Skip to main content

Cytotoxic T Cell Effector and Memory Function in Viral Immunity

  • Chapter
Transgenic Models of Human Viral and Immunological Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 206))

Abstract

The first evidence that virus-specific CD8+ cytotoxic T lymphocytes (CTLs) are primary effectors in vivo came shortly after the discovery of major histo- compatibility complex (MHC)-restricted CD8+ CTL activity (Zinkernagel and Doherty 1974). Adoptive transfer of immune spleen cells from mice of MHC type A into A or (AxB) F1, but not B, virus-infected recipients caused massive inflammatory pathology (Doherty and Zinkernagel 1975; DOHERTY et al. 1976b) and acute elimination of the pathogen (BLANDEN et al. 1975a; Zinkernagel and Welsh 1976). This was repeated for situations in which A and B represented different MHC haplotypes or distinct allelic forms of class I MHC glycoproteins (Doherty and Zinkernagel 1975; Blanden et al. 1975b; Doherty et al. 1976a). The analysis was extended to H-2 mutant mice and, again, the spectrum of cross-reactivity for T cell effector function in vivo and CTL activity in vitro seemed to run in parallel (Doherty et al. 1976a; Zinkernagel and Doherty 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R, King CC, Oldstone MB (1987) Virus-lymphocyte interaction: T cells of the helper subset are infected with lymphocytic choriomeningitis virus during peristent infection in vivo. J Virol 61: 1571–1576

    PubMed  CAS  Google Scholar 

  • Allan W, Tabi Z, Cleary A, Doherty PC (1990) Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J Immunol 144: 3980–3986

    PubMed  CAS  Google Scholar 

  • Andrew ME, Coupar BE, Ada GL, Boyle DB (1986) Cell-mediated immune responses to influenza virus antigens expressed by vaccinia virus recombinants. Microb Pathog 1: 443–452

    PubMed  CAS  Google Scholar 

  • Apasov SG, Sitkovsky MV (1994) Development and antigen specificity of CD8+ cytotoxic T lymphocytes in β2-microglobulin-negative, MHC class l-deficient mice in response to immunization with tumor cells. J Immunol 152: 2087–2097

    PubMed  CAS  Google Scholar 

  • Baenziger J, Hengartner H, Zinkemagel RM, Cole GA (1986) Induction or prevention of immuno-pathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus. Eur J Immunol 16: 387–393

    PubMed  CAS  Google Scholar 

  • Bender BS, Croghan T, Zhang L, Small PA Jr (1992) Transgenic mice lacking class I major histo-compatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 175: 1143–1145

    PubMed  CAS  Google Scholar 

  • Berke G (1994) The binding and lysis of target cells by cytotoxic lymphocytes: molecular and cellular aspects. Annu Rev Immunol 12: 735–773

    PubMed  CAS  Google Scholar 

  • Biron CA (1994) Cytokines in immune responses to, and resolution of, virus infection. Curr Opin Immunol 6: 530–538

    PubMed  CAS  Google Scholar 

  • Bix M, Raulet D (1992a) Functionally conformed free class I heavy chains exist on the surface of β2-microglobulin negative cells. J Exp Med 176: 829–834

    PubMed  CAS  Google Scholar 

  • Bix M, Raulet D (1992b) Inefficient positive selection of T cells directed by haematopoietic cells. Nature 359: 330–333

    PubMed  CAS  Google Scholar 

  • Blanden RV, Bowern NA, Pang TE, Gardner ID, Parish CR (1975a) Effects of thymus-independent (B) cells and the H-2 gene complex on antiviral function of immune thymus-derived (T) cells. Aust J Exp Biol Med Sci 53: 187–195

    PubMed  CAS  Google Scholar 

  • Blanden RV, Doherty PC, Dunlop MB, Gardner ID, Zinkemagel RM, David CS (1975b) Genes required for cytotoxicity against virus-infected target cells in K and D regions of H-2 complex. Nature 254: 269–270

    PubMed  CAS  Google Scholar 

  • Bowness P, Moss PAH, Rowland-Jones S, Bell JI, McMichael AJ (1993) Conservation of T cell receptor usage by HLA B27-restricted influenza-specific cytotoxic T lymphocytes suggests a general pattern for antigen-specific major histocompatibility complex class l-restricted responses. Eur J Immunol 23: 1417–1421

    PubMed  CAS  Google Scholar 

  • Budd RC, Cerottini JC, Horvath C, Bron C, Pedrazzini T, Howe RC, MacDonald HR (1987) Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol 138: 3120–3129

    PubMed  CAS  Google Scholar 

  • Byrne JA, Oldstone MB (1986) Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus. VI. Migration and activity in vivo in acute and persistent infection. J Immunol 136: 698–704

    PubMed  CAS  Google Scholar 

  • Carding SR, Allan W, McMickle A, Doherty PC (1993) Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia. J Exp Med 177: 475–482

    PubMed  CAS  Google Scholar 

  • Carpenter EA, Ruby J, Ramshaw IA (1994) IFN-gamma, TNF, and IL-6 production by vaccinia virus immune spleen cells: an in vitro study. J Immunol 152: 2652–2659

    PubMed  CAS  Google Scholar 

  • Castrucci MR, Hou S, Doherty PC, Kawaoka Y (1994) Protection against lethal lymphocytic choriomeningitis virus (LCMV) infection by immunization of mice with an influenza virus containing an LCMV epitope recognized by cytotoxic T lymphocytes. J Virol 65: 3486–3490

    Google Scholar 

  • Ceredig R, Allan JE, Tabi Z, Lynch F, Doherty PC (1987) Phenotypic analysis of the inflammatory exudate in murine lymphocytic choriomeningitis. J Exp Med 165: 1539–1551

    PubMed  CAS  Google Scholar 

  • Cole GA, Hogg CG, Woodland DL (1994) The MHC class I restricted T cell response to Sendai virus infection in C57BL/6 mice: a single immunodominant epitope elicits an extremely diverse repertoire of T cells. Int Immunol 6: 1767–1775

    PubMed  CAS  Google Scholar 

  • Deckhut AM, Allan W, McMickle A, Eichelberger M, Blackman MA, Doherty PC, Woodland DL (1993) Prominent usage of Vβ8.3 T cells in the H-2Db-restricted response to an influenza A virus nucleoprotein epitope. J Immunol 151: 2658–2666

    PubMed  CAS  Google Scholar 

  • Demkowicz WE Jr, Ennis FA (1993) Vaccinia virus-specific CD8+ cytotoxic T lymphocytes in humans. J Virol 67: 1538–1544

    PubMed  Google Scholar 

  • Dhib-Jalbut S, Jacobson S (1994) Cytotoxic T cells in paramyxovirus infection of humans. Curr Top Microbiol Immunol 189: 109–121

    PubMed  CAS  Google Scholar 

  • Doherty PC (1993a) Cell-mediated cytotoxicity. Cell 75: 607–612

    PubMed  CAS  Google Scholar 

  • Doherty PC (1993b) Virus infections in mice with targeted gene disruptions. Curr Opin Immunol 5: 479–483

    PubMed  CAS  Google Scholar 

  • Doherty PC (1993c) Immune exhaustion: driving virus-specific CD8+ T cells to death. Trends Microbiol 1: 207–209

    PubMed  CAS  Google Scholar 

  • Doherty PC (1995) Immune memory to viruses. American Society of Microbiology Lecture. American Society of Virology, Ann Arbor (ASM News, vol 61) pp 68–71

    Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Capacity of sensitized thymus-derived lymphocytes to induced fatal lymphocytic choriomeningitis is restricted by the H-2 gene complex. J Immunol 114: 30–33

    PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM, Ramshaw IA (1974) Specificity and development of cytotoxic thymus-derived lymphocytes in lymphocytic choriomeningitis. J Immunol 112: 1548–1552

    PubMed  CAS  Google Scholar 

  • Doherty PC, Blanden RV, Zinkemagel RM (1976a) Specificity of virus-immune effector T cells for H-2K or H-2D compatible interactions: implications for H-antigen diversity. Transplant Rev 29: 89–124

    PubMed  CAS  Google Scholar 

  • Doherty PC, Dunlop MB, Parish CR, Zinkemagel RM (1976b) Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K or H-2D compatible interactions. J Immunol 117: 187–190

    PubMed  CAS  Google Scholar 

  • Doherty PC, Efforts RB, Bennink J (1977) Heterogeneity of the cytotoxic response of thymus-derived lymphocytes after immunization with influenza viruses. Proc Natl Acad Sci USA 74: 1209–1213

    PubMed  CAS  Google Scholar 

  • Doherty PC, Allan W, Boyle DB, Coupar BE, Andrew ME (1989) Recombinant vaccinia viruses and the development of immunization strategies using influenza virus. J Infect Dis 159: 1119–1122

    PubMed  CAS  Google Scholar 

  • Doherty PC, Allan JE, Lynch F, Ceredig R (1990) Dissection of an inflammatory process induced by CD8+ T cells. Immunol Today 11: 55–59

    PubMed  CAS  Google Scholar 

  • Doherty PC, Hou S, Southern PJ (1993) Lymphocytic choriomeningitis virus induces a chronic wasting disease in mice lacking class I major histocompatibility complex glycoproteins. J Neuroimmunol 46: 11–18

    PubMed  CAS  Google Scholar 

  • Doherty PC, Hou S, Evans CF, Whitton JL, Oldstone MBA, Blackman MA (1994a) Limiting the available T cell receptor repertoire modifies acute lymphocytic choriomeningitis virus-induced immuno-pathology. J Neuroimmunol 51: 147–152

    PubMed  CAS  Google Scholar 

  • Doherty PC, Hou S, Tripp RA (1994b) CD8+ T cell memory to viruses. Curr Opin Immunol 6: 545–552

    PubMed  CAS  Google Scholar 

  • Eichelberger MC, Allan W, Zijlstra M, Jaenisch R, Doherty PC (1991a) Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med 174: 875–880

    PubMed  CAS  Google Scholar 

  • Eichelberger MC, Wand M, Allan W, Webster RG, Doherty PC (1991b) Influenza virus RNA in the lung and lymphoid tissue of immunologically intact and CD4-depleted mice. J Gen Virol 72: 1695–1698

    PubMed  Google Scholar 

  • Ewing C, Allan W, Daly K, Hou S, Cole GA, Doherty PC, Blackman MA(1994) Virus-specific CD8+ T-cell responses in mice transgenic for a T-cell receptor beta chain selected at random. J Virol 68: 3065–3070

    PubMed  CAS  Google Scholar 

  • Fraser JD, Allen H, Flavell RA, Strominger JL (1987) Cell-surface expression of H-2Db requires N-linked glycans. Immunogenetics 26: 31–35

    PubMed  CAS  Google Scholar 

  • Fujihashi K, McGhee JR, Beagley KW, McPherson DT, McPherson SA, Huang C-M, Kiyono H (1993) Cytokine-specific ELISPOT assay. Single cell analysis of IL-2, IL-4, and IL-6 producing cells. J Immunol Methods 160: 181–189

    PubMed  CAS  Google Scholar 

  • Fung-Leung WP, Kundig TM, Zinkernagel RM, Mak TW (1991) Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J Exp Med 174: 1425–1429

    PubMed  CAS  Google Scholar 

  • Graham MB, Dalton DK, Giltinan D, Braciale VL, Stewart TA, Braciale TJ (1993) Response to influenza infection in mice with a targeted disruption in the interferon gamma gene. J Exp Med 178: 1725–1732

    PubMed  CAS  Google Scholar 

  • Graham MB, Braciale VL, Braciale TJ (1994) Influenza virus specific CD4+ Th2 T lymphocytes do not promote recovery from experimental virus infection. J Exp Med 180: 1273–1282

    PubMed  CAS  Google Scholar 

  • Gray D (1993) Immunological memory. Annu Rev Immunol 11: 49–77

    PubMed  CAS  Google Scholar 

  • Guidotti LG, Ando K, Hobbs MV, Ishikawa T, Runkel L, Schreiber RD, Chisari FV (1994) Cytotoxic T lymphocytes inhibit hepatiis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci USA 91: 3764–3768

    PubMed  CAS  Google Scholar 

  • Hou S, Doherty PC (1993) Partitioning of responder CD8+ T cells in lymph node and lung of mice with Sendai virus pneumonia by LECAM-1 and CD45RB phenotype. J Immunol 150: 5494–5500

    PubMed  CAS  Google Scholar 

  • Hou S, Doherty PC (1995) Clearance of Sendai virus by CD8+ T cells requires direct targeting to virus-infected epithelium. Eur J Immunol 25: 111–116

    PubMed  CAS  Google Scholar 

  • Hou S, Doherty PC, Zijlstra M, Jaenisch R, Katz JM (1992) Delayed clearance of Sendai virus in mice lacking class I MHC-restricted CD8+ T cells. J Immunol 149: 1319–1325

    PubMed  CAS  Google Scholar 

  • Hou S, Fishman M, Gopal Murti K, Doherty PC (1993) Divergence between cytotoxic effector function and tumor necrosis factor alpha production for inflammatory CD4 T cells from mice with Sendai virus pneumonia. J Virol 67: 6299–6302

    PubMed  CAS  Google Scholar 

  • Hou S, Hyland L, Ryan KW, Portner A, Doherty PC (1994) Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369: 652–654

    PubMed  CAS  Google Scholar 

  • Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259: 1742–1745

    PubMed  CAS  Google Scholar 

  • Hyland L, Sangster M, Sealy R, Coleclough C (1994a) Respiratory virus infection provokes a permanent humoral immune response. J Virol 68: 6083–6086

    PubMed  CAS  Google Scholar 

  • Hyland L, Hou S, Coleclough C, Takimoto T, Doherty PC (1994b) Mice lacking CD8+ T cells develop greater numbers of IgA-producing cells in response to a respiratory virus infection. Virology 204: 234–241

    PubMed  CAS  Google Scholar 

  • Jacobson S, Sekaly RP, Bellini WJ, Johnson CL, McFarland HF, Long EO (1988) Recognition of intracellular measles virus antigens by H LA class II restricted measles virus-specific cytotoxic T lymphocytes. Ann N Y Acad Sci 540: 352–353

    PubMed  CAS  Google Scholar 

  • Kägi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369: 31–37

    PubMed  Google Scholar 

  • Kast WM, Roux L, Curren J, Blom HJ, Voordouw AC, Meloen RH, Kolakofsky D, Melief CJ (1991) Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci USA 88: 2283–2287

    PubMed  CAS  Google Scholar 

  • Kearney ER, Pape KA, Loh DY, Jenkins MK (1994) Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1: 327–339

    PubMed  CAS  Google Scholar 

  • Kelly KA, Pircher H, von Boehmer H, Davis MM, Scollay R (1993) Regulation of T cell production in T cell receptor transgenic mice. Eur J Immunol 23: 1922–1928

    PubMed  CAS  Google Scholar 

  • Kelso A (1990) Frequency analysis of lymphokine-secreting CD4+ and CD8+ T cells activated in a graft-versus-host reaction. J Immunol 145: 2167–2176

    PubMed  CAS  Google Scholar 

  • Klavinskis LS, Whitton JL, Oldstone MB (1989) Molecularly engineered vaccine which expresses an immunodominant T-cell epitope induces cytotoxic T lymphocytes that confer protection from lethal virus infection. J Virol 63: 4311–4316

    PubMed  CAS  Google Scholar 

  • Koller BH, Smithies O (1992) Altering genes in animals by gene targeting. Annu Rev Immunol 10: 705–730

    PubMed  CAS  Google Scholar 

  • Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, Zinkernagel R, Bluethmann H, Köhler G (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368: 339–342

    PubMed  CAS  Google Scholar 

  • Kündig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Horak I (1993) Immune responses in interleukin-2-deficient mice. Science 262: 1059–1061

    PubMed  Google Scholar 

  • Lau LL, Jamieson BD, Somasundaram T, Ahmed R (1994) Cytotoxic T-cell memory without antigen. Nature 369: 648–652

    PubMed  CAS  Google Scholar 

  • Lawson CM, Bennink JR, Restifo NP, Yewdell JW, Murphy BR (1994) Primary pulmonary cytotoxic T lymphocytes induced by immunization with a vaccinia virus recombinant expressing influenza A virus nucleoprotein peptide do not protect mice against challenge. J Virol 68: 3505–3511

    PubMed  CAS  Google Scholar 

  • Lehmann-Grube F, Lohler J, Utermohlen O, Gegin C (1993) Antiviral immune responses of lymphocytic choriomeningitis virus-infected mice lacking CD8+ T lymphocytes because of disruption of the beta 2-microglobulin gene. J Virol 67: 332–339

    PubMed  CAS  Google Scholar 

  • Liang S, Mozdzanowska K, Palladino G, Gerhard W (1994) Heterosubtypic immunity to influenza type A virus in mice: effector mechanisms and their longevity. J Immunol 152: 1653–1661

    PubMed  CAS  Google Scholar 

  • Lukacher AE, Braciale VL, Braciale TJ (1984) In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med 160: 814–826

    PubMed  CAS  Google Scholar 

  • Lynch F, Chaudhri G, Allan JE, Doherty PC, Ceredig R (1987) Expression of Pgp-1 (or Ly24) by subpopulations of mouse thymocytes and activated peripheral T lymphocytes. Eur J Immunol 17: 137–140

    PubMed  CAS  Google Scholar 

  • Lynch F, Doherty PC, Ceredig R (1989) Phenotypic and functional analysis of the cellular response in regional lymphoid tissue during an acute virus infection. J Immunol 142: 3592–3598

    PubMed  CAS  Google Scholar 

  • Matzinger P (1994) Immunology. Memories are made of this? Nature 369: 605–606

    PubMed  CAS  Google Scholar 

  • Miller RA, Reiss CS (1984) Limiting dilution cultures reveal latent influenza virus-specific helper T cells in virus-primed mice. J Mol Cell Immunol 1: 357–368

    PubMed  CAS  Google Scholar 

  • Moskophidis D, Lechner F, Pircher H, Zinkernagel RM (1993) Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362: 758–761

    PubMed  CAS  Google Scholar 

  • Moss DJ, Burrows SR, Khanna R, Misko IS, Sculley TB (1992) Immune surveillance against Epstein-Barr virus. Semin Immunol 4: 97–104

    PubMed  CAS  Google Scholar 

  • Mullbacher A (1994) The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J Exp Med 179: 317–321

    PubMed  CAS  Google Scholar 

  • Muller C, Kagi D, Aebischer T, Odermatt B, Held W, Podack ER, Zinkernagel RM, Hengartner H (1989) Detection of perforin and granzyme A mRNA in infiltrating cells during infection of mice with lymphocytic choriomeningitis virus. Eur J Immunol 19: 1253–1259

    PubMed  CAS  Google Scholar 

  • Muller D, Koller BH, Whitton JL, LaPan KE, Brigman KK, Frelinger JA (1992) LCMV-specific, class II-restricted cytotoxic T cells in beta 2-microgiobulin-deficient mice. Science 255: 1576–1578

    PubMed  CAS  Google Scholar 

  • Müller U, Steinhoff U, Reis LFL, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264: 1918–1921

    PubMed  Google Scholar 

  • Pantaleo G, Demarest JF, Soudeyns H, Graziosi C, Denis F, Adelsberger JW, Borrow P, Saag MS, Shaw GM, Sekaly RP, Fauci AS (1994) Major expansion of CD8+ T cells with a predominant Vβ usage during the primary immune response to HIV. Nature 370: 463–467

    PubMed  CAS  Google Scholar 

  • Pantaleo G, Fauci AS (1994) Tracking HIV during disease progression. Curr Opin Immunol 6: 600–604

    PubMed  CAS  Google Scholar 

  • Pircher H, Baenziger J, Schilham M, Sado T, Kamisaku H, Hengartner H, Zinkernagel RM (1987) Characterization of virus-specific cytotoxic T cell clones from allogeneic bone marrow chimeras. Eur J Immunol 17: 159–166

    PubMed  CAS  Google Scholar 

  • Podack ER, Hengartner H, Lichtenheld MG (1991) A central role of perforin in cytolysis? Annu Rev Immunol 9: 129–157

    PubMed  CAS  Google Scholar 

  • Ramsay AJ, Ruby J, Ramshaw IA (1993) A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today 14: 155–157

    PubMed  CAS  Google Scholar 

  • Raulet DH (1994) MHC class l-deficient mice. Adv Immunol 55: 381–421

    PubMed  CAS  Google Scholar 

  • Riviere Y, Robertson MN, Buseyne F (1994) Cytotoxic T lymphocytes in human immunodeficiency virus infection: regulator genes. Curr Top Microbiol Immunol 189: 65–74

    PubMed  CAS  Google Scholar 

  • Sarawar SR, Doherty PC (1994) Concurrent production of interleukin-2, interleukin-10, and gamma interferon in the regional lymph nodes of mice with influenza pneumonia. J Virol 68: 3112–3119

    PubMed  CAS  Google Scholar 

  • Sarawar SR, Carding SR, Allan W, McMickle A, Fujihashi K, Kiyono H, McGhee JR, Doherty PC (1993) Cytokine profiles of bronchoalveolar lavage cells from mice with influenza pneumonia: consequences of CD4+ and CD8+ T cell depletion. Reg immunol 5: 142–150

    PubMed  CAS  Google Scholar 

  • Sarawar SR, Sangster M, Coffman RL, Doherty PC (1994) Administration of anti-IFN-gamma antibody to β2-microglobulin-deficient mice delays influenza virus clearance but does not switch the response to a T helper cell 2 phenotype. J Immunol 153: 1246–1253

    PubMed  CAS  Google Scholar 

  • Scherle PA, Palladino G, Gerhard W (1992) Mice can recover from pulmonary influenza virus infection in the absence of class l-restricted cytotoxic T cells. J Immunol 148: 212–217

    PubMed  CAS  Google Scholar 

  • Slobod KS, Freiberg AS, Allan JE, Rencher SD, Hurwitz JL (1993) T-cell receptor heterogeneity among Epstein-Barr virus-stimulated T-cell populations. Virology 196: 179–189

    PubMed  CAS  Google Scholar 

  • Sprent J (1994) T and B memory cells. Cell 76: 315–322

    PubMed  CAS  Google Scholar 

  • Staats HF, Jackson RJ, Marinaro M, Takashi I, Kiyono H, McGhee JR (1994) Mucosal immunity to infection with implications for vaccine development. Curr Opin Immunol 6: 572–583

    PubMed  CAS  Google Scholar 

  • Stalder T, Hahn S, Erb P (1994) Fas antigen is the mayor target molecule for CD4+ T cell mediated cytotoxicity. J Immunol 152: 1127–1133

    PubMed  CAS  Google Scholar 

  • Suzuki S, Hotchin J (1971) Initiation of persistent lymphocytic choriomeningitis infection in adult mice. J Infect 123: 603–610

    CAS  Google Scholar 

  • Tabi Z, Lynch F, Ceredig R, Allan JE, Doherty PC (1988) Virus-specific memory T cells are Pgp-1+ and can be selectively activated with phorbol ester and calcium ionophore. Cell immunol 113: 268–277

    PubMed  CAS  Google Scholar 

  • Taylor PM, Askonas BA (1983) Diversity in the biological properties of anti-influenza cytotoxic Tcell clones. Eur J Immunol 13: 707–711

    PubMed  CAS  Google Scholar 

  • Tripp RA, Hou S, Doherty PC (1995) Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. J Immunol 154: 5870–5875

    PubMed  CAS  Google Scholar 

  • Walker JA, Sakaguchi T, Matsuda Y, Yoshida T, Kawaoka Y (1992) Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology 190: 278–287

    PubMed  CAS  Google Scholar 

  • Walsh CM, Matloubian M, Liu C-C, Veda R, Kurahara CG, Christensen JL, Huang MTF, Young JD-E, Ahmed R, Clark WR (1994) Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 91: 10854–10858

    PubMed  CAS  Google Scholar 

  • Wong GH, Clark-Lewis I, Harris AW, Schrader JW (1984) Effect of cloned interferon-gamma on expression of H-2 and la antigens on cell lines of hemopoietic, lymphoid, epithelial, fibroblastic and neuronal origin. Eur J Immunol 14: 52–56

    PubMed  CAS  Google Scholar 

  • Yanagi Y, Tishon A, Lewicki H, Cubitt BA, Oldstone MB (1992) Diversity of T-cell receptors in virus-specific cytotoxic T lymphocytes recognizing three distinct viral epitopes restricted by a single major histocompatibility complex molecule. J Virol 66: 2527–2531

    PubMed  CAS  Google Scholar 

  • Young LH, Klavinskis LS, Oldstone MB, Young JD (1989) in vivo expression of perforin by CD8+ lymphocytes during an acute viral infection. J Exp Med 169: 2159–2171

    PubMed  CAS  Google Scholar 

  • Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R (1990) β2-microglobulin deficient mice lack CD4 8+ cytolytic T cells. Nature 344: 742–746

    PubMed  CAS  Google Scholar 

  • Zijlstra M, Auchincloss H Jr, Loring JM, Chase CM, Russell PS, Jaenisch R (1992) Skin graft rejection by β2-microglobulin-deficient mice. J Exp Med 175: 885–893

    PubMed  CAS  Google Scholar 

  • Zinkemagel RM, Doherty PC (1974) Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 251: 547–548

    Google Scholar 

  • Zinkemagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol 27: 51–177

    Google Scholar 

  • Zinkemagel RM, Welsh RM (1976) H-2 compatibility requirement for virus-specific T cell-mediated effector functions in vivo.I. Specificity of T cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H-2K and H-2D. J Immunol 117: 1495–1502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doherty, P.C. (1996). Cytotoxic T Cell Effector and Memory Function in Viral Immunity. In: Chisari, F.V., Oldstone, M.B.A. (eds) Transgenic Models of Human Viral and Immunological Disease. Current Topics in Microbiology and Immunology, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85208-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85208-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85210-7

  • Online ISBN: 978-3-642-85208-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics