Skip to main content

Representation and Control in Vision

  • Conference paper
Pictorial Data Analysis

Part of the book series: NATO ASI Series ((NATO ASI F,volume 4))

Abstract

One of the central issues in vision is how to represent and use knowledge relevant to understanding the image. Partly because vision is so difficult, and partly because even the cheapest solutions can still be so useful, approaches to vision problems have had a tendency to be ad hoc and heuristic. Recently, however, new thrusts in computer vision are emerging, most notably in the Image Understanding community, that try to pursue more systematic and computational approaches. [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artificial Intelligence. Special Issue on Vision. North-Holland, 1981.

    Google Scholar 

  2. Ballard, D. H., Brown, C. M. and Feldman, J. A. An Approach to Knowledge-Directed Image Analysis. Computer Vision Systems, New York, 1978, pp. 271–281.

    Google Scholar 

  3. Barrow, H. G. and Tenenbaum, J. M. Recovering Intrinsic Scene Characteristics from Images. Computer Vision Systems, New York, 1978, pp. 3–26.

    Google Scholar 

  4. Brooks, R. A. “Symbolic Reasoning among 3-D Models and 2-D Images.” Artificial Intelligence 17(1981), 285–349.

    Article  Google Scholar 

  5. Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. “The HEARSAY-II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty.” Computing Surveys 12,2 (1980).

    Article  Google Scholar 

  6. Falk, G. “Interpretation of Imperfect Line Data as a Three-Dimensional Scene.” Artificial Intelligence 3 (1972), 101–144.

    Article  MATH  Google Scholar 

  7. Fischler, M. A. and Witkin, A. P. Recovering Instrinsic Scene Characteristics from Images. Tech. Rept. Interim Technical Report, SRI International, Nov., 1981.

    Google Scholar 

  8. Hanson, A. R. and Riseman, E. M. Segmentation of Natural Scenes. Computer Vision Systems, New York, 1978, pp. 129–163.

    Google Scholar 

  9. Horn, B. K. P. “Understanding Image Intensities.” Artificial Intelligence 8 (1977), 201–231.

    Article  MATH  Google Scholar 

  10. Horn, B. K. P. and Sjoberg, R. W. “Calculating the Reflectance Map.” Applied Optics 18 (1979), 1770–1779.

    Article  Google Scholar 

  11. Ikeuchi, K. Shape from Regular Patterns (An Example of Constraint Propagation in Vision). Tech. Rept. A.I. Memo 567, Massachusetts Institute of Technology, March, 1980. Artificial Intelligence Laboratory

    Google Scholar 

  12. Ikeuchi, K. and Horn, B. K. P. “Numerical Shape from Shading and Occluding Boundaries.” Artificial Intelligence 17(1981), 141–185.

    Article  Google Scholar 

  13. Kanade, T.. Interdisciplinary Systems Research. Volume 47: Computer Recognition of Human Faces. Birkhauser Verlag, New York, 1977.

    Google Scholar 

  14. Kanade, T. “Region Segmentation: Signal vs Semantics.” Computer Graphics and Image Processing 13 (1980), 279–297.

    Article  MATH  MathSciNet  Google Scholar 

  15. Kanade, T. “Recovery of the Three-Dimensional Shape of an Object from a Single View.” Artificial Intelligence 17 (1981), 409–460.

    Article  Google Scholar 

  16. Kanade, T. and Herman, M. Incremental 3D Mosaic System. Tech. Rcpt. (in preparation), Carnegie-Mellon University Computer Science Department, 1982.

    Google Scholar 

  17. Kanade, T. and Kcndcr J. R. Mapping Image Properties into Shape Constraints: Skewed Symmetry, Affine Transformable Patterns and the Shapc-from-Tccturc Paradigm. Tech. Rcpt. CMU-CS-80-133, Carnegie-Mellon University Computer Science Department, July, 1980.

    Google Scholar 

  18. Kcndcr, J. R. Shape from Texture. Ph.D. Th., Carnegie-Mellon University Computer Science Department, 1980.

    Google Scholar 

  19. Lowe, D. G. and Binford, T. O. The Interpretation of Three-Dimensional Structure from Image Curves. Proc. 7th International Joint Conference on Artificial Intelligence, 1981, pp. 613–624.

    Google Scholar 

  20. Mackworth, A. K. “Interpreting Pictures of Polyhedral Scenes.” Artificial Intelligence 4 (1973), 121–137.

    Article  Google Scholar 

  21. Markowsky, G., Wesley, M.A. Fleshing Out Wire Frames. Tech. Rept RC 8124, IBM Research Division, February, 1980. IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

    Google Scholar 

  22. McKeown, D. M. Jr. Maps: Integrating Imagery, Terrain and Map Databases. Proc. IEEE Workshop on Applied Imagery Pattern Recognition, Sept., 1982.

    Google Scholar 

  23. Minsky, M. L. A Framework for Representing Knowledge. The Phychology of Computer Vision, New York, 1975, pp. 211–277.

    Google Scholar 

  24. Nagao, M., Matsuyama, T. and Ikeda, Y. Region Extraction and Shape Analysis of Aerial Photographs. Proc. 4th International Joint Conference on Pattern Recognition, 1978, pp. 620–628.

    Google Scholar 

  25. Nagao, M., Matsuyama, T. and Ikeda, Y. Structural Analysis of Complex Aerial Photographs. Proc. 6th International Joint Conference on Artificial Intelligence, 1979, pp. 610–616.

    Google Scholar 

  26. Ohta, Y. A Region-Oriented Image-Analysis System by Computer. Ph.D. Th., Kyoto University, March 1980.

    Google Scholar 

  27. Ohta, Y., Kanade, T. and Sakai, T. A Production System for Region Analysis. Proc. 6th International Joint Conference on Artificial Intelligence, Aug, 1979, pp. 684–686.

    Google Scholar 

  28. Ohta, Y., Kanade, T. and Sakai, T. “Color Information for Region Segmentation.” Computer Graphics and Image Processing 13 (Sept. 1980), 222–241.

    Article  Google Scholar 

  29. Rubin, S. M. “Natural Scene Recognition Using LOCUS Search.” Computer Graphics and Image Processing 13 (1980), 298–333.

    Article  Google Scholar 

  30. Shafer, S. and Kanade, T. Goniophotometry and the Reflectance Atlas. Tech. Rept (in preparation), Carnegie Mellon University, 1982.

    Google Scholar 

  31. Shafer, S. and Kanade, T. Using Shadows in Finding Surface Orientations. Tech. Rept CMU-CS-82-100, Carnegie-Mellon University, Jan., 1982.

    Google Scholar 

  32. Shafer, S., Kanade, T. and Kender, J. Gradient Space Under Orthography and Perspective. Tech. Rept CMU CS-82-123, Carnegie-Mellon University, May, 1982

    Google Scholar 

  33. Shirai, Y. Recognition of Man-Made Objects Using Edge Cues. Computer Vision Systems, Sept, 1978.

    Google Scholar 

  34. Wesley, M.A., Lozano-Pcrez, T., Lcibcrman, L.I., Levin, M.A., Grossman, D.D. “A Geometric Modeling System for Automated Mechanical Assembly.” IBM J. Res, Develop. 24 ,1 (January 1980), 64–74.

    Article  Google Scholar 

  35. Woodham, R. J. “Analyzing Images of Curved Surfaces.” Artificial Intelligence 17 (1981), 117–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanade, T. (1983). Representation and Control in Vision. In: Haralick, R.M. (eds) Pictorial Data Analysis. NATO ASI Series, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82017-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82017-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82019-9

  • Online ISBN: 978-3-642-82017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics