Skip to main content

The Measurement of Vorticity in Transitional and Fully Developed Turbulent Flows

  • Chapter

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 45))

Abstract

The significance of vorticity and the importance of its temporally and spatially resolved measurement in turbulent flows is discussed. The measurement methods are categorized as those which use multipoint measurements of velocity to determine the required velocity gradients or circulation and those which sense these gradients directly. The characteristics and performance of these vorticity measurement methods are evaluated. Where available, measurements of some vorticity field statistics by two or more methods are compared.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

area

B:

the magnetic field intensity

C:

closed contour defining the circulation (see equation 2a)

h:

hot-wire probe prong spacing

n:

outward normal to surface

p:

(static) pressure

t:

time

ui :

velocity vector (cartesian tensor notation)

\(\overrightarrow v\) :

velocity vector (vector notation)

α:

hot-wire sensor angle to cross-stream plane

δ:

distance around a closed contour (see equation 2a)

xy :

strain-rate component

⌽:

potential of the electric field

Г:

circulation (see equation 2)

γxy :

hot-wire probe pitch angle in the xy plane

η:

Kolmogorov dissipation length scale

ν:

kinematic viscosity

Ω:

vorticity (\([\overrightarrow \Omega\) vector notation, Ωi cartesian tensor notation; see equation 1)

ωxyz :

cartesian vorticity components in an x,y,z reference frame

ρ:

density

aI :

the summation of the accelerative effects that permits the absolute acceleration A to be expressed as the sum of the acceleration in the local reference frame plus the Coriolis acceleration (2Ω × V), the centripetal acceleration (Ω × Ω × R) and the unsteady effect (dΩ/dt × R), (see equation 6).

S:

a portion of C that borders a physical surface (see equation 7)

u,v,w:

Cartesian velocity components in an x,y,z, reference frame

Uc :

convection velocity used in Taylor’s hypothesis

ur,vθ,w:

cylindrical coordinate (r,θ,z) velocity components

References

  • Adrian, R. (1988) “Progress in particle image velocimetry for the study of fluid motion” NSF Workshop on Imaging for Fluid Mechanics, Ohio State Univ. Oct. 1987 (rept. ed. by Brodkey, R.S. & Guezennec, Y.G. Jan. 1988).

    Google Scholar 

  • Adrian, R. & Landreth, C. (1987) “Interrogation of high image density particle image velocimeter photographs” Bull. Am. Phys. Soc. 32(10), p. 2097.

    Google Scholar 

  • Aqüi, J.C. (1988) “Vorticity studies in flows: global three-dimensional analysis and optical point measurements” Ph.D. Dissertation, Stanford Univ.

    Google Scholar 

  • Agüí, J.C. & Hesselink, L. (1987) “Holographic measurements of strain of fluids” Bull. Am. Phys. Soc. 32(10), p. 2106.

    Google Scholar 

  • Agüí, J.C. & Hesselink, L. (1988) “Holograms in motion, I: the effect of fluid motion on volume holograms” J. Opt. Soc. Amer. 5(8), pp. 1287–1297.

    Article  ADS  Google Scholar 

  • Agili, J.C. & Jiménez, J. (1987) “On the performance of particle tracking” J. Fluid Mech. 185, pp. 447–468.

    ADS  Google Scholar 

  • Alfredson, P.H., Johansson, A.V., Haritonidis, J.H. & Eckelmann, H. (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer“ Phys. Fluids 31(5),pp. 1026–1033.

    Article  ADS  Google Scholar 

  • Antonia, R.A., Browne, L.W.B. & Shah, D.A. (1988) “Characteristics of vorticity fluctuations in a turbulent wake” J. Fluid Mech. 189, pp. 349–365.

    Article  ADS  Google Scholar 

  • Balint, J.-L., Vukoslavicevic, P., & Wallace, J.M. (1987) “A study of the vortical structure of the turbulent boundary layer” Advances in Turbulence, Springer-Verlag (eds. Comte-Bellot, G. & Mathieu, J.) pp. 456–464.

    Google Scholar 

  • Balint, J.-L., Vukoslaveevic, P. & Wallace, J.M. (1988) “The Transport of Enstrophy in a Turbulent Boundary Layer” to be published in the Proc. of the Zaric Memorial San. on Wall Turbulence,Hemisphere Pub. Corp.

    Google Scholar 

  • Balint, J.-L., Wallace, J.M. & Vukoslaveevic, P. (1988) “The statistical properties of the vorticity field of a two-stream turbulent mixing layer” to be published in the Proc. of the Second European Turbulence Conference, Berlin.

    Google Scholar 

  • Batchelor, G.K. (1967) An Introduction to Fluid Dynamics, Cambridge University Press.

    Google Scholar 

  • Bawirzanski, E., Randolph, M. & Eckelmann, H. (1987) “Direct measurement of streamwise vorticity fluctuations with a cylinder probe” Proc. of 2nd Int. Sym. on Transport Phenomena in Turbulent Flows (Tokyo), pp. 605–612.

    Google Scholar 

  • Blackwelder, R.F. (1979) “Vorticity probe utilizing strain measurements” U.S. Patent 4,145,921.

    Google Scholar 

  • Böttcher, J. & Eckelmann, H. (1985) “Measurement of the velocity gradient with hot film probes” Exp. in Fluids,3, pp. 87–91.

    Article  ADS  Google Scholar 

  • Cantwell, B. & Coles, D. (1983) “An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder” J. Fluid Mech. 136, pp. 321–374.

    Article  ADS  Google Scholar 

  • Cloitre, M, Chauveau, J. (1983) “Metal dithizonate for flash photolysis applications in hydrodynamics” Optics Comm. 47, pp. 42–46.

    Article  ADS  Google Scholar 

  • Cloitre, M. and Guyon, E. (1986) “Forced Rayleigh scattering in turbulent plane Poisseuille flows” J. Fluid Mech. 164, pp. 217–236.

    Article  ADS  Google Scholar 

  • Charmet, J.C., Fermigier, M., & Jenffer, P. (1984) “Visulization d’ecoulment et measure de gradient de vitesse par les traceurs photochrome” Comp. Rend. Acad. Sci. 298, pp. 103–106.

    Google Scholar 

  • Corrsin, S. & Kistler, A.L. (1954) “The free-stream boundaries of turbulent flows” NACA TN 3133.

    Google Scholar 

  • Eckelmann, H., Nychas, S.G., Brodkey, R.S, & Wallace, J.M. (1977) “Vorticity and turbulence production in pattern recognized turbulent flow structures” Phys, Fl. 20, pp. S225–S231.

    Google Scholar 

  • Falco, R.E. (1983) “New results, a review and synthesis of the mechanism of turbulence production in boundary layers and its modification” AIAA-83–0377.

    Google Scholar 

  • Falco, R.E. & Chu, C.C. (1987) “Measurement of two-dimensional fluid dynamic quantities using a photochromic grid tracing technique” SPIE Photomechanics and Speckle Metrology 814, pp. 706–710.

    ADS  Google Scholar 

  • Falco, R.E., Chu, C.C., Hetheringtron, M.H. & Gendrich, C.P. (1988) “The circulation of an airfoil starting vortex obtained from instantaneous vorticity measurements over an area” AIAA 88–3620.

    Google Scholar 

  • Ferguson, R.D, Webb, W.W. (1983) “The vorticity optical probe: a fast

    Google Scholar 

  • multicomponent model“ Proc. of 8th Biennial Symp. on Turbulence, University of Missouri-Rolla.

    Google Scholar 

  • Fermigier, M, Jenffer, P., Charmet, J.C., Guyon, E. (1980) “A non-perturbative anemometric method and flow visulization technique” J. Phys. Lett. 41, L519–L521.

    Google Scholar 

  • Fermigier, M., Cloitre, M, Guyon, E. & Jenffer, P. (1982) “Utilisation de la diffusion Rayaleigh forcee a l’etude d’ecoulements laminaires et turbulents” J. Mecanique Theor. Appl. 1,pp. 123–146.

    ADS  Google Scholar 

  • Fohl, T. & Turner, J.S. (1975) “Colliding vortex rings” Phys. of Fluids 18(4), pp. 433–436.

    Google Scholar 

  • Foss, J.F. (1976) “Accuracy and uncertainty of transverse vorticity measurements” Bull, of the Am. Phys. Soc. 21, pp. 1237.

    Google Scholar 

  • Foss, J.F. (1981) “Advanced techniques for transverse vorticity measurements” Proc. of 7th Biennial Symp. on Turbulence, Univ. of Missouri-Rolla.

    Google Scholar 

  • Foss, J.F., Ali, S.K. & Haw, R.C. (1987) “A critical analysis of transverse vorticity measurements in a large plane shear layer,” Advances in Turbulence, Springer-Verlag (eds. Comte-Bellot, G. & Mathien, J.) pp. 446–455.

    Google Scholar 

  • Foss, J.F. and Haw, R.C. (1987) “Comparitive measurement: time resolved transverse vorticity in a two-stream mixing layer” Bull. Am. Phys. Soc. 32(10) p. 2043.

    Google Scholar 

  • Foss, J.F. & Kleis, S.J. (1976) “Mean-flow characteristics for the oblique imping ment of axisynmetric jet,” AIAA Jour. 14, pp. 705–706.

    Article  ADS  Google Scholar 

  • Foss, J.F., Kliewicki, C.L. & Disimle (1986) “Transverse vorticity measurements using an array of four hot-wires” NASA CR 178098.

    Google Scholar 

  • Frisch, M.B, Webb, W.W. (1981) “Direct measurement of vorticity by optical probe” Fluid Mech. 107, pp. 173–200.

    Article  ADS  Google Scholar 

  • de Gennes, P.G. (1977) “Principe de nouvelles measures sur les ecoulements par échauffement optique localise” J. Phys. Lett. 38, pp. L1–L3.

    Article  Google Scholar 

  • Govinda Raju, S.P., Holla, V.S., Nigam, A. & Verghese, M.P. (1978) “Development of a vorticity meter” J. Aircraft 15(11), pp. 799–800.

    Article  ADS  Google Scholar 

  • Heikes, K.E. & Maxworthy, T. (1982) “Observations of inertial waves in a homogeneous rotating fluid,” J. Fluid Mech. 125, pp. 319–345.

    Article  ADS  Google Scholar 

  • Haw, R.C., Foss, J.K. and Foss, J.F. (1988) “The vortical properties of the high speed region in a plane shear layer and its parent boundary layer” to be published in the Proc. of the Second European Turbulence Conference, Berlin.

    Google Scholar 

  • Holdemann, J.D. & Foss, J.F. (1975) “The initiation, development, and decay of the secondary flow in a bounded jet” J. Fluids Eng. 97(1), pp. 342–352.

    Article  Google Scholar 

  • Huachen, Pan & Shiying, Z. (1987) “Measurement of streamwise vorticity using a vane vorticity meter” Int. Jour. of Heat and Fluid Flow 8, pp. 72.

    Google Scholar 

  • Hussain, A.K.M.F. & Hayakawa, M. (1987) “Education of large-scale organized structures in a turbulent plane wake” J. Fluid Mech. 180, pp. 193–229.

    Article  ADS  Google Scholar 

  • Hussain, A.K.M.F. and Zaman, K.B.M.Q. (1980) “Vortex pairing in a circular jet under controlled excitation. Part 2 - coherent structure dynamics” J. Fluid Mech. 101, pp. 493–544.

    Article  ADS  Google Scholar 

  • Hussain, A.K.M.F. & Zaman, K.B.M.Q. (1981) “The ‘prefered mode’ of the axisymmetric jet” J. Fluid Mech. 110, pp. 39–71.

    Article  ADS  Google Scholar 

  • Hussain, A.K.M.F. & Zaman, K.B.M.Q. (1985) “An experimental study of organized motions in the plane mixing layer” J. Fluid Mech. 159, pp. 85–104.

    Article  ADS  Google Scholar 

  • Kasagi, N., Hirata, M. & Nishino, K. (1986) “Streamwise pseudo-vortical structures and associated vorticity in the near-wall region of a wall-bounded turbulent shear flow” Exp. in Fluids 4, pp. 309–318.

    Article  ADS  Google Scholar 

  • Kastrinakis, E.G. (1976) “An experimental investigation of the fluctuations of the streamwise components of the velocity and vorticity vectors in a fully developedturbulent channel flow” Dissertation, Georg-August Universität zu Göttingen.

    Google Scholar 

  • Kastrinakis, E.G., Wallace, J.M., Willmarth, W.W., Ghorashi, B. & Brodkey, R.S. (1977) “On the mechanism of bounded turbulent shear flows” Lect. Notes in Phys. 75, pp. 175–189.

    Article  ADS  Google Scholar 

  • Kastrinakis, E.G., Eckelmann, H, & Willmarth, W.W. (1979) “Influence of the flow velocity on a Kovasznay type vortici ty probe” Rev. Sci. Instr. 50, pp. 759–767.

    Article  ADS  Google Scholar 

  • Kastrinakis, E.G. & Eckelmann, H. (1983) “Measurement of streamwise vorticity fluctuations in a turbulent channel flow” J. Fluid Mech. 137, pp. 165–186.

    Article  ADS  Google Scholar 

  • Kastrinakis, E.G., Nychas, S.G. & Eckelmann, H. (1982) “Some streamwise vorticity characteristics of coherent structures” Structure of Complex Turbulent Shear Flow UTAM Symp. Springer-Verlag (eds. Dumas, R. & Fulachier, L.) pp. 31–40.

    Google Scholar 

  • Kim, J. (1988) Unpublished data provided to the authors.

    Google Scholar 

  • Kim, J., Moin, P. & Moser, R. (1987) “Turbulence statistics in fully developed channel flow at low Reynolds number” J. Fluid Mech. 177, pp. 133–166.

    Article  MATH  ADS  Google Scholar 

  • Kim, J.-H. and Fiedler H. (1988a) “Vorticity measurements in a turbulent mixing layer” Euromech Colloquium 235 on Dynamics of Large Scale Vortical Structures.

    Google Scholar 

  • Kim, J.-H. and Fiedler, H. (1988b) “Vorticity Measurements in a turbulent mixing layer” to be published in Proc. of the Second European Turbulence Conference, Berlin.

    Google Scholar 

  • Kistler, A.L. (1952) “The vorticity meter” M.S. Thesis, The Johns Hopkins Univ.

    Google Scholar 

  • Kit, E., Tsinober, A., Teitel, M. Balint, J.-L., Wallace, J.M. & Levich, E. (1988) “Vorticity measurement in turbulent grid flows” Fluid Dynamics Research 3, pp. 289–294.

    Google Scholar 

  • Klewicki, J.C., & Falco, R.E. (1986) “Spanwise vorticity distributions and correlations in a turbulent boundary layer” Bull. Am. Phys. Soc. 31(10), pp. 1685.

    Google Scholar 

  • Klewicki, J.C. & Falco, R.E. (1988) “On accurately measuring statistics associated with small scale structure in turbulent boundary layers” Report TSL-88–4, Michigan State University.

    Google Scholar 

  • Koga, D.J., Nelson, C.F. & Eaton, J.K. (1987) “A new program for active control of unsteady, separated flow structures” Proc. 2nd AFOSR Workshop on Unsteady Separated Flows (July 28–30, U.S. Air Force Acad.).

    Google Scholar 

  • Kovasznay, L.S.G. (1950) Quart. Prog. Rep. of Aero. Dept. Contract NORD-8036-JHB-39, The Johns Hopkins Univ.

    Google Scholar 

  • Kovasznay, L.S.G. (1954) “Turbulence measurements,” in: Physical Measurements in Gas Dynamics and Combustion (10) Princeton Univ. Press (eds. Landenbuerg, R.W., Lewis, B., Pease, R.N. and Taylor, H.S.), pp. 213.

    Google Scholar 

  • Kovasznay, L.S.G. (1979) “Panel discussion on coherent structures” Second Turbulent Shear Flows Conference, London, England.

    Google Scholar 

  • Kreplin, H.-P. & Eckelmann, H. (1976) “Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow” Phys. Fluids 22(7), pp. 1233–1239.

    Article  ADS  Google Scholar 

  • Lang, D.B. (1985) “Laser doppler velocity and vorticity measurements in turbulent shear layers” Ph.D. Dissertation, California Inst. of Tech.

    Google Scholar 

  • Lang, D.B. & Dimotakis, P.E. (1982) “Measuring vorticity using the laser doppler velocimeter” Bull. of Am. Phys. Soc., 27, pp. 1166.

    Google Scholar 

  • Lighthill, M.J. (1963) “Introduction Boundary Layer Theory,” Laminar Boundary Layers, Clarendon Press. (ed. Rosenhead, L.), Chap. 2.

    Google Scholar 

  • Mathioulakis, D.S. & Telionis, D.P. (1987) “Velocity and vorticity distributions in periodic seperating laminar flow” J. Fluid Mech., 184, pp. 303–333.

    Article  ADS  Google Scholar 

  • Maxworthy, T. (1971) “A simple observational technique for investigating boundary layers, stability and turbulence” Turbulence Measurements in Liquids,Department of Chemical Engineering, Univ. of Missouri at Rolla, (ed. Paterson, G.K. and Zakin, J.L.).

    Google Scholar 

  • McCormick, B.W., Tangler, J.L. & Sherrieb, H.E. (1968) “Structure of Trailing Vortices” J. Aircraft 5(3), pp. 260–267.

    Article  Google Scholar 

  • Metcalf, R., Hussain, A.K.M.F., Menon, S. & Hayakawa, M. (1987) “Coherent structures in a turbulent mixing layer: a comparison between direct numerical simulations and experiments” Turbulent Shear Flows 5, Springer-Verlag (Eds. Durst, F. et al.) p. 110–123.

    Google Scholar 

  • Metcalfe, R.W., Orzog, S.A., Brachet, M.E., Menon, S. & Riley, J.J. (1987) “Secondary instability of a temporally growing mixing layer” J. Fluid Mech. 184, pp. 207–243.

    Article  MATH  ADS  Google Scholar 

  • Moin, P., & Kim, J. (1985) “The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations” J. Fluid Mech. 155, pp. 441–464.

    Article  ADS  Google Scholar 

  • Nishino, K., Kasagi, N. & Hirata, M. (1987) “Study of streamwise vortical structures in a two-dimensional turbulent channel flow by digital image processing” Proc. of 2nd Int. Sym. on Transport Phenomena in Turbulent Flows (Tokyo), pp. 47–60.

    Google Scholar 

  • Nychas, S.G., Kastrinakis, E.G. & Eckelmann, H. (1985) “On certain aspects of vorticity dynamics and turbulent energy production” Lect. Notes in Phys. 235, pp. 269–278.

    Article  ADS  MathSciNet  Google Scholar 

  • Oshima, Y. & Asaka, S. (1975) Natural Sci. Report, Ochanomizu Univ. 26, p. 31.

    Google Scholar 

  • Oshima, Y. & Asaka, S. (1977) “Interaction of two vortex rings along parallel axes” Jour. Phys. Soc. Japan 42(2), pp. 708–713.

    Article  ADS  Google Scholar 

  • Potter, M.C. & Foss, J.F. (1975) Fluid Mechanics, The Ronald Press Co. (now published by Great Lakes Press Co., Okemos, MI 48864).

    Google Scholar 

  • Piomelli, U., Balint, J.-L. & Wallace, J.M. (1988) “On the validity of Taylor’s hypothesis for wall-bounded turbulent flows” to be published in, Phys. of Fluids.

    Google Scholar 

  • Rogers, M.M. & Moin, P. (1987) “The structure of the vorticity field in homogeneous turbulent flows” J. Fluid Mech. 176, pp. 33–66.

    Article  ADS  Google Scholar 

  • Savas, Ö. (1985) “On flow visualization using reflective flakes” J. Fluid Mech. 152, pp. 235–248.

    Article  ADS  Google Scholar 

  • Spalart, P.R. (1988) “Direct simulation of a turbulent boundary layer up to Re.1410” J. Fluid Mech. 187, pp. 61–98.

    Article  MATH  ADS  Google Scholar 

  • Spedding, G.R. & Maxworthy, T. (1987) “The generation of circulation and lift in a rigid two-dimensional fling” J. Fluid Mech. 165, pp. 247–272.

    Article  ADS  Google Scholar 

  • Spedding, G.R., & Maxworthy, T. & Rignot, E. (1987) “Unsteady vortex flows over delta wings” Proc. 2nd AFOSR Workshop on Unsteady and Separated Flows (July 28–30, U.S. Air Force Acad.).

    Google Scholar 

  • Tennekes, H. & Lumley, J.L. (1972) A First Course in Turbulence, MIT Press, Cambridge, MA.

    Google Scholar 

  • Tsinober, A., Kit, E., & Teitel, M. (1982) “Induction velometry. Some precise relations between turbulent velocity and electrical fields” in Metallurgical Applications of Magnetohydrodynamics (eds. Moffat, H.K. and Proctor, M.R.E.), pp. 129–135.

    Google Scholar 

  • Tsinober, A., Kit, E. & Teitel, M. (1987) “On the relevance of the potential difference method for turbulence measurements” J. Fluid Mech. 175, pp. 447–461.

    Article  ADS  Google Scholar 

  • Uberoi, M.S., & Corrsin, S. (1951) “Progress report on the propagation of turbulence into a non-turbulent flow” NACA Contract NAW5504, The Johns Hopkins Univ.

    Google Scholar 

  • Utami, T. & Ueno, T. (1984) “Visualization and picture processing of turbulent flow” Exp. in Fluids 2, pp. 25–32.

    Article  ADS  Google Scholar 

  • Utami, T. & Ueno. T. (1987) “Experimental study on the coherent structure of turbulent open-channel flow using visualization and picture processing” J. Fluid Mech. 174, pp. 399–440.

    Article  ADS  Google Scholar 

  • Utami, T., Blackwelder, R.F. & Ueno, T. (1988) “Flow visualization with image processing of three-dimensional features of coherent structures in an open-channel flow” to be published in the Proc. of the Zaric Memorial Sem. on Near Wall Turbulence, Hemisphere Pub. Corp.

    Google Scholar 

  • Vukoslaveevie, P., & Wallace, J.M. (1981) “Influence of velocity gradients on measurements of velocity and streamwise vorticity with hot-wire X-array probes” Rev. Sci. Instrum. 52, pp. 869–879.

    Article  ADS  Google Scholar 

  • Vukoslaveevic, P., Balint, J.-L. & Wallace, J.M. (1988) “A Multi-sensor hot-wire probe to measure vorticity and velocity in turbulent flows” to be published by Jour. of Fi. Engr. (ASME).

    Google Scholar 

  • Wallace, J.M., Brodkey, R.S. & Eckelmann, H. (1977) “Pattern recognition in bounded turbulent shear flows” J. Fluid Mech. 83, pp. 673–693.

    Article  ADS  Google Scholar 

  • Wallace, J.M. (1986) “Methods of measuring vorticity in turbulent flows” Exp. in Fluids 4, pp. 61–71.

    Article  ADS  Google Scholar 

  • Wassmann, W.W., & Wallace, J.M. (1979) “Measurement of vorticity in turbulent shear flow” Bull. of Ain. Phys. Soc. 24, pp. 1142.

    Google Scholar 

  • Weinstein, L.M., Beeler, G.B. & Lindemann, A.M. (1985) “High-speed holocinematographic velocimeter for studying turbulent flow control physics” AIAA-85–0526.

    Google Scholar 

  • Weinstein, L.M. (1988) “High-speed holocinematographic velocimeter for study of turbulent flow control physics” NSF Workshop on Imaging for Fluid Mechanics, Ohio State, Oct. 1987 (rept. ed. by Brodkey, R.S. & Guezennec, Y.G. Jan. 1988).

    Google Scholar 

  • Wigeland, R.A., Ahmed, M., & Nagib, H.M. (1978) “Vorticity measurements using calibrated vane-vorticity indicators and cross-wires” AIAA Journal 16, pp. 1229–1234.

    Article  ADS  Google Scholar 

  • Williams, D.R., Fasel, H. & Hama, F.R. (1984) “Experimental determination of the three-dimensional vorticity field in the boundary layer transition process” J. Fluid Mech. 149, pp. 179–203.

    Article  ADS  Google Scholar 

  • Willmarth, W.W. & Lu, S.S. (1972) “Structure of the Reynolds stress near the wall” J. Fluid Mech. 55(1), pp. 65–92.

    Article  ADS  Google Scholar 

  • Wyngaard, J.C. (1969) “Spatial resolution of the vorticity meter and other hot-wire arrays” Jour. of Sci. Instruis. (Jour. of Phy. E.), Series 2, pp. 983–987.

    Google Scholar 

  • Zaman, K.B.M.Q. & Hussain, A.K.M.F. (1980) “Vortex pairing in a circular jet under controlled excitation, Part 1. General jet response” J. Fluid Mech. 101, pp. 449–491.

    Article  ADS  Google Scholar 

  • Zaman, K.B.M.Q. & Hussain, A.K.M.F. (1984) “Natural large-scale structures in the axisymmetric mixing-layer” J. Fluid Mech. 138, pp. 325–351.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Foss, J.F., Wallace, J.M. (1989). The Measurement of Vorticity in Transitional and Fully Developed Turbulent Flows. In: Gad-el-Hak, M. (eds) Advances in Fluid Mechanics Measurements. Lecture Notes in Engineering, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83787-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83787-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51136-6

  • Online ISBN: 978-3-642-83787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics