Skip to main content

Measurements in the Heated Turbulent Boundary Layer on a Mildly Curved Convex Surface

  • Conference paper
Turbulent Shear Flows 3

Abstract

Measurements of mean velocity and temperature, and of surface heat flux, have been made in a turbulent boundary layer on a heated convex surface of modest curvature (δ/R ∼0.01). The results show surprisingly large curvature effects on heat transfer: at the end of the curved plate the Stanton number fell by 18% of the predicted flat plate value; the corresponding fall in the skin friction coefficient was 10%.

Profile measurements of temperature and velocity were obtained well into the viscous sublayer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

c f :

skin friction coefficient, [Eq. (4)]

c p :

static pressure coefficient, \(2(p - {{p}_{{ref}}})/\rho U_{{pw}}^{2}\), specific heat

\(\dot{q}\prime \prime\) :

heat flux

R :

radius of curvature of plate

s :

distance measured along curved wall

T :

temperature

T + :

dimensionless temperature [Eq. (6)]

U :

velocity

U + :

dimensionless velocity U/μτ

uτ:

friction velocity, \(\sqrt {{{{\tau }_{w}}/\rho }}\)

y :

distance measured normal to the wall

y + :

dimensionless distance, yuτ/υ

Δ2 :

enthalpy thickness, [Eq. (2)]

δ2 :

momentum thickness, [Eq. (1)]

δ:

boundary layer thickness

ρ:

density

τ:

shear stress

υ:

kinematic viscosity

p:

potential flow

w:

wall

∞:

free stream

References

  1. Bradshaw, P.: Effect of streamwise curvature on turbulent flows. AGARDograph 169 (1973)

    Google Scholar 

  2. Smits, A. J., Young, S. T. B., Bradshaw, P.: The effect of short regions of high surface curvature on turbulent boundary layers. J. Fluid Mech. 94, 209 (1979)

    Article  ADS  Google Scholar 

  3. Gillis, J.C., Johnston, J.P.: “Experiments on the Turbulent Boundary Layer over Convex Walls and its Recovery to Flat-Wall Conditions. In Turbulent Shear Flows II ed. by L.J.S. Bradbury, F. Durst, B.E. Launder, F.W. Schmidt, J.H. Whitelaw (Springer, Berlin, Heidelberg, New York 1980) pp. 116–128

    Google Scholar 

  4. Hoffmann, P.H., Bradshaw, P.: “Turbulent Boundary Layers on Surfaces of Mild Longitudinal Curvature”. Imperial Coll. Aero. Rpt. 78-104 (1978)

    Google Scholar 

  5. Ramaprian, B. R., Shivaprasad, B. G.: The structure of turbulent boundary layers along mildly curved surfaces. J. Fluid Mech. 85, 273 (1978)

    Article  ADS  Google Scholar 

  6. Gibson, M.M., Verriopoulos, CA., Vlachos, N.S.: “Measurements in the Turbulent Boundary Layer on a Convex Wall”, Int. Symp. on Applications of Fluid Mechanics and Heat Transfer to Energy and Environmental Problems, Patras, Greece (1981)

    Google Scholar 

  7. Thomann, H.: Effect of streamwise wall curvature on heat transfer in a turbulent boundary layer. J. Fluid Mech., 33, 283 (1968)

    Article  ADS  Google Scholar 

  8. Mayle, R.E., Blair, M.F., Kopper, F.C.: Turbulent boundary layer heat transfer on curved surfaces. ASME J. Heat Transfer 101, 521 (1979)

    Article  ADS  Google Scholar 

  9. Bradshaw, P.: The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177 (1969)

    Article  ADS  MATH  Google Scholar 

  10. Businger, J. A., Wyngaard, J. C, Izumi, Y., Bradley, E. F.: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181 (1971)

    Article  ADS  Google Scholar 

  11. Gibson, M.M.: An algebraic stress and heat flux model for turbulent shear flow with streamline curvature. Int. J. Heat Mass Transfer 21, 1609 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Simon, T.W., Moffat, R.J.: “Heat Transfer Through Turbulent Boundary Layers — the Effects of Introduction of and Recovery from Convex Curvature”. ASME paper 79-WA/GT-10 (1979)

    Google Scholar 

  13. Gillis, J.C., Johnston, J.P., Kays, W.M., Moffat, R.J.: “Turbulent Boundary Layer on a Convex Curved Surface”. Rpt. No. HMT-31, Thermosciences Div., Mech. Eng. Dept., Stanford University (1980)

    Google Scholar 

  14. Gibson, M. M., Launder, B. E.: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, 491 (1978)

    Article  ADS  MATH  Google Scholar 

  15. So, R.M.C.: “The Effects of Streamline Curvature on Reynolds Analogy”. ASME paper 77-WA/FE-17 (1977)

    Google Scholar 

  16. So, R. M.C.: Heat transfer modelling for turbulent shear flows. Z. Angew. Math. Phys. 32, 541 (1981)

    Article  Google Scholar 

  17. Oka, S., Kostic, Z.: Influence of wall proximity on hot wire velocity measurements. DISA Inf. 13, 29 (1972)

    Google Scholar 

  18. Blackwell, B. F., Moffat, R. J.: Design and construction of a low-velocity boundary-layer temperature probe. ASME J. Heat Transfer 97, 313 (1975)

    Article  Google Scholar 

  19. Hishida, M., Nagano, Y., Nakamura, Y.: Temperature distribution in the turbulent boundary layer in a circular pipe. Bull. JSME 21, 157, 1175 (1978)

    Article  Google Scholar 

  20. Kays, W.M., Crawford, M.E.: Convective Heat and Mass Transfer (McGraw-Hill, New York 1980)

    Google Scholar 

  21. Coles, D.: The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kader, B. A., Yaglom, A. M.: Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transfer 15, 2329 (1972)

    Article  Google Scholar 

  23. Simon, T.W., Moffat, R.J.: “Turbulent Boundary Layer Heat Transfer Experiments: a Separate Effects Study on a Convexly Curved Wall”. ASME paper 81-HT-78 (1981)

    Google Scholar 

  24. Simon, T.W., Moffat, R.J., Johnston, J.P., Kays, W.M.: “Turbulent Boundary Layer Heat Transfer Experiments: Convex Curvature Effects Including Introduction and Recovery”, Rpt. No. HMT-32, Thermosciences Div., Mech. Eng. Dept., Stanford University (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibson, M.M., Verriopoulos, C.A., Nagano, Y. (1982). Measurements in the Heated Turbulent Boundary Layer on a Mildly Curved Convex Surface. In: Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95410-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95410-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95412-2

  • Online ISBN: 978-3-642-95410-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics