Skip to main content

Methods for Equilibrium Network Traffic Signal Setting

  • Conference paper
Flow Control of Congested Networks

Part of the book series: NATO ASI Series ((NATO ASI F,volume 38))

Abstract

Traffic signal setting as a tool for traffic management of urban networks is introduced. A brief state of art about Traffic Signal Setting and Network Equilibrium Assignment is reported. Then Equilibrium Network Traffic Signal Setting is analyzed together with the principal methods for its solution. Global optimization and iterative procedure approaches are described in detail. Finally, after some theoretical remarks, research perspectives are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aashtiani H.Z. (1979). The multimodal traffic assignment problem. Ph. D. Dissertation, M.I.T., Sloan School of Management.

    Google Scholar 

  • Aashtiani H.Z. and Magnanti T.L. (1981). Equilibria on a Congested Transportation Network. Siam J. on Alg. and Discr. Math., 2: 213–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Allsop R.E. (1968). Choice of Offsets in Linking Traffic Signals. Traffic Engng. Control, 9: 73–75.

    Google Scholar 

  • Allsop R.E. (1971). Delay Minimizing Setting for Fixed Time Traffic Signals at a Single Road Junction. J. Inst. Maths. Applics., 8: 164–185.

    Article  MathSciNet  Google Scholar 

  • Allsop R.E. (1972). Estimating the Traffic Capacity of a Signalized Road Junction. Transpn. Res., 6: 345–355.

    Article  Google Scholar 

  • Allsop R.E. (1974). Some Possibilities for Using traffic Control to Influence Trip Destination and Route Choice. Proc. of the Sixth Int. Symp. on Transportation and Traffic Theory: 345–374. Elsevier, Amsterdam

    Google Scholar 

  • Allsop R.E. (1983a). Optimization of Timing of Traffic Signals. Atti delle Giornate di Lavoro AIRO 1983: 103–120, Guida Editori, Napoli.

    Google Scholar 

  • Allsop R.E. (1983b). Network Models in Traffic Management and Control. Transport Reviews, 3, 2: 157–182.

    Article  Google Scholar 

  • Allsop R.E. and Charlesworth J.A. (1977). Traffic in a Signal Controlled Road Network: An Example of Different Signal Timings Inducing Different Routing. Traffic Engng. Control, 18: 262–264.

    Google Scholar 

  • Beckman M.J., McGuire C.B. and Winsten C.B. (1956). Studies in the Economics of Transportation. Yale University Press, New Haven, CT.

    Google Scholar 

  • Cantarella G.E. e Improta G. (1981). Una Metodologia per il Progetto Globale di Intersezioni Semaforizzate. Atti delle Giornate di lavoro AIRO 1981, Torino: 33–48.

    Google Scholar 

  • Cantarella G.E. and Improta G. (1985). Capacity Factor Maximization and Cycle Time Minimization for an Individual Signalized Junction. Dipartimento di Informatica e Sistemistica, Universita’ di Napoli. Rapporto interno n. 4.

    Google Scholar 

  • Cantarella G.E. and Improta G. (1987). Capacity Factor and Cycle Time Optimization: A Graph Theory Approach, to appear on Transpn. Res. B.

    Google Scholar 

  • Cantarella G.E., Improta G. e Sforza A. (1985). Progetto del Sistema di Controllo Semaforico su Reti in Equilibrio. Giornate di Studio su: “Mobilita’ e Trasporti in un’area urbana. Problemi, Esperienze, Prospettive”. Centro Scientifico I.B.M. Pisa, 17–18 ottobre 1985.

    Google Scholar 

  • Cantarella G.E., Cosentino M., Improta G. and Sforza A. (1986). Equilibrium Network Control System Design. Preprints 5th IFAC — IFIP — IFORS Int. Conf. on Control in Transportation Systems, Wien, 8–11 July, 1986: 395–403.

    Google Scholar 

  • Cantor D.G. and Gerla M. (1974). Optimal Routing in a packed switched computer network. IEEE Trans. on Computers, C-23: 1062–1069

    Article  MathSciNet  Google Scholar 

  • Charlesworth J.A. (1975). Relations between Travel-Time and Traffic Flow for the Links of Road Networks Controlled by Fixed-Time Signals. Transport Oper. Res. Group, Research Report n. 13. Newcastle upon-Tyne.

    Google Scholar 

  • Charlesworth J.A. (1977). Mutually Consistent Traffic Assignment and Signal Timings for a Signal-Controlled Road Network. Transport Oper. Res. Group, Research Report n.24. Newcastle upon-Tyne.

    Google Scholar 

  • Dafermos S.C. (1971). An Extended Traffic Assignment Model with Applications to Two-Way Traffic. Transpn. Sci., 5: 366–389.

    Article  Google Scholar 

  • Dafermos S.C. (1980). Traffic Equilibrium and Variational Inequalities. Transpn. Sci., 14: 42–54.

    Article  MathSciNet  Google Scholar 

  • Dafermos S.C. and Sparrow F.T. (1968). The Traffic Assignment Problem for a General Network. J. Res., Nat. Bur. Standards B. 73 B, 2: 91–117.

    Google Scholar 

  • Dickson T.J. (1981). A Note on Traffic Assignment and Signal Timings in a Signal Controlled Road Network. Transpn. Res., 15B: 267–271.

    Google Scholar 

  • Fisk C.S. (1984). Game Theory and Transportation Systems Modelling. Transpn. Res., 18B, 4/5: 301–313.

    Article  MathSciNet  Google Scholar 

  • Fisk C.S. and Nguyen S. (1982). Solution Algorithm for Network Equilibrium Models with Asymmetric User Costs. Transpn. Sci., 16: 361–381.

    Article  MathSciNet  Google Scholar 

  • Florian M. and Spiess H. (1982). Convergence of Diagonalization Algorithm for Fixed Demand Asymmetric Equilibrium Problems. Transpn. Res., 16B: 477–483.

    MathSciNet  Google Scholar 

  • Frank M. and Wolfe P. (1956). An Algorithm of Quadratic Programming. Nav. Res. Log. Quart, 3: 95–110.

    Article  MathSciNet  Google Scholar 

  • Friesz T.L. (1985). Network Equilibrium, Design and Aggregation: Key Developments and Research Opportunities, Transpn. Res., 19A, 5/6: 413–427.

    Google Scholar 

  • Gartner N.H. (1972a). Constraining Relations among Offsets in Synchronized Networks. Transpn. Sci. 6: 88–93.

    Article  Google Scholar 

  • Gartner N.H. (1972b). Optimal Synchronization of Traffic Signal Networks by Dynamic Programming. Proc.5th.Int.Symp. on the Theory of Traffic Flow and Transportation. (Edited by G.F. Newell): 281–295. American Elsevier, New York

    Google Scholar 

  • Gartner N.H. (1976). Area Traffic Control and Network Equilibrium. Traffic Equilibrium Methods (Edited by M. Florian): 274–297. Springer-Verlag, Berlin

    Google Scholar 

  • Gartner N.H. and Little J.D.C. (1975). Generalized Combination Method for Area Traffic Control. Transpn. Res. Rec. 531: 58–59.

    Google Scholar 

  • Gartner N.H., Little J.D.C., and Gabbay H. (1975). Optimization of Traffic Signal Settings by Mixed-Integer Linear Programming. Part I: The Network Coordination Problem; Part II: The Network Synchronization Problem, Trans. Sci., 9: 321–363.

    Google Scholar 

  • Gartner N.H., Little J.D.C. and Gabbay H. (1976). Simultaneous Optimization of Offsets, Splits and Cycle Time. Transpn. Res. Rec. 596: 6–15.

    Google Scholar 

  • Gartner N.H., Gershwin S.B., Little J.D.C. and Ross P. (1980). Pilot Study of Computer-Based Urban Traffic Management. Transpn. Res., 14B: 203–217.

    Google Scholar 

  • Hearn D.U., Lawphongpanich S. and Nguyen S. (1984). Convex Programming Formulations of the Asymmetric Traffic Assignment Problem. Transpn. Res. 18b: 357–365.

    Google Scholar 

  • Heydecker B.G. (1983). Some Consequences of Detailed Junction Modelling in Road Traffic Assignment. Transpn. Sci., 17: 263–281.

    Article  Google Scholar 

  • Hillier J.A. (1966). Appendix to Glasgow’s Experiment in Area Traffic Control. Traffic Engng. Control, 7: 569–571.

    Google Scholar 

  • Improta G. (1978). Un Contributo sul Problema della Capacita’ per le Intersezioni a Raso Semaforizzate con Sistema Fixed-Time. Atti del XVIII Cong.Naz. Stradale, Taormina, Italy.: 349–356.

    Google Scholar 

  • Improta G. (1986). Mathematical Programming Methods for Network Control. Proc. of Advanced Workshop on Flow Control of Congested Networks (A. Odoni, G. Szego Eds.). Springer-Verlag, Berlin.

    Google Scholar 

  • Improta G. and Cantarella G.E. (1984). Control System Design for an Individual Signalized Junction. Transpn. Res., 18B: 147–167.

    MathSciNet  Google Scholar 

  • Improta G. and Sforza A. (1982). Optimal Offsets for Traffic Signal Systems in Urban Networks. Transpn. Res., 16B: 143–161.

    Google Scholar 

  • Le Blanc L., Morlok E. and Pierskalla W. (1975). An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem. Transpn. Res., 9: 309–318.

    Article  Google Scholar 

  • Leventhal T.L., Nemhauser G.L. and Trotter L.E. (1973). A Column Generation Algorithm for Optimal Traffic Assignment. Transpn. Sci., 9: 168–176.

    Article  MathSciNet  Google Scholar 

  • Magnanti T. and Wong R. (1983). Network Design and Trasportation Planning: Models and Algorithms. OR 125–83, MIT.

    Google Scholar 

  • Marcotte P. (1983). Network Optimization with Continuous Control Parameters. Transpn. Sci., 17: 181–197.

    Article  Google Scholar 

  • Nguyen S. (1976). A Unified Approach to Equilibrium Methods for Traffic Assignment. Traffic Equilibrium Methods (Edited by M. Florian): 148–182. Springer-Verlag, Berlin

    Google Scholar 

  • Nguyen S. and James-Lefebre L. (1975): TRAFFIC: An Equilibrium Assignment program. C.R.T. Montreal, pubbl. no. 17.

    Google Scholar 

  • Robertson D.I. (1969). TRANSYT Method for Area Traffic Control. Traffic Engng. Control, 11: 276–281.

    Google Scholar 

  • Sheffi Y. (1985). Urban Transportation Networks. Prentice Hall Inc. Englewood Cliffs, N.J.

    Google Scholar 

  • Smith M.J. (1979a). Traffic Control and Route-Choice: A Simple Example. Transpn. Res., 13B: 289–294.

    Google Scholar 

  • Smith M.J. (1979b). The Existence, Uniqueness and Stability of Traffic Equilibria. Transpn. Res., 13B: 295–304.

    Google Scholar 

  • Smith M.J. (1981a). The Existence of an Equilibrium Solution of the Traffic Assignment Problem when there are Junction Interactions. Transpn. Res., 15B: 443–451.

    Google Scholar 

  • Smith M.J. (1981b). Properties of a Traffic Control Policy which Ensure the Existence of a Traffic Equilibrium Consistent with the Policy. Transpn. Res., 15B: 453–462.

    Google Scholar 

  • Smith M.J. (1982). Junction Interaction and Monotonicity in Traffic Assignment. Transpn. Res., 18B: 1–3.

    Google Scholar 

  • Smith M.J. (1983). The Existence and Calculation of Traffic Equilibria. Transpn. Res., 17B: 291–303.

    Google Scholar 

  • Smith M.J. (1985). Traffic Signals in Assignment Transpn.Res. 19B: 155–160.

    Google Scholar 

  • Tan H., Gershwin S.B. and Athans M. (1979). Hybrid Optimization in Urban Traffic Networks. Report No. DOT-TSC-RSP-79–7, MIT Cambridge, MA.

    Google Scholar 

  • Vincent R.A., Mitchell A.I. and Robertson D.I. (1980). TRANSYT Version 8. Road Res. Lab. Rep., LR 80, Crothorne, Berkshire.

    Google Scholar 

  • Wardrop J.G. (1952). Some Theoretical Aspects of Road Traffic Research. Proc. Inst. Civ. Eng., Part. II, 1: 325–378.

    Google Scholar 

  • Uebster F.V. (1958). Traffic Signal Setting. Road Research Technical Paper n.39 HMSO, London.

    Google Scholar 

  • Uebster F.V. and Cobbe B.M. (1966). Traffic Signals. Road Research Technical Paper n.56 HMSO, London.

    Google Scholar 

  • Zangwill U.I. (1967). The Convex Simplex Method, Man. Sci. 14, 3: 221–238.

    MathSciNet  MATH  Google Scholar 

  • Zuzarte Tully I.M. and Murchland J.D. (1978). Calculation and Use of the Critical Cycle Time for a Single Traffic Controller. Proc. of PTRC Summer Annual Meet.. PTRC-P152:96–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cantarella, G.E., Sforza, A. (1987). Methods for Equilibrium Network Traffic Signal Setting. In: Odoni, A.R., Bianco, L., Szegö, G. (eds) Flow Control of Congested Networks. NATO ASI Series, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86726-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86726-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86728-6

  • Online ISBN: 978-3-642-86726-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics