Skip to main content

Metabolism and Analysis of Caffeine and Other Methylxanthines in Coffee, Tea, Cola, Guarana and Cacao

  • Chapter
Analysis of Nonalcoholic Beverages

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 8))

Abstract

The widespread natural occurrence of purine alkaloids — caffeine and other methylxanthines such as theobromine and theophylline (Fig. 1) — in a variety of plants undoubtedly played a major role in the long-standing popularity of caffeine-containing products, especially nonalcoholic beverages and foods (coffee, tea, soft drinks, cocoa and chocolate products, etc.). More than 60 plant species throughout the world have been identified as containing caffeine; the more common are from the genera Coffea, Camellia, Cola, Paullinia, Ilex, and Theobroma (Kihlman 1977). It is not claimed that this summary is complete, since almost every year corrections are made or new plants are found to contain caffeine; for instance, the occurrence of caffeine in citrus flowers and leaves has been reported recently (Stewart 1985). Further, the list of purine alkaloids has recently been extended by the discovery of three methyluric acids (Fig. 1) in the genus Coffea (Pe-termann and Baumann 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JD (1979) Purine nucleotide metabolism of germinating soybean embryonic axes. Plant Physiol 63:100–104

    PubMed  CAS  Google Scholar 

  • Anderson L, Gibbs M (1962) The biosynthesis of caffeine in the coffee plant. J Biol Chem237:1941–1944

    PubMed  CAS  Google Scholar 

  • Arnaud MJ (1984) Products of metabolism of caffeine. In: Dews PB (ed) Caffeine. Springer, Berlin Heidelberg New York, pp 3–38

    Google Scholar 

  • Ashihara H, Kubota H (1986) Patterns of adenine metabolism and caffeine biosynthesis in different parts of tea seedlings. Physiol Plant 68:275–281

    CAS  Google Scholar 

  • Ashihara H, Kubota H (1987) Biosynthesis of purine alkaloids in Camellia plants. Plant Cell Physiol 28:535–539

    CAS  Google Scholar 

  • Ashihara H, Nobusawa E (1981) Metabolic fate of [8-14C]-adenine and [8-14C]-hypoxan-thine in higher plants. Z Pflanzenphysiol 104:443–471

    CAS  Google Scholar 

  • Ashoor SH, Seperich GJ, Monte WC, Welty J (1983) High performance liquid Chromatographic determination of caffeine in decaffeinated coffee, tea, and beverage products. J Assoc Off Anal Chem 66:606–609

    PubMed  CAS  Google Scholar 

  • Baltassat F, Darbour N, Ferry S (1984) Étude du contenu purique de drogues à caféine: 1. Le maté: Ilexparaguariensis Lamb. Plantes Med Phytother 18:195–203

    CAS  Google Scholar 

  • Baltassat F, Darbour N, Ferry S (1985) Étude du contenu purique de drogues à caféine: 2. Le Guarana, Paullinia sorbilis Mart. Plantes Med Phytother 19:68–74

    CAS  Google Scholar 

  • Barone JJ, Roberts H (1984) Human consumption of caffeine. In: Dews PB (ed) Caffeine. Springer, Berlin Heidelberg New York, pp 59–73

    Google Scholar 

  • Baumann TW (1986) Biotechnology, its potential for the growth and manufacture of coffee. In: 11e Coll Sci Int Sur le Café. 11–15 Feb 1985, Rome, pp 55–68

    Google Scholar 

  • Baumann TW, Frischknecht PM (1982) Biosynthesis and biodégradation of purine alkaloids in tissue cultures. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 365–366

    Google Scholar 

  • Baumann TW, Frischknecht PM (1987) Purines. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 5. Academic Press, London New York (in press)

    Google Scholar 

  • Baumann TW, Gabriel H (1984) Metabolism and excretion of caffeine during germination of Coffea arabica L. Plant Cell Physiol 25:1431–1436

    CAS  Google Scholar 

  • Baumann TW, Wanner H (1972) Untersuchungen über den Transport von Kaffein in der Kaffeepflanze (Coffea arabica). Planta 108:11–20

    CAS  Google Scholar 

  • Baumann TW, Dupont-Looser E, Wanner H (1978) 7-Methylxanthosine — an intermediate in caffeine biosynthesis. Phytochemistry 17:2075–2076

    CAS  Google Scholar 

  • Baumann TW, Koetz R, Morath P (1983) N-Methyltransferase activities in suspension cultures of Coffea arabica L. Plant Cell Rep 2:33–35

    CAS  Google Scholar 

  • Belliardo F, Martelli A, Valle MG (1985) HPLC determination of caffeine and theophyl-line in Paullinia cupana Kunth (guarana) and Cola spp. samplesPlant Cell Rep. Z Lebensm Unters Forsch 180:398–401

    PubMed  CAS  Google Scholar 

  • Bhattacharyya AK, Ghosh JJ (1968) Studies on the ribonucleic acids of fresh and processed tea leaves. Biochem J 108:121–124

    PubMed  CAS  Google Scholar 

  • Blauch JL, Tarka SM Jr. (1983) HPLC determination of caffeine and theobromine in coffee, tea, and instant hot cocoa mixes. J Food Sci 48:745–747, 750

    CAS  Google Scholar 

  • Bresler HW (1904) Über die Bestimmung der Nucleinbasen im Safte von Beta vulgaris. Hoppe Seyler’s Z Physiol Chem 4:535–541

    Google Scholar 

  • Chou C-H, Waller GR (1980 a) Isolation and identification by mass spectrometry of phy-totoxins in Coffea arabica. Bot Bull Acad Sin 21:25–34

    CAS  Google Scholar 

  • Chou C-H, Waller GR (1980 b) Possible allelopathic constituents of Coffea arabica. J Chem Ecol 6:643–654

    CAS  Google Scholar 

  • Christensen HD, Neims AH (1984) Measurement of caffeine and its metabolites in biological fluids. In: Dews PB (ed) Caffeine. Springer, Berlin Heidelberg New York, pp 39–47

    Google Scholar 

  • Clifford NM, Willson KC (eds) (1986) Coffee: botany, biochemistry and production of beans and beverage. AVI, Westport, Conn

    Google Scholar 

  • Cloughley JB (1982) Factors influencing the caffeine content of black tea: Part 1 — The effect of field variables. Food Chem 9:269–276

    CAS  Google Scholar 

  • Cloughley JB (1983) Factors influencing the caffeine content of black tea: Part 2 — The effect of production variables. Food Chem 10:25–34

    CAS  Google Scholar 

  • Cossins EA (1980) One-carbon metabolism. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 2. Academic Press, London New York, pp 365–418

    Google Scholar 

  • Craig WJ, Nguyen TT (1984) Caffeine and theobromine levels in cocoa and carob products. J Food Sci 49:302–305

    CAS  Google Scholar 

  • Curatolo PW, Robertson D (1983) The health consequences of caffeine. Ann Intern Med98:641–653

    PubMed  CAS  Google Scholar 

  • De GN, Ghosh JJ, Bhattacharyya KC (1972) Ribonucleic acid from coffee beans. Phyto-chemistry 11:3349–3353

    CAS  Google Scholar 

  • de Romero ICL, Waller GR (1988) Production of a new compound by metabolism of theo-phylline in Coffea arabica L. Rev Latinoamer Quim 19:46–50(1988)

    Google Scholar 

  • Dews PB (ed) (1984) Caffeine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eijk JL van (1952) Phytochemical investigation of Er odium cicutarium. Pharm Weekbl 87:425-432

    Google Scholar 

  • Friedman J, Waller GR (1983 a) Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.). J Chem Ecol 9:1099–1106

    CAS  Google Scholar 

  • Friedman J, Waller GR (1983 b) Seeds as allelopathic agents. J Chem Ecol 9:1107–1117

    CAS  Google Scholar 

  • Friedman J, Waller GR (1985) Allelopathy and autotoxicity. Trends Biochem Sci10:47–50

    CAS  Google Scholar 

  • Frischknecht PM, Baumann TW (1985) Stress induced formation of purine alkaloids in plant tissue culture. Phytochemistry 24:2255–2257

    CAS  Google Scholar 

  • Frischknecht PM, Eller BM, Baumann TW (1982) Purine alkaloid formation and CO2 gas exchange in dependence of development and of environmental factors in leaves of Coffea arabica L. Planta 156:295–301

    CAS  Google Scholar 

  • Frischknecht PM, Ulmer-Dufek J, Baumann TW (1986) Purine alkaloid formation in buds and developing leaflets of Coffea arabica: expression of an optimal defence strategy? Phytochemistry 25:613–616

    CAS  Google Scholar 

  • Fukuhara K, Matsuki Y, Nanbara T (1985) Simultaneous determination of theobromine, theophylline and caffeine in foods by high performance liquid chromatography. J Food Hyg Soc Jpn 20:208–212(in Japanese with English summary)

    Google Scholar 

  • Grossman EM (1984) Some methodological issues in the conduct of caffeine research. Food Chem Toxicol 22:245–249

    PubMed  CAS  Google Scholar 

  • Hurst WJ, Snyder KP, Martin RA Jr (1985) Use of microbore high-performance liquid chromatography for the determination of caffeine, theobromine and theophylline in cocoa. J Chromatogr 318:408–411

    PubMed  CAS  Google Scholar 

  • Inoue T (1972) Studies on biogenesis of tea components. IV. Incorporation of glycine-2-14C to caffeine. Proc Hoshi College Pharm 13:60–62(in Japanese with English summary)

    Google Scholar 

  • Inoue T, Adachi F (1962) Studies on biogenesis of tea components. III. The origin of the methyl groups in caffeine. J Pharm Soc Jpn 10:1212–1214

    CAS  Google Scholar 

  • Johnson TW (1937) Purines in plant kingdom: the discovery of a new purine in tea. J Am Chem Soc 59:1261–1264

    CAS  Google Scholar 

  • Kalberer P (1964) Untersuchungen zum Abbau des Kaffeins in den Blättern von Coffea arabica. Ber Schweiz Bot Ges 74:62–107

    CAS  Google Scholar 

  • Kalberer P (1965) Breakdown of caffeine in the leaves of Coffea arabica L. Nature 205:597–598

    CAS  Google Scholar 

  • Rappeler AW, Baumann TW (1986) Purine alkaloid pattern in coffee beans. In: IIe Coll Sci Int Sur le Café. 11–15 Feb 1985, Rome, pp 273–279

    Google Scholar 

  • Keller H, Wanner H, Baumann TW (1972) Kaffeinsynthese in Früchten und Gewebekulturen von Coffea arabica. Planta 108:339–350

    CAS  Google Scholar 

  • Kihlman (1977) Caffeine and chromosomes. Elsevier, Amsterdam

    Google Scholar 

  • Konishi S, Inoue T, Takahashi E (1972 a) Localization of the carbon in caffeine biosynthe-sized from TV-methyl carbon of γ-glutamylmethylamide in tea plants. Plant Cell Physiol 13:695–702

    CAS  Google Scholar 

  • Konishi S, Ozasa M, Takahashi E (1972 b) Metabolic conversion of N-methyl carbon of γ-glutamylmethylamide to caffeine in tea plants. Plant Cell Physiol 13:365–375

    CAS  Google Scholar 

  • Looser E, Baumann TW, Wanner H (1974) The biosynthesis of caffeine in the coffee plant. Phytochemistry 13:2515–2518

    CAS  Google Scholar 

  • Markham R (1955) Nucleic acids, their components and related compounds. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol 4. Springer, Berlin GÖttingen Heidelberg, pp 246–304

    Google Scholar 

  • Miles CI (1983) Biological effects of caffeine: FDA status. Food Technol 37:48–50

    Google Scholar 

  • Nagata T (1986) Differences in caffeine, flavanols and amino acids contents in leaves of cultivated species and hybrids in the genus Camellia. Jpn Agric Res Q 19:276–280

    CAS  Google Scholar 

  • Nagata T, Sakai S (1984) Differences in caffeine, flavanols and amino acids contents in leaves of cultivated species of Camellia. Jpn J Breed 34:459–467

    CAS  Google Scholar 

  • Nagata T, Sakai S (1985 a) Caffeine, flavanol and amino acid contents in leaves of hybrids and species of the section Dubiae in the Genus Camellia. Jpn J Breed 35:1–8

    CAS  Google Scholar 

  • Nagata T, Sakai S (1985 b) Purine base pattern of Camellia irrawadiensis. Phytochemistry24:2271–2272

    CAS  Google Scholar 

  • Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occuring pesticides. Science 226:184–187

    PubMed  CAS  Google Scholar 

  • Negishi O, Ozawa T, Imagawa H (1985 a) Conversion of xanthosine into caffeine in tea plants. Agric Biol Chem 49:251–253

    CAS  Google Scholar 

  • Negishi O, Ozawa T, Imagawa H (1985 b) Methylation of xanthosine by tea-leaf extracts and caffeine biosynthesis. Agric Biol Chem 49:887–890

    CAS  Google Scholar 

  • Negishi O, Ozawa T, Imagawa H (1985 c) The role of xanthosine in the biosynthesis of caffeine in coffee plants. Agric Biol Chem 49:2221–2222

    CAS  Google Scholar 

  • Nobusawa E, Ashihara H (1983) Purine metabolism in cotyledons and embryonic axes of black gram (Phaseolus mungo L.) seedlings. Int J Biochem 15:1059–1065

    CAS  Google Scholar 

  • O’Connell FD (1969) Isolation of caffeine from Banisteriopsis inebrians (Malpighiaceae). Naturwissenschaften 56:139

    PubMed  Google Scholar 

  • Ogutuga DBA, Northcote DH (1970 a) Biosynthesis of caffeine in tea callus tissue. Biochem J 117:715–720

    PubMed  CAS  Google Scholar 

  • Ogutuga DBA, Northcote DH (1970 b) Caffeine formation in tea callus tissue. J Exp Bot 21:258–273

    CAS  Google Scholar 

  • Owuor PO, Chavanji AM (1986) Caffeine contents of clonal tea; seasonal variations and effects of plucking standards under Kenyan conditions. Food Chem 20:225–233

    CAS  Google Scholar 

  • Petermann JB, Baumann TW (1983) Metabolic relations between methylxanthines and methyluric acids in Coffea L. Plant Physiol 73:961–964

    PubMed  CAS  Google Scholar 

  • Petermann JB, Baumann TW, Wanner H (1977) A new tetramethyluric acid from Coffea liberica and C. dewevrei. Phytochemistry 16:620–621

    CAS  Google Scholar 

  • Poulton JE (1981) Transmethylation and demethylation reactions in the metabolism of secondary plant products. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 7. Academic Press, London New York, pp 667–723

    Google Scholar 

  • Proiser (Preusser) P, Serenkov GP (1963) On caffeine biosynthesis in tea leaves. Biokhimiya 28:857–861(in Russian with English summary)

    CAS  Google Scholar 

  • Reid SJ, Good TJ (1982) Use of Chromatographic mode sequencing for sample preparation in the analysis of caffeine and theobromine from beverages. J Agric Food Chem 30:775–778

    CAS  Google Scholar 

  • Rizvi SJH, Padney SK, Mukerji D, Mathus SN (1980) 1,3,7-Trimethylxanthine, a new chemosterilant for stored grain pest Callosobruchus chinensis. Z Angew Entomol 90:378–380

    CAS  Google Scholar 

  • Roberts MF, Waller GR (1979) N-Methyltransferases and 7-methyl-N 9-nucleoside hydro-lase activity in Coffea arabica and the biosynthesis of caffeine. Phytochemistry 18:451–455

    CAS  Google Scholar 

  • Ross CW (1981) Biosynthesis of nucleotides. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 6. Academic Press, London New York, pp 169–205

    Google Scholar 

  • Schlee D (1973) Zur stoffwechselphysiologischen Bedeutung methylierter Xanthinderivate. Biol Rundsch 11:285–296

    CAS  Google Scholar 

  • Schlee D (1985) Alkaloids derived from purines. In: Mothes K, Schutte HR (eds) Biochemistry of alkaloids. VEB, Berlin, pp 338–350

    Google Scholar 

  • Senanayake UM, Wijesekera OB (1971) Theobromine and caffeine content of the cocoa bean during its growth. J Sci Food Agric 22:262–263

    CAS  Google Scholar 

  • SjÖberg A-M, Rajama J (1984) Simple method for determination of alkaloids in cocoa using paper chromatography and UV spectrometry. J Chromatogr 295:291–294

    PubMed  Google Scholar 

  • Spedding DJ, Wilson AT (1964) Caffeine metabolism. Nature 204:73

    PubMed  CAS  Google Scholar 

  • Stewart I (1985) Identification of caffeine in citrus flowers and leaves. J Agric Food Chem33:1163–1165

    CAS  Google Scholar 

  • Suzuki T (1972) The participation of S-adenosylmethionine in the biosynthesis of caffeine in the tea plant. FEBS Lett 24:18–20

    CAS  Google Scholar 

  • Suzuki T (1973) Metabolism of methylamine in the tea plant (Thea sinensis L.). Biochem J 132:753–763

    PubMed  CAS  Google Scholar 

  • Suzuki T (1985 a) Purine alkaloids in Camellia sinensis flowers. Agric Biol Chem 49:2803–2805

    CAS  Google Scholar 

  • Suzuki T (1985 b) Caffeine in tea and coffee plants: biosynthesis and physiological significance in the plants. Seikagaku 57:1277–1282(in Japanese)

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takahashi E (1975 a) Biosynthesis of caffeine by tea-leaf extracts. Biochem J 146:87–96

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takahashi E (1975 b) Metabolism of xanthine and hypoxanthine in the tea plant (Thea sinensis L.). Biochem J 146:79–85

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takahashi E (1976 a) Metabolism of methionine and biosynthesis of caffeine in the tea plant (Camellia sinensis L.). Biochem J 160:171–179

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takahashi E (1976 b) Further investigation of the biosynthesis of caffeine in tea plants (Camellia sinensis L.). Biochem J 160:181–184

    PubMed  CAS  Google Scholar 

  • Suzuki T, Takahashi E (1976 c) Caffeine biosynthesis in Camellia sinensis. Phytochemistry 15:1235–1239

    CAS  Google Scholar 

  • Suzuki T, Takahashi E (1977) Biosynthesis of purine nucleotides and methylated purines in higher plants. Drug Metab Rev 6:213–242

    PubMed  CAS  Google Scholar 

  • Suzuki T, Waller GR (1980) Cell-free metabolism of caffeine in Coffea arabica. In: 23rd West Cent States Biochem Conf, 10–11 Oct, 1980, Columbia, Abstr 53

    Google Scholar 

  • Suzuki T, Waller GR (1982) Metabolism of caffeine in sterile callus tissue cultures of Coffea arabica. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 385–386

    Google Scholar 

  • Suzuki T, Waller GR (1984 a) Biodegradation of caffeine: formation of theophylline and theobromine from caffeine in mature Coffea arabica fruits. J Sci Food Agric 35:66–70

    CAS  Google Scholar 

  • Suzuki T, Waller GR (1984 b) Biosynthesis and biodégradation of caffeine, theobromine, and theophylline in Coffea arabica L. fruits. J Agric Food Chem 32:845–848

    CAS  Google Scholar 

  • Suzuki T, Waller GR (1985 a) Purine alkaloids of the fruits of Camellia sinensis L. and Coffea arabica L. during fruit development. Ann Bot 56:537–542

    CAS  Google Scholar 

  • Suzuki T, Waller GR (1985 b) Purine nucleotide compartmentation and caffeine biosynthesis in Camellia sinensis L. and Coffea arabica L. In: 13th Int Congr Biochem, 25–30 Aug 1985, Amsterdam, p 537

    Google Scholar 

  • Suzuki T, Waller GR (1985 c) Effects of light on the production and degradation of caffeine in Camellia sinensis L. seedlings. Plant Cell Physiol 26:765–768

    CAS  Google Scholar 

  • Suzuki T, Waller GR (1986 a) Total nitrogen and purine alkaloids in the tea plant throughout the year. J Sci Food Agric 37:862–866

    CAS  Google Scholar 

  • Suzuki T, Waller GR (1986 b) On the origin of the purine ring of caffeine in tea and coffee plants. Jpn J Soil Sci Plant Nutrit 57:70–72(in Japanese)

    CAS  Google Scholar 

  • Suzuki T, Waller GR (1987 a) Allelopathy due to purine alkaloids in tea seeds during germination. Plant Soil 98:131–136

    CAS  Google Scholar 

  • Suzuki T, Waller GR (1987 b) Purine alkaloids in tea seeds during germination. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. ACS Symp Ser 330, pp 289–294

    Google Scholar 

  • Svendsen AB, Verpoorte R (1983) Xanthine derivatives. In: J Chromatogr Libr 23A. El-sevier, Amsterdam, pp 435–460

    Google Scholar 

  • Takino Y, Imagawa H, Shishido K (1972) Studies on the nucleotides in tea. Part I. Nucleotides in green tea. J Food Sci Technol 19:213–218(in Japanese with English summary)

    CAS  Google Scholar 

  • Terada H, Sakabe Y (1984) High-performance liquid Chromatographic determination of theobromine, theophylline and caffeine in food products. J Chromatogr 291:453–459

    PubMed  CAS  Google Scholar 

  • Trugo LC, Macrae R, Dick J (1983) Determination of purine alkaloids and trigonelline in instant coffee and other beverages using high performance liquid chromatography. J Sci Food Agric 34:300–306

    PubMed  CAS  Google Scholar 

  • Tsushida T, Doi Y (1984) Caffeine, theanine and catechin content in calluses of tea stem and anther. J Agric Chem Soc Jpn 58:1131–1133(in Japanese with English summary)

    CAS  Google Scholar 

  • Tsushida T, Takeo T (1984) Increase of caffeine in pluckled tea shoots. J Agric Chem Soc Jpn 58:277–279(in Japanese with English summary)

    CAS  Google Scholar 

  • Verpoorte R, Svendsen AB (1984 a) Xanthine alkaloids. In: J Chromatogr Libr 23B. El-sevier, Amsterdam, pp 187–211

    Google Scholar 

  • Verpoorte R, Svendsen AB (1984 b) Xanthine alkaloids. In: J Chromatogr Libr 23B. El-sevier, Amsterdam, pp 387–414

    Google Scholar 

  • Waller GR, Dermer OC (1981) Enzymology of alkaloid metabolism in plants and microorganisms. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 7. Academic Press, London New York, pp 317–402

    Google Scholar 

  • Waller GR, Lawrence RH (1978) Isolation and determination of structures of some new diterpenoid alkaloids in Delphinium ajacis by mass spectrometry. In: Frigerio A (ed) Recent developments in mass spectrometry in biochemistry and medicine, vol 1. Plenum, New York, pp 429–439

    Google Scholar 

  • Waller GR, Nowacki EK (1978) Metabolic (catabolic) modifications of alkaloids by plants. In: Alkaloid biology and metabolism in plants. Plenum, New York, pp 183–249

    Google Scholar 

  • Waller GR, Suzuki T, Roberts MF (1981) Cell-free metabolism of caffeine in Coffea arabica. In: 9e Coll Sci Int Sur le Café. 16–20 June 1980, London, pp 627–635

    Google Scholar 

  • Waller GR, MacVean CD, Suzuki T (1983) High production of caffeine and related enzyme activities in callus cultures of Coffea arabica L. Plant Cell Rep 2:109–112

    CAS  Google Scholar 

  • Waller GR, Kumari D, Friedman J, Friedman N, Chou C-H (1986) Caffeine autotoxicity in Coffea arabica L. In: Putnam A, Tang C-S (eds) The science of allelopathy. Wiley & Sons, New York, pp 243–269

    Google Scholar 

  • Wanner H, Pesakova M, Baumann TW, Charubala R, Guggisberg A, Hesse M, Schmid H (1975) O(2),l,9-trimethyluric acid and 1,3,7,9-tetramethyluric acid in leaves of different Coffea species. Phytochemistry 14:747–750

    CAS  Google Scholar 

  • Wasternack C (1982) Metabolism of pyrimidines and purines. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, new ser, vol 14B. Springer, Berlin Heidelberg New York, pp 263–301

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, T., Waller, G.R. (1988). Metabolism and Analysis of Caffeine and Other Methylxanthines in Coffee, Tea, Cola, Guarana and Cacao. In: Linskens, HF., Jackson, J.F. (eds) Analysis of Nonalcoholic Beverages. Modern Methods of Plant Analysis, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83343-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83343-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83345-8

  • Online ISBN: 978-3-642-83343-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics