Skip to main content

Nichtlineare Prozesse mit diodengepumpten Festkörperlasern

  • Chapter
Diodengepumpte Festkörperlaser

Part of the book series: Laser in Technik und Forschung ((LASER TECHNIK))

  • 147 Accesses

Zusammenfassung

Aufgrund der mit den diodengepumpten Lasern erreichbaren hohen Strahlqualität lassen sich optisch nichtlineare Prozesse sehr effizient durchführen, da hierfür große Leistungsdichten und große Wechselwirkungslängen wie auch stabile single-frequency-Laserstrahlung von wesentlichem Vorteil sind. Dies ist gerade im unteren Leistungsbereich, bei Lasern mit kleineren Durchschnittsleistungen, von Bedeutung. Infolgedessen sind zahlreiche neue Konfigurationen entstanden, nicht zuletzt beeinflußt auch durch bessere optisch nichtlineare Materialien. Von den vielen sich hierbei ergebenden Möglichkeiten soll im folgenden zunächst die besonders häufig angewandte Frequenzverdopplung diskutiert werden. Hierfür bieten sich bei Lasern niedrigerer Ausgangsleistungen, d. h. insbesondere auch bei kontinuierlich gepumpten Lasern, zwei Methoden an, die denjenigen des resonanten Pumpens in gewisser Weise sehr ähnlich sind. Dies sind die sogenannte “intracavity”-Frequenzverdopplung sowie die externe resonante Frequenzverdopplung. Darüber hinaus wird auch das Verfahren der Selbstfrequenzverdopplung behandelt. Weiterhin werden neuere optische parametrische Oszillatoren sowie bei Raumtemperatur betriebene “upconversion”-Laser diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Bierlein, H. Vanherzeele: Potassium titanyl phosphate: Properties and new applications; J. Opt. Soc. Am. B 6 (1989) 622

    Article  Google Scholar 

  2. W.J. Kozlovsky, C.D. Nabors, R.L. Byer: Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities; IEEE J. Quantum Electron. 24 (1988) 913

    Article  Google Scholar 

  3. J.-C. Baumert, P. Günter: Noncritically phase-matched sum frequency generation and image up-conversion in KNbO3 crystals; Appl. Phys. Lett. 50 (1987) 554

    Article  Google Scholar 

  4. W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, G. Mizell: Secondharmonic generation and degradation in critically phase-matched KNbO3 with a diode-pumped Q-switched Nd:YLF laser; Opt. Lett. 17 (1992) 1432

    Article  Google Scholar 

  5. F. Xie, B. Wu, G. You, C. Chen: characterization of LiB3O5 crystal for secondharmonic generation; Opt. Lett. 16 (1991) 1237

    Article  Google Scholar 

  6. G.A. Eines, R.A. Schwarz, P.F. Moulton: Diode-laser-pumped, cw, Nd:YLF laser with efficient intracavity second harmonic generation; OSA Conf. on Avanced Solid-State Lasers (Salt Lake City, 1994), Tech. Digest, Beitrag ATuD3 (1994) 178

    Google Scholar 

  7. W. Rupp, P. Greve: Cw-intracavity frequency doubling with different crystals; SPIE Bd. 1017, Nonlinear Optical Materials (1988) 162

    Google Scholar 

  8. L.Y. Liu, M. Oka, W. Wiechmann, S. Kubota: Longitudinally diode-pumped continuous-wave 3.5-W green laser; Opt. Lett. 19 (1994) 189

    Article  Google Scholar 

  9. G. Hollemann, E. Peik, H Walther: Frequency-stabilized diode-pumped Nd:YAG laser at 946 nm with harmonics at 473 and 237 nm; Opt. Lett. 19 (1994) 192

    Article  Google Scholar 

  10. P. Durkin, S.G. Post: Compact, cw, 1.25 Watt green, diode-pumped solid-state laser; OSA Conf. on Avanced Solid-State Lasers (Salt Lake City, 1994), Tech. Digest, Beitrag AMF5 (1994) 95

    Google Scholar 

  11. T. Baer: Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers; J. Opt. Soc. Am. B 3 (1986) 1175

    Article  Google Scholar 

  12. M. Oka, S. Kubota: Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers; Opt. Lett. 13 (1988) 805

    Article  Google Scholar 

  13. H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazumura: Noise reduction in a diode-pumped intracavity-doubled Nd:YAG laser by using a Brewster plate; CLEO 91, Tech. Digest, Beitrag CFJ4 (1991) 524

    Google Scholar 

  14. G.E. James, E.M. Harrell II, C. Bracikowski, K. Wiesenfeld, R. Roy: Elimination of chaos in an intracavity-doubled Nd:YAG laser; Opt. Lett. 15 (1990) 1141

    Article  Google Scholar 

  15. E.R. Hunt: Stabilizing high-period orbits in a chaotic system: The diode resonator; Phys. Rev. Lett. 67 (1991) 1953

    Article  Google Scholar 

  16. R. Roy, T.W. Murphy, Jr., T.D. Maier, Z. Gills, E.R. Hunt: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system; Phys. Rev. Lett. 68 (1992) 1259

    Article  Google Scholar 

  17. D.W. Anthon, D.L. Sipes, T.J. Pier, M.R. Ressl: Intracavity doubling of cw diode-pumped Nd:YAG lasers with KTP; IEEE J. Quantum Electron. 28 (1992) 1148

    Article  Google Scholar 

  18. L.R. Marshall, A. Kaz, A.D. Hays, R.L. Burnham: 3-W continuous-wave diode-pumped 532-nm laser; Opt. Lett. 17 (1992) 1110

    Article  Google Scholar 

  19. N.P. Schmitt, S. Heinemann, A. Mehnert, P. Peuser: Diode-laser pumped miniature solid state lasers; in: Laser in der Technik (Laser 91), Hrsg.: W. Waidelich, Springer-Verlag, Berlin, 1992, S. 599

    Google Scholar 

  20. J.-P. Meyn, G. Huber: Intracavity frequency doubling of a continuous wave, diode laser-pumped neodymium lanthanum scandium borate laser; Opt. Lett. (1994), im Druck

    Google Scholar 

  21. C.D. Nabors, W.J. Kozlovsky, R.L.Byer: Efficient second harmonic generation of a diode-pumped cw Nd:YAG laser using an externally resonant cavity; SPIE Bd. 898, Miniature Optics and Lasers (1988) 105

    Google Scholar 

  22. A. Ashkin, G.D. Boyd, J.M. Dziedzic: Resonant optical second harmonic generation and mixing; IEEE J. Quantum Electron. QE-2 (1966) 109

    Article  Google Scholar 

  23. G.D. Boyd, D.A. Kleinman: Parametric interaction of focussed Gaussian beams; J. Appl. Phys. 39 (1968) 3597

    Article  Google Scholar 

  24. D.C. Gerstenberger, G.E. Tye, R.W. Wallace: Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler; Opt. Lett. 16 (1991) 992

    Article  Google Scholar 

  25. R. Paschotta, K. Fiedler, P. Kürz, R. Henking, S. Schiller, J. Mlynek: 82% efficient cw frequency-doubling of 1.06 μm using a monolithic MgO:LiNbO3 resonator; Opt. Lett. (1994), im Druck

    Google Scholar 

  26. S.T. Yang, C.C. Pohalski, E.K. Gustafson, R.L. Byer, R.S. Feigelson, R.J. Raymakers, R.K. Route: 6.5-W, 532-nm radiation by cw resonant externalcavity second-harmonic generation of an 18-W Nd:YAG laser in LiB3O5; Opt. Lett. 16 (1991) 1493

    Article  Google Scholar 

  27. P.N. Kean, G.J. Dixon: Efficient sum-frequency upconversion in a resonantly pumped Nd:YAG laser; Opt. Lett. 17 (1992) 127

    Article  Google Scholar 

  28. K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, J. Mlynek: 50% conversion efficiency at 5mW for second-harmonic generation in a doubly-resonant cavity; CLEO 93, Tech. Digest, Beitrag CPD17 (1993) 702

    Google Scholar 

  29. I. Schütz, I. Freitag, R. Wallenstein: Miniature self-frequency doubling cw Nd:YAB laser pumped by a diode laser; Opt. Commun. 77 (1990) 221

    Article  Google Scholar 

  30. S.C. Wang, R.E. Stone, R.C. Spitzer, T.G. Dziura: Performance characteristics of a diode laser-pumped NYAB laser; LEOS 90, Conference Proc., Beitrag ELT8.4 (1990) 150

    Google Scholar 

  31. S.C. Wang, R.E. Stone, J.T. Lin: Characteristics of neodymium aluminum borate as a diode-pumped laser material; OSA Proc. on Advanced Solid-State Lasers (Salt Lake City, 1990), Bd.6 (1991) 23

    Google Scholar 

  32. H. Hemmati: Diode-pumped self-frequency-doubled Neodymium Yttrium Aluminum Borate (NYAB) laser; IEEE J. Quantum Electron. 28 (1992) 1169

    Article  Google Scholar 

  33. Y.X. Fan, R. Schlecht, M.W. Qiu, D. Luo, A.D. Jiang, Y.C. Huang: Spectroscopic and nonlinear-optical properties of a self-frequency-doubling NYAB crystal; OSA Proc. on Advanced Solid-State Lasers (Santa Fe, 1992) Bd. 13 (1992) 371

    Google Scholar 

  34. R. Wallenstein, private Mitteilung, Universität Kaiserslautern, 1993

    Google Scholar 

  35. J.H. Zarrabi, P. Gavrilovic, S. Singh: Monolithic, self-frequency doubled, neodymium-doped yttrium aluminium borate green laser with low intensity noise; Electron. Lett. 29 (1993) 1769

    Article  Google Scholar 

  36. T.Y. Fan, A. Cordova-Plaza, M.J.F. Digonnet, R.L. Byer: Nd:MgO:LiNbO3 spectroscopy and laser devices; J. Opt. Soc. Am. B 3 (1987) 140

    Article  Google Scholar 

  37. R. Li, C. Xie, J. Wang, X. Liang, K. Peng, G. Xu: Cw Nd:MgO:LiNbO3 self-frequency doubling laser at room temperature; IEEE J. Quantum Electron. 29 (1993) 2419

    Article  Google Scholar 

  38. A. Cordova-Plaza, T.Y. Fan, M.J.F. Digonnet, R.L.Byer, H.J. Shaw: Nd:MgO:LiNbO3 continuous-wave laser pumped by a laser diode; Opt. Lett. 13 (1988) 209

    Article  Google Scholar 

  39. A.A. Kaminski, H.J. Eichler, D. Grebe, R. Macdonald, S.N. Bagaev, A.V. Butashin, E.A. Fedorov: Highly efficient cw-diode-laser pumped stimulated emission of Nd3+ doped acentric La3Ga5.5Nb0.5O14, La3Ga5.5Ta0.5O14 and LaBGeO5 single crystals; Appl. Phys. (1994), im Druck

    Google Scholar 

  40. C.D. Nabors, R.C. Eckardt, W.J. Kozlovsky, R.L.Byer: Efficient, single-axial mode operation of a monolithic MgO:LiNbO3 optical parametric oscillator; Opt. Lett. 14 (1989) 1134

    Article  Google Scholar 

  41. S.T. Yang: Cw singly resonant KTP optical parametric oscillator; in R.L. Byer: Diode pumped solid state lasers; Euroschool of Quantum Electronics, Elba, Italien, Sept. 1992

    Google Scholar 

  42. A. Kaz, L.R. Marshall: Continuous wave diode-pumped lasers and parametric oscillators; CLEO 93, Tech. Digest, Beitrag CWD1 (1993) 244

    Google Scholar 

  43. L.R. Marshall, A. Kaz, R. Burnham: Nonlinear cavity dumping; CLEO 93, Tech. Digest, Beitrag CThK7 (1993) 436

    Google Scholar 

  44. G.J. Quarles, C.L.Marquardt, L. Esterowitz: 2μm-pumped AgGaSe2 optical parametric oscillator with continuous tuning between 2.49 and 12.05 μm; LEOS 90, Conference Proc., Beitrag ELT7.1 (1990) 128

    Google Scholar 

  45. N. Bloembergen: Solid state infrared quantum counter; Phys. Rev. Lett. 2 (1959) 84

    Article  Google Scholar 

  46. F. Auzel: Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixture et dans un verre; C. R. Acad. Sci., Paris, Bd. 262 (1966) 1016

    Google Scholar 

  47. J.S. Chivian, W.E. Case, D.D. Eden: The photon avalanche: A new phenomenon in Pr3+-based infrared quantum counters; Appl. Phys. Lett. 35 (1979) 124

    Article  Google Scholar 

  48. L.F. Johnson, H.J. Guggenheim: Infrared-pumped visible laser; Appl. Phys. Lett. 19 (1971) 44

    Article  Google Scholar 

  49. A.J. Silversmith, W. Lenth, R.M. Macfarlane: Green infrared-pumped erbium upconversion laser; J. Opt. Soc. Am. A3 (1986) 128

    Google Scholar 

  50. A.J. Silversmith, W. Lenth, R.M. Macfarlane: Green infrared-pumped erbium upconversion laser; Appl. Phys. Lett. 51 (1987) 1977

    Article  Google Scholar 

  51. B.M. Antipenko, S.P. Voronin, T.A. Privalova: Anti-Stokes conversion of neodymium laser radiation by cooperative processes; Sov. Phys. Tech. Phys. 32 (1987) 208

    Google Scholar 

  52. D. Piehler: Upconversion process creates compact blue/green lasers; Laser Focus World, November 1993, S. 95

    Google Scholar 

  53. J. Massicott, M.C. Brierley, R. Wyatt, S.T. Davey, D. Szebesta: Low threshold, diode pumped operartion of a green, Er3+ doped fluoride fibre laser; Electron. Lett. 29 (1993) 2119

    Article  Google Scholar 

  54. D. Piehler, D. Craven, N. Kwong, H. Zarem: Laser-diode-pumped red and green upconversion fibre lasers; Electron. Lett. 29 (1993) 1857

    Article  Google Scholar 

  55. S.G. Grubb, K.W. Bennett, R.S. Cannon, W.F. Humer: Cw room temperature blue upconversion fibre laser; Electron. Lett. 28 (1992) 1243

    Article  Google Scholar 

  56. R. Brede, E. Heumann, J. Koetke, T. Danger, G. Huber, B. Chai: Green upconversion laser emission in Er-doped crystals at room temperature; Appl. Phys. Lett. 63 (1993) 2030

    Article  Google Scholar 

  57. F. Heine, E. Heumann, T. Danger, T. Schweizer, B. Chai, G. Huber: Green upconversion cw Er3+:LiYF4 laser at room temperature; Appl. Phys. Lett. (1994), im Druck

    Google Scholar 

Literature

  1. M. Oka, H. Masuda, Y. Kaneda, S. Kubota: Laser diode pumped 1-W cw green laser; CLEO 90, Tech. Digest, Beitrag CWC5 (1990) 232

    Google Scholar 

  2. S. Schüler, Universität Konstanz

    Google Scholar 

  3. W. Lenth, R.M. McFarlane: Upconversion lasers; Optics and Photonics News, Optical Society of America, Bd. 3, Nr. 3, März 1992, S. 8

    Article  Google Scholar 

  4. D. Piehler, D. Craven, N. Kwong, H. Zarem: Laser diode-pumped visible upconversion fiber laser; CLEO 93, Tech. Digest, Beitrag CThF3 (1993) 406

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peuser, P., Schmitt, N.P. (1995). Nichtlineare Prozesse mit diodengepumpten Festkörperlasern. In: Diodengepumpte Festkörperlaser. Laser in Technik und Forschung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85190-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85190-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85191-9

  • Online ISBN: 978-3-642-85190-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics