Skip to main content

The Measurement of Wall Shear Stress

  • Chapter
Advances in Fluid Mechanics Measurements

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 45))

Abstract

Knowledge of the wall shear stress is of both fundamental and practical importance. The mean stress is indicative of the overall state of the flow over a given surface while the fluctuating stress is a “footprint” of the individual processes that transfer momentum to the wall. The measurement techniques can be divided into two main categories: direct and indirect. The indirect techniques can be further divided into momentum balance methods and correlation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerberg, R.C., Patel, R.D., & Gupta, S.K., 1978. “The I-Ieat/Mass Transfer to a Finite Strip at Small Péclet Numbers”. J. Fluid Mech., 86, pp. 49–65.

    Article  MATH  ADS  Google Scholar 

  • Alfredsson, H., Johansson, A.V., Haritonidis, J.H., & Eckelmann, H., 1988. “The Fluctuating Wall-Shear Stress and the Velocity Field in the Viscous Sublayer”. Phys. Fluids, 31 pp. 1026–1033.

    Article  ADS  Google Scholar 

  • Allen, J.M., 1976. “Systematic Study of Error Sources in Supersonic Skin-Friction Balance Measurements”. NASA TN, D-8291.

    Google Scholar 

  • Allen, J.M., 1977. “Experimental Study of Error Sources in Skin Friction Balance Measurements”. J. Fluids Eng., March 1977, pp. 197–204.

    Google Scholar 

  • Allen, J.M., 1980. “Improved Sensing Element for Skin-Friction Balance Measurements”. AIAA Journal, 18 No. 11, pp. 1342–1345.

    Article  ADS  Google Scholar 

  • Bellhouse, B.J., & Schultz, D.L., 1968. “The Measurement of Fluctuating Skin Friction in Air with Heated Thin-Film Gauges”. J. Fluid Mech., 32, pp. 675–680.

    Article  ADS  Google Scholar 

  • Bidwell, J.M., 1951. “Application of the Von Kdrm.in Momentum Theorem to Turbulent Boundary Layers”. NACA TN 2571.

    Google Scholar 

  • Blackwelder, R.F., 1981. “Hot-Wire and Hot-Film Anemometers”, in Methods of Experimental Physics: Fluid Dynamics, (ed. R.J. Emrich), 18A, pp. 259–314.

    Google Scholar 

  • Blackwelder, R.F., & Haritonidis, J.H., 1983. “Scaling of the Bursting Frequency in Turbulent Boundary Layers”. J. Fluid Mech., 132 pp. 87–103.

    Article  ADS  Google Scholar 

  • Bradshaw, P. & Gregory, N., 1959. “The Determination of Local Turbulent Skin Friction from Observations in the Viscous Sub-Layer”. ARC, R. & M. No. 3204.

    Google Scholar 

  • Brown, G.L., 1967. “Theory and Application of Heated Filins for Skin Friction Measurement”. Proc. Heat Transfer and Fluid Mech. Inst., pp. 361–381.

    Google Scholar 

  • Carslaw H.S., & Jaeger, J.C., 1959. Conduction of Heat in Solids,Oxford at the Clarendon Press, London.

    Google Scholar 

  • Chue, S.H., 1975. “Pressure Probes for Fluid Measurement”. Prog. Aero. Sci., 16, No. 2, pp. 147–223.

    Article  Google Scholar 

  • Coles, D.E., 1956. “The Law of the Wake in the Turbulent Boundary Layer”. J. Fluid Mech. 1 pp. 191–226.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Dutton, R.A., 1956. “The Accuracy of the Measurement of Turbulent Skin Friction by Means of Surface Pitot-Tubes and the Distribution of Skin Friction on a Flat Plate”. ARC, R. & M. No. 3058.

    Google Scholar 

  • Fage, A. & Falkner, V.M., 1930. “An Experimental Determination of the Intensity of Friction on the Surface of an Aerofoil”. ARC, R. & M. 1315.

    Google Scholar 

  • Fage, A. & Falkner, V.M., 1931. “On the Relation Between Heat Transfer and Surface Friction for Laminar Flow”. ARC, R. & M. No. 1408.

    MATH  Google Scholar 

  • Frei, D. & Thomann, H., 1980. “Direct Measurements of Skin Friction in a Turbulent boundary Layer With Strong Adverse Pressure Gradient”. J. Fluid Mech., 101 pp. 79–95.

    Article  ADS  Google Scholar 

  • Fulcher, K.L., 1986. “A Probe for Measuring Skin Friction in Disturbed Turbulent Boundary Layers”. M.S. Thesis, Dept. of Aeronautics and Astronautics, M.I.T.

    Google Scholar 

  • Gresko, L.S., 1988. “Characteristics of Wall Pressure and Near-Wall Velocity in a Flat Plate Turbulent Boundary Layer”. M.S. Thesis, Dept. Of Aeronautics and Astronautics, M.I.T.

    Google Scholar 

  • Hanratty, T.J. & Campbell, J.A., 1983. “Measurement of Wall Shear Stress” in Fluid Mech. Measurements,(ed. R.J. Goldstein). Hemisphere Publ. Corp., pp. 559–615.

    Google Scholar 

  • Haritonidis, J.H., 1989. “A Model for Near-Wall Turbulence”. To appear in Physics of Fluids.

    Google Scholar 

  • Kim, J., Moin P., & Moser, R.D., 1987. “Turbulence Statistics in Fully-Developed Channel Flow at Low Reynolds Number”. J. Fluid Mech., 177 pp. 133–166.

    Article  MATH  ADS  Google Scholar 

  • Liepmann, H.W. & Skinner, G.T., 1954. “Shearing-Stress Measurements by Use of a Heated Element”. NACA TN 3268.

    Google Scholar 

  • Ling, S.C., 1963. “Heat Transfer from a Small Isothermal Spanwise Strip on an Insulated Boundary”. J. Heat Transfer, C85 pp. 230–236.

    Google Scholar 

  • Ludwieg, H., 1950. “Instrument for Measuring the Wall Shearing Stress of Turbulent Boundary Layers”. NACA TM 1284.

    Google Scholar 

  • Macmillan, F.A., 1954. “Viscous Effects on Flattened Pitot Tubes at Low Speeds”. J. Roy. Aeronaut. Soc., 58 pp. 837–839.

    Google Scholar 

  • Nikuradse, J., 1950. “Laws of Flow in Rough Pipes”. NACA TM 1292.

    Google Scholar 

  • Pai, B.R., & Whitelaw, J.H., 1969. “Simplification of the Razor Blade Technique and its Application to the Measurement of Wall-Shear Stress in Wall-Jet Flows”. Aero. Quarterly, 20 pp. 355–364.

    Google Scholar 

  • Patel, V.C., 1965. “Calibration of the Preston Tube and Limitations on its Use in Pressure Gradients”. J. Fluid Mech., 23 pp. 185–208.

    Article  ADS  Google Scholar 

  • Prahlad, T.J., 1972. “Yaw Characteristics of Preston Tubes”. AIAA J., 10 pp. 357–359.

    Article  ADS  Google Scholar 

  • Preston, J.H., 1954. “The Determination of Turbulent Skin Friction by Means of Pitot Tubes”. J. Royal Aeronaut. Soc., 58 pp. 109–121.

    Google Scholar 

  • Rajaratnam, N. & Muralidhar, D., 1968. “Yaw Probe Used as Preston Tube”. Aeronaut. J., 72, pp. 1059–1060.

    Google Scholar 

  • Rechenberg, I., 1963. “The measurement of Turbulent Wall Shear Stress”. ZFW, 11, No. 11, pp. 429–438.

    MATH  Google Scholar 

  • Schewe, G., 1986. “On the Structure and Resolution of Wall-Pressure Fluctuations Associated with Turbulent Boundary-Layer Flow”. J. Fluid Mech., 134, pp. 311–328.

    Article  ADS  Google Scholar 

  • Schlichting, H., 1968. Boundary Layer Theory, McGraw-Hill, New York.

    Google Scholar 

  • Schmidt, M.A., 1988. “Microsensors for the Measurement of Shear Forces in Turbulent Boundary Layers”. Ph.D. Thesis, Dept. of Electrical Engineering & Computer Science, M.I.T.

    Google Scholar 

  • Schmidt, M.A., Howe, R.T., Senturia S.D., & Haritonidis, J.H., 1988. “Design and Calibration of a Microfabricated Floating-Element Shear-Stress Sensor”. IEEE Transactions on Electron Devices, 35 No. 6, pp. 750–757.

    Article  ADS  Google Scholar 

  • Smith D.W., & Walker, J.H., 1959. “Skin-Friction Measurements in Incompressible Flow”. NACA TR, R-26.

    Google Scholar 

  • Spalart, P.R., 1986. “Direct Simulation of a Turbulent Boundary Layer up to R1410”. NASA TM 89407.

    Google Scholar 

  • Spalding, D.B., 1961. “A Single Formula for the ‘Law of the Wall’ ”. J. App. Mech., Sept. 1961, pp. 455–458.

    Google Scholar 

  • Staff of Aerodynamics Division, N.Y.L., 1958. “On the Measurement of Local Surface Friction on a Flat Plate by Means of Preston Tubes”. R. & M. No. 3185.

    Google Scholar 

  • Stanton, T.E., Marshall, D., & Bryant, C.N., 1920. “On the Conditions at the Boundary of a Fluid in Turbulent Motion”. Proc. Roy. Soc. A, 85 pp. 365–434.

    Google Scholar 

  • Tani, I., 1987. “Drag Reduction by Riblet Viewed as Roughness Problem”. Proc. Japan Acad., 64(B), pp. 21–24.

    Google Scholar 

  • Taylor, G.I., 1938. “Measurements with a Half-Pitot Tube”. Proc. Roy. Soc. A, 166, pp. 476–481.

    Article  ADS  Google Scholar 

  • Trilling, L. & Häkkinen, R.J., 1955. “The Calibration of the Stanton Tube as a Skin Friction Meter”. 50 Jahre Grenzschichtforschung, pp. 201–209.

    Google Scholar 

  • Van Driest, E.R., 1956. “On Turbulent Flow Near a Wall”. J. Aero. Sci., 23 pp. 1007–1011 & 1036.

    MATH  Google Scholar 

  • Winter, K.G., 1977. “An Outline of the Techniques Available for the Measurement of Skin Friction in Turbulent Boundary Layers”. Prog. Aerospace Sci., 18 pp. 1–57.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Haritonidis, J.H. (1989). The Measurement of Wall Shear Stress. In: Gad-el-Hak, M. (eds) Advances in Fluid Mechanics Measurements. Lecture Notes in Engineering, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83787-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83787-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51136-6

  • Online ISBN: 978-3-642-83787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics