Skip to main content

The Development and Maintenance of Rotation in Convective Storms

  • Conference paper
Intense Atmospheric Vortices

Part of the book series: Topics in Atmospheric and Oceanographic Sciences ((TATM))

Abstract

The recent availability of doppler radar for observations of convective storms has produced convincing documentation of the importance of rotating storms and their close association with severe weather. Although not all severe thunderstorms rotate, an operational evaluation study conducted at NOAA’s National Severe Storms Laboratory showed that most of the storms containing meso-cyclones identifiable by doppler radar produced either tornadoes or large hail within an hour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asai, T. 1970 Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48, 129–135

    Google Scholar 

  • Asai, T. and I. Nakasuji 1973 On the stability of Ekman boundary layer flow with thermally unstable stratification. J. Meteor. Soc. Japan, 51, 29–42

    Google Scholar 

  • Browning, K. A. 1964 Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639

    Article  ADS  Google Scholar 

  • Fujita, T. and H. Grandoso, 1966 Split of a thunderstorm into anti-cyclonic and cyclonic storms and their motion as determined from numerical model experiments. J. Atmos. Sci., 25, 416–439

    Article  ADS  Google Scholar 

  • Hane, C. E. 1973 The squall line thunderstorm: numerical experimentation. J. Atmos. Sci., 30, 1672–1690

    Article  ADS  Google Scholar 

  • Klemp, J. B. and R. B. Wilhelmson, 1978a The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096

    Article  ADS  Google Scholar 

  • Klemp, J. B. and R. B. Wilhelmson, 1978b Simulations of right and left moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097–1110

    Article  ADS  Google Scholar 

  • Klemp, J. B., R. B. Wilhelmson and P. S. Ray 1981 Observed and numerically simulated structure of a mature supercell thunder-storm. J. Atmos. Sci., to appear, August issue

    Google Scholar 

  • Lilly, D. K. 1979 The dynamical structure and evolution of thunder-storms and squall lines. Ann. Rev. Earth Planet. Sci., 7 ,117–161

    Article  ADS  Google Scholar 

  • Marroquin, A. and D. J. Raymond 1981 A linearized convective over-turning model for prediction of thunderstorm movement. Submitted to J. Atmos. Sci

    Google Scholar 

  • Newton, C. W. and S. Katz 1958 Movement of large convective rainstorms in relation to winds aloft. Bull. Amer. Meteor. Soc., 39, 129–136

    Google Scholar 

  • Orville, H. D. and F. J. Kopp 1977 Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34, 1596–1618

    Article  ADS  Google Scholar 

  • Raymond, D. J. 1975 A model for predicting the movement of continuously propagating convective storms. J. Atmos. Sci., 32, 1308–1317

    Article  ADS  Google Scholar 

  • Raymond, D. J. 1976 Wave-CISK and convective mesosystems. J. Atmos. Sci, 33, 2392–2398

    Article  ADS  Google Scholar 

  • Rotunno, R. 1981 On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577–586

    Article  ADS  Google Scholar 

  • Rotunno, R. and J. B. Klemp 1981 The influence of the shear-induced pressure gradient on thunderstorm motion. Submitted to Mon. Wea. Rev

    Google Scholar 

  • Schlesinger, R. E. 1978 A three-dimensional numerical model of an isolated thunderstorm: Part I. Comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35, 690–713

    Article  ADS  MathSciNet  Google Scholar 

  • Schlesinger, R. E. 1980 A three-dimensional numerical model of an isolated thunderstorm: Part II. Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395–420

    Article  ADS  Google Scholar 

  • Takeda, T. 1971 Numerical simulation of a precipitating convective cloud: the formation of a “long-lasting” cloud. J. Atmos. Sci., 28, 350–376

    Article  ADS  Google Scholar 

  • Weisman, M. A. and J. B. Klemp 1981 The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Submitted to Mon. Wea. Rev

    Google Scholar 

  • Wilhelmson, R. B. and J. B. Klemp 1978 A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35, 1974–1986

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lilly, D.K. (1982). The Development and Maintenance of Rotation in Convective Storms. In: Bengtsson, L., Lighthill, J. (eds) Intense Atmospheric Vortices. Topics in Atmospheric and Oceanographic Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81866-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81866-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11657-8

  • Online ISBN: 978-3-642-81866-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics