Scholar 

  • Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley, New York, NY.

    MATH  Google Scholar 

  • Efron, B. (1983). Estimating the error rate of a prediction rule. J. Amer. Statist. Assoc. 78 316–333.

    Article  MATH  MathSciNet  Google Scholar 

  • Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemo-metrics regression tools (with discussion). Technometrics 35 109–148.

    Article  MATH  Google Scholar 

  • Friedman, J. H. (1985). Classification and multiple response regression through projection pursuit. Stanford University, Department of Statistics, Technical Report LCS012.

    Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Ann. Statist. 19 1–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman, J. H. (1993). Estimating functions of mixed ordinal and categorical variables using adaptive splines. In: New Directions in Statistical Data Analysis and Robustness, Morgenthaler, Ronchetti, and Stahel, eds. Birkhauser

    Google Scholar 

  • Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76 817–823.

    Article  MathSciNet  Google Scholar 

  • Furnival, G. M. and Wilson, R. M. (1974). Regression by leaps and bounds. Technometrics 16 499–512.

    Article  MATH  Google Scholar 

  • Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization. Academic Press.

    MATH  Google Scholar 

  • Girosi, F., Jones, M. and Poggio, T (1993). Priors, stabilizers and basis functions: from regularization to radial, tensor, and additive splines. Massachusetts Institute of Technology Artificial Intelligence Laboratory Technical Report A. I. 1430.

    Google Scholar 

  • Hastie, T., Buja, A., and Tibshirani, R. (1992). Flexible discriminant analysis. J. Amer. Statist. Assoc. (to appear).

    Google Scholar 

  • Holland, J. (1975). Adaptation in Artificial and Neural Systems. University of Michigan Press. Ann Arbor, MI.

    Google Scholar 

  • Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk. USSR 114 953–956 (In Russian).

    MATH  MathSciNet  Google Scholar 

  • Lippmann, R. (1989). Pattern classification using neural networks. IEEE Communications Magazine 11 47–64.

    Article  Google Scholar 

  • Lorentz, G. G. (1986). Approximation of Functions. Chelsea, New York, NY.

    MATH  Google Scholar 

  • Mallows, C. L. (1973). Some comments on C p . Technometrics 15 661–675.

    Article  MATH  Google Scholar 

  • Moody, J. E. (1992). The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In Advances in Neural Information Processing Systems 4, Moody, Hanson, and Lippmann, eds., Morgan Kaufmann Publishers, San Mateo, CA.

    Google Scholar 

  • Ripley, B. D. (1994). Neural networks and related methods for classification (with discussion). J. Roy. Statist. Soc. B 56 (to appear).

    Google Scholar 

  • Rissanen, Y. (1983). A universal prior for integers and estimation by minimum description length. Ann. Statist. 6 416–431.

    Article  MathSciNet  Google Scholar 

  • Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Rumelhart, McClelland, eds. MIT Press, Cambridge, MA.

    Google Scholar 

  • Schwartz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464.

    Article  MathSciNet  Google Scholar 

  • Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • Weigend, A. S., Huberman, B. A. and Rumelhart, D. (1991). Predicting the future: a connectionist approach. Intl. J. Neural Syst. 1 193–209.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedman, J.H. (1994). An Overview of Predictive Learning and Function Approximation. In: Cherkassky, V., Friedman, J.H., Wechsler, H. (eds) From Statistics to Neural Networks. NATO ASI Series, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79119-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79119-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79121-5

  • Online ISBN: 978-3-642-79119-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics