Skip to main content

Growth and Cellular Characteristics of Multicell Spheroids

  • Chapter
Spheroids in Cancer Research

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 95))

Abstract

Experience with culture methods for multicell spheroids has demonstrated the importance of optimizing and standardizing the growth conditions for different cell types and research objectives. Spheroid growth kinetics, cellular properties, and microenvironmental characteristics are significantly influenced by spheroid cellular metabolism and the macroenvironmental conditions during the culture period. These conditions include constituents of the culture medium, frequency of replenishment of the medium, the oxygen and glucose concentrations and geometric and convection properties in the culture flask.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker H, Holterman G, Carlsson J, Nederman T (1983) Methodological aspects of microelectrode measurements in cellular spheroids. In: Bicher HI, Bruley DF (eds) Oxygen transport to tissues, vol IV. Plenum, New York, pp 445

    Google Scholar 

  • Acker H, Holterman G, Carlsson J, Nylen T, Nederman T (1984) pH-gradients in glioma and thyroid cancer spheroids. In: Abstracts 2nd international spheroid congress. Strahlentherapie 160: 52–66

    Google Scholar 

  • Acker H, Carlsson J, Stalnacke CG (1978) Microelectrode measurements in cultured cell spheroids. Fed Proc 37: 598

    Google Scholar 

  • Allison DC, Yuhas JM, Ridolpho PF, Anderson SL, Johnson TC (1983) Cytophotometric measurement of the cellular DNA content of (H3)thymidine-labelled spheroids. Demonstration that some non-labelled cells have S and G2 DNA concent. Cell Tissue Kinet 16: 237–247

    PubMed  CAS  Google Scholar 

  • Angello JC, Hosick HL (1982) Glycosaminoglycan synthesis by mammary tumor spheroids. Biochim Biophys Res Commun 107: 1130–1137

    Article  CAS  Google Scholar 

  • Appelgren L, Peterson HI, Rosengren B (1973) Vascular and extravascular spaces in two transplantable tumors of the rat. Bibl Anat 12: 504–510

    PubMed  CAS  Google Scholar 

  • Bauer KD, Keng P, Sutherland RM (1982) Isolation of quiescent cells from multicellular tumo spheroids using centrifugal elutriation. Cancer Res 42: 72–78

    PubMed  CAS  Google Scholar 

  • Boag JW (1969) Oxygen diffusion and oxygen depletion problem in radiobiology. Curr Top Radiat Res 5: 141–195

    CAS  Google Scholar 

  • Carlsson J (1977) A proliferation gradient in three-dimensional colonies of cultured human gliom cells. Int J Cancer 20: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Carlsson J, Brunk U (1977) The fine structure of three-dimensional colonies of human glioma cells agarose culture. Acta Pathol Microbiol Scand 85A: 183–192

    Google Scholar 

  • Carlsson J, Stalnacke CG, Acker H, Haji-Karim M, Wilson S, Larsson B (1979) The influence of oxygen on viability and proliferation in cellular spheroids. Int J Rad Oncol Biol Phys 5: 2011–2020

    Article  CAS  Google Scholar 

  • Carlsson J, Nilsson K, Westermark B, Panten J, Sundstrom C, Larsson E, Bergh J, Pahlman S, Busch C, Collins VP (1983) Formation and growth of multicellular spheroids of human origin. Int J Cancer 31: 523–533

    Article  PubMed  CAS  Google Scholar 

  • Conger AD, Ziskin MC, Wittels H (1981) Ultrasonic effects on mammalian multicellular tumo spheroids. JCU 9: 167–174

    PubMed  CAS  Google Scholar 

  • Crissman HA, Tobey RA (1974) Cell cycle analysis in twenty minutes. Science 184: 1297–1299

    Article  PubMed  CAS  Google Scholar 

  • Dalen H, Burki HJ (1971) Some observations on the three-dimensional growth of L5178Y cell colonies in soft agar culture. Exp Cell Res 65: 433–438

    Article  PubMed  CAS  Google Scholar 

  • Darling JL, Oktar H, Thomas DGT (1983) Multicellular tumour spheroids derived from human brai tumours. Cell Biol Int Rep 7: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Traganos R, Melamed MR (1981) New cell cycle compartments identified by multiparameter flow cytometry. Cytometry 1: 98–108

    Article  Google Scholar 

  • Dertinger H, Hiilser D (1981) Increased radioresistance of cells in culture multicell spheroids. I. Dependence on cellular interaction. Radiat Environ Biophys 19: 101–107

    Google Scholar 

  • Dertinger H, Hinz G, Jakobs KH (1982) Intercellular communication, three-dimensional cell contac and radiosensitivity. Biophys Struct Mech 9: 89–93

    Article  PubMed  CAS  Google Scholar 

  • Dorie MJ, Kallman RF, Rapacchietta DF, Van Antwerp D, Huang YR (1982) Migration and internalization of cells and polystyrene microspheres in tumor cell spheroids. Exp Cell Res 141: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Durand RE (1975) Isolation of cell subpopulations from in vitro tumor models according to sedimentation velocity. Cancer Res 35: 1295 - 1300

    PubMed  CAS  Google Scholar 

  • Durand RE (1976) Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet 9: 403–412

    PubMed  CAS  Google Scholar 

  • Durand RE (1978) Effects of hyperthermia on the cycling, noncycling, and hypoxic cells of irradiated and unirradiated multicell spheroids. Radiat Res 75: 373–384

    Article  PubMed  CAS  Google Scholar 

  • Durand RE (1980) Variable radiobiological responses of spheroids. Radiat Res 81:85–99 Durand RE (1982) Use of Hoechst-33342 for cell selection from multicell systems. J Histochem Cytochem 30: 117–122

    Article  Google Scholar 

  • Durand RE, Sutherland RM (1972) Effects of intercellular contact on repair of radiation damage. Exp Cell Res 71: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Durand RE, Sutherland RM (1973) Dependence of the radiation response of an in vitro tumor model on cell cycle effects. Cancer Res 33: 213–219

    PubMed  CAS  Google Scholar 

  • Durand RE, Sutherland RM (1975) Intercellular contact: its influence on the Dq of mammalian cells survival curves. In: Alper T (ed) Cell survival after low doses of radiation. Sixth L. H. Gray Conference, Bedford College, London. Wiley, New York, pp 237–247

    Google Scholar 

  • Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138: 745–753

    Article  PubMed  CAS  Google Scholar 

  • Ford DK, Yerganian G (1958) Observations on the chromosomes of Chinese hamster cells in tissue culture. J Natl Cancer Inst 21: 393–425

    PubMed  CAS  Google Scholar 

  • Franko AJ, Koch C (1983) The radiation response of hypoxic cells in suspension culture does model data from EMT6 tumours. Radiat Res 96: 497–504

    Article  PubMed  CAS  Google Scholar 

  • Franko AJ, Sutherland RM (1978) Rate of death of hypoxic cells in multicell spheroids. Radiat Res 76: 561–572

    Article  PubMed  CAS  Google Scholar 

  • Franko AJ, Sutherland RM (1979a) Oxygen diffusion distance and development of necrosis in muticell spheroids. Radiat Res 79: 439–453

    Article  PubMed  CAS  Google Scholar 

  • Franko AF, Sutherland RM (1979b) Radiation survival of cells from spheroids grown in different oxygen concentrations. Radiat Res 79: 454–467

    Article  PubMed  CAS  Google Scholar 

  • Freyer JP (1984) Role of necrosis in saturation of spheroid growth. In: Abstracts 2nd international spheroid congress. Strahlentherapy 160: 52–66

    Google Scholar 

  • Freyer JP, Sutherland RM (1980) Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res 40: 3956–3965

    PubMed  CAS  Google Scholar 

  • Freyer JP, Sutherland RM (1983) Determinations of apparent diffusion constants for metabolites in multicell tumor spheroids. In: Bicher HI, Bruley DF (eds) Oxygen transport in tissue-IV. Plenum, New York, p 463

    Google Scholar 

  • Freyer JP, Sutherland RM (1984) Effects of oxygen and glucose on spheroid growth. In: Abstracts 2nd international spheroid congress, Strahlentherapie 160: 52–66

    Google Scholar 

  • Freyer JP, Tustanoff E, Franko AJ, Sutherland RM (1984) In situ oxygen consumption rates of cells in V-79 multicellular spheroids during growth. J Cell Physiol 118: 53–61

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht JL, Wilson WR, Hill RP (1981) Radiobiological studies of cells in multicellular spheroids using a sequential trypsinizing technique. Radiat Res 86: 368–386

    Article  PubMed  CAS  Google Scholar 

  • Grdina DS, Milas L, Mason K, Withers HR (1974) Separation of cells from a fibrosarcoma in Renografin density gradients. J Natl Cancer Inst 52: 253–257

    PubMed  CAS  Google Scholar 

  • Haji-Karim M, Carlsson J (1978) Proliferation and viability in cellular spheroids of human origin. Cancer Res 38: 1457–1464

    PubMed  CAS  Google Scholar 

  • Hetzel FW, Brown M, Kaufman N, Bicher HI (1981) Radiation sensitivity modification by chemotherapeutic agents. Cancer Clin Trials 4: 177–182

    PubMed  CAS  Google Scholar 

  • Hiilser DF, Brummer F (1982) Closing and opening of gap junctions pores between two- and three dimensionally cultured tumor cells. Biophys Struct Mech 9: 83–88

    Article  Google Scholar 

  • Inch WR, McCredie JA, Sutherland RM (1970) Growth of nucular carcinomas in rodents compared with multicell spheroids in tissue culture. Growth 34: 271–282

    PubMed  CAS  Google Scholar 

  • Kaufman N, Bicher HI, Hetzel FW, Brown M (1981) A system for determining the pharmacology of indirect radiation sensitizer drugs on multicellular spheroids. Cancer Clin Trials 4: 199–204

    PubMed  CAS  Google Scholar 

  • Keng PC, Li CKN, Wheeler KT (1980) Synchronization of 9L rat brain tumor cells by centrifugal elutriation. Cell Biophys 2: 191–206

    PubMed  CAS  Google Scholar 

  • Keng PC, Li CKN, Wheeler KT (1981a) Characterization of the separation properties of the Beckman elutriation system. Cell Biophys 3: 41–56

    Article  PubMed  CAS  Google Scholar 

  • Keng PC, Wheeler KT, Siemann DW, Lord EM (1981b) Synchronization of cells from solid tumors by centrifugal elutriation. Exp Cell Res 134: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Bakay L (1971) The extracellular space in experimental brain tumors. Acta Neurol Scand 47: 307–314

    Article  PubMed  CAS  Google Scholar 

  • Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66: 188–198

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Freyer JP, Sutherland RM (1981) Shedding of mitotic cells from multicellular spheroids during growth. J Cell Phys 106: 23–32

    Article  CAS  Google Scholar 

  • Landry J, Lord E, Sutherland RM (1982) In vivo growth of tumor cell spheroids after in vitro hyperthermia. Cancer Res 42: 93–99

    PubMed  CAS  Google Scholar 

  • Lees RK, Sordat B, MacDonald HR (1981) Multicellular tumor spheroids of human colon carcinoma origin. Exp Cell Biol 49: 207–219

    PubMed  CAS  Google Scholar 

  • Li CKN (1982a) The glucose distribution in 9L rat brain multicell tumor spheroids and its effect on cell necrosis. Cancer 50: 2066–2073

    Article  PubMed  CAS  Google Scholar 

  • Li CKN (1982b) The role of glucose in the growth of 9L multicellular tumor spheroids. Cancer 50: 2074–2078

    Article  PubMed  CAS  Google Scholar 

  • Luk C, Bauer KD, Sutherland RM (1984) Comparison of subpopulations of cells isolated from EMT6/R0 monolayers and multicell spheroids using density gradient centrifugation. In: Abstracts 2nd international spheroid congress, Dortmund. Strahlentherapie 160: 52–66

    Google Scholar 

  • Luk GD, Goodwin G, Marton LJ, Baylin SB (1981) Polyamines are necessary for the survival of human small-cell lung carcinoma in culture. Proc Natl Acad Sci 78: 2355–2358

    Article  PubMed  CAS  Google Scholar 

  • McAllister RM, Reed G, Huebner RJ (1967) Colonial growth in agar cells derived from adenovirus-induced hamster tumours. J Natl Cancer 39: 43–53

    CAS  Google Scholar 

  • Melamed MR, Mullaney PF, Mendelsohn ML (1979) Flow cytometry and cell sorting. Wiley, New York

    Google Scholar 

  • Mendelsohn ML (1962) Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse III. The growth fraction. J Natl Cancer Inst 28: 1015–1029

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser WF, Sutherland RM (1982a) Influence of convection in the growth medium on oxygen tensions in multicell tumor spheroids. Cancer Res 42: 237–242

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser WF, Sutherland RM (1982b) Oxygen tensions in multicell spheroids of two cell lines at different stages of growth. Br J Cancer 45: 256–264

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Klieser W, Freyer JP, Sutherland RM (1983) Evidence for a major role of glucose in controlling development of necrosis in EMT6/R0 multicell spheroids. In: Bicher HI, Bruley DF (eds) Oxygen transport to tissue — vol IV. Plenum, New York, p 487

    Google Scholar 

  • Mulcahy RT, Penney D, Rosenkrans W (1984) The growth and morphology of normal, differentiated rat thyroid cells grown as multicell spheroids. In: Abstracts 2nd international spheroid congress. Strahlentherapie 160: 52–66

    Google Scholar 

  • Nederman T, Carlsson J, Malmquist M (1981) Penetration of substances into tumor tissue — a methodological study on cellular spheroids. In Vitro 17: 290–298

    Google Scholar 

  • Nederman T, Norling B, Glimelins B, Carlsson J, Brunk V (1984) Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res

    Google Scholar 

  • Ng CE, Inch WR (1978) Comparison of the densities of clonogenic cells from EMT6 fibrosarcoma monolayer cultures, multicell spheroids, and solid tumors in Ficoll density gradients. J Natl Cancer Inst 60: 1017–1022

    PubMed  CAS  Google Scholar 

  • Rockwell SC, Kallman RF, Fajardo LF (1972) Characteristics of a serially-transplanted mouse mammary tumor and its tissue culture adapted derivative. J Natl Caner Inst 49: 735–747

    CAS  Google Scholar 

  • Sacks PG, Miller MW, Sutherland RM (1981) Influences of growth conditions and cell-cell contact on responses of tumor cells to ultrasound. Radiat Res 87: 175–186

    Article  PubMed  CAS  Google Scholar 

  • Shymko RM, Glass L (1976) Cellular and geometric control of tissue growth and mitotic instability. J Theor Biol 63: 355–374

    Article  PubMed  CAS  Google Scholar 

  • Sutherland RM, Durand RE (1976) Radiation effects on mammalian cells grown as an in vitro tumor model. Curr Top Radiat Res 11: 87–139

    CAS  Google Scholar 

  • Sutherland RM, Franko A J (1980) On the nature of the radiobiologically hypoxic fraction in tumors. Int J Radiat Oncol Biol Phys 6: 117–120

    PubMed  CAS  Google Scholar 

  • Sutherland RM, McCredie JA, Inch WR (1971) Growth of multicell spheroids in tisue culture as a model of nodular carcinomas. J Natl Cancer Inst 46: 113–120

    PubMed  CAS  Google Scholar 

  • Sutherland RM, Carlsson J, Durand R, Yuhas J (1981) Spheroids in cancer research. Cancer Res 41: 2980–2994

    Google Scholar 

  • Traganos F, Darzynkiewicz Z, Sharpless T, Melamed MR (1977) Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system. J Histochem Cytochem 25: 46–56

    Article  PubMed  CAS  Google Scholar 

  • Vaupel PW, Frinak S, Bicher HI (1981) Heterogeneous oxygen-partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41: 2008–2013

    PubMed  CAS  Google Scholar 

  • Whillans DW, Rauth AM (1980) An experimental and analytical study of oxygen depletion in stirred cell suspensions. Radiat Res 84: 97–114

    Article  PubMed  CAS  Google Scholar 

  • Wibe E (1980) Resistance to vincristine of human cells grown as multicellular spheroids. Br J Cancer 42: 937–941

    Article  PubMed  CAS  Google Scholar 

  • Wibe E, Lindmo T, Kaalhuf O (1981) Cell kinetic characteristics in different parts of multicellular spheroids of human origin. Cell Tissue Kinet 4: 639–651

    Google Scholar 

  • Wigle JC, Freyer JP, Sutherland RM (1983a) Use of a sedimentation column to obtain uniformly sized populations of multicell spheroids. In Vitro 19: 361–366

    Google Scholar 

  • Wigle JC, Sacks PG, Keng PC, Sutherland RM (1983b) Evaluation of the effect of intercellular contact on the response to hyperthermia and ultrasound. In: Abstracts 2nd international spheroid congress, Dortmund. Strahlentherapie 160: 27

    Google Scholar 

  • Yuhas JM, Li AP (1978) Growth fractions as the major determinant of multicellular tumor spheroid growth rates. Cancer Res 38: 1528–1532

    PubMed  CAS  Google Scholar 

  • Yuhas JM, Tarleton AE (1978) Dormancy and spontaneous recurrences of human breast cancer in vitro. Cancer Res 38: 3584–3589

    PubMed  CAS  Google Scholar 

  • Yuhas JM, Li AP, Martinez AO, Ladman A J (1977) A simplified method for production and growth of multicellular tumor spheroids. Cancer Res 37: 3639–3643

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sutherland, R.M., Durand, R.E. (1984). Growth and Cellular Characteristics of Multicell Spheroids. In: Acker, H., Carlsson, J., Durand, R., Sutherland, R.M. (eds) Spheroids in Cancer Research. Recent Results in Cancer Research, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82340-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82340-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82342-8

  • Online ISBN: 978-3-642-82340-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics