Skip to main content

Baumartenwechsel und Herkunftswahl im Klimawandel

  • Chapter
  • First Online:
Waldbewirtschaftung in der Klimakrise

Zusammenfassung

Im Klimawandel gehören die Wahl geeigneter Baumarten und Samenherkünfte sowie die Anlage von Mischbeständen zu den vielversprechendsten Anpassungsmaßnahmen in der Waldbewirtschaftung (siehe Kap. 2). Ein Baumartenwechsel ist generell durch natürliche oder künstliche Verjüngung möglich. Die natürliche Verjüngung ist jedoch auf die am jeweiligen Standort bereits vorkommenden Baumarten beschränkt und wird zudem durch hohen Wilddruck regelmäßig stark beeinträchtigt (Schodterer, 2019). Insbesondere nach großräumigen Störungen, wie Stürmen, Waldbränden oder Borkenkäferkalamitäten besteht die Notwendigkeit großflächige Aufforstungen mit für die erwarteten Klimabedingungen geeigneten Baumarten rasch durchzuführen, um die vielfältigen Leistungen des Waldes wiederherzustellen bzw. zu sichern. Als weiterer Nachteil der Naturverjüngung im rasch voranschreitenden Klimawandel könnte sich die lokale genetische Anpassung von Baumarten an die bisherigen Umweltbedingungen erweisen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evolutionary Applications, 1, 95–111.

    Google Scholar 

  • Aitken, S. N., & Bemmels, J. B. (2015). Time to get moving: Assisted gene flow of forest trees. Evolutionary Applications, 9, 271–290.

    Article  Google Scholar 

  • Bentz, F. (2019). Das Phänomen der kalabrischen Tanne. Forstzeitung, 5, 24–27.

    Google Scholar 

  • Brundu, G., Pauchard, A., Pyšek, P., Pergl, J., Bindewald, A. M., Brunori, A., Canavan, S., et al. (2020). Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota, 61, 65–116.

    Article  Google Scholar 

  • Burke, K. D., Williams, J. W., Chandler, M. A., Haywoode, A. M., Lunt, D. J., & Otto-Bliesnerg, B. L. (2018). Pliocene and eocene provide best analogs for near future climates. PNAS, 115(52), 13288–13293.

    Article  Google Scholar 

  • Chakraborty, D., Wang, T., Andre, K., Konnert, M., Lexer, M. J., Matulla, C., & Schueler, S. (2015). Selecting populations for non-analogous climate conditions using universal response functions: The case of douglas-fir in Central Europe. PLoS ONE, 10, e0136357.

    Article  Google Scholar 

  • Chakraborty, D., Wang, T., Andre, K., Konnert, M., Lexer, J. M., Matulla, C., Weißenbacher, L., & Schueler, S. (2016). Adapting douglas-fir forestry in Central Europe: Evaluation, application, and uncertainty analysis of a genetically based model. European Journal of Forest Research, 135, 919–936.

    Article  Google Scholar 

  • Chakraborty, D., Matulla, C., Andre, K., Weissenbacher, L., & Schueler, S. (2019a). Survival of douglas-fir provenances in Austria: Site-specific late and early frost events are more important than provenance origin. Annals of Forest Science, 76, 100.

    Article  Google Scholar 

  • Chakraborty, D., Jandl, R., Kapeller, S., & Schueler, S. (2019b). Disentangling the role of climate and soil on tree growth and its interaction with seed origin. Science of the Total Environment, 654, 393–401.

    Article  Google Scholar 

  • DeSoto, L., Cailleret, M., Sterck, F., et al. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11, 545.

    Article  Google Scholar 

  • Dauphin, B., Rellstab, C., Schmid, M., Zoller, S., Karger, D. N., Brodbeck, S., Guillaume, F., & Gugerli, F. (2020). Genomic vulnerability to rapid climate warming in a tree species with a long generation time. Global Change Biology, 27, 1181–1195.

    Article  Google Scholar 

  • Dyderski, M. K., Paź, S., Frelich, L. E., & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24, 1150–1163.

    Article  Google Scholar 

  • Eckhart, T., Pötzelsberger, E., Koeck, R., Thom, D., & Lair, G. J. (2019). Forest stand productivity derived from site conditions: An assessment of old Douglas-fir stands (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) in Central Europe. Annals Forest Science, 76, 19.

    Google Scholar 

  • Frank, A., Howe, G. T., Sperisen, C., Brang, P., Schmatz, D. R., & Heiri, C. (2017a). Risk of genetic maladaptation due to climate change in three major European tree species. Global Change Biology, 23, 5358–5371.

    Article  Google Scholar 

  • Frank, A., Sperisen, C., Howe, G. T., Brang, P., Walthert, L., St, J. B., Clair, H., & C. (2017b). Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Ecology, 98, 211–227.

    Article  Google Scholar 

  • Gauzere, J., Klein, E. K., Brendel, O., Davi, H., & Oddou-Muratorio, S. (2020). Microgeographic adaptation and the effect of pollen flow on the adaptive potenzial of a temperate tree species. New Phytologist, 227, 641–653.

    Article  Google Scholar 

  • George, J. P., Schueler, S., Karanitsch-Ackerl, S., Mayer, K., Klumpp, R. T., & Grabner, M. (2015). Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits. Agricultural and Forest Meteorology, 214/215, 430–443.

    Google Scholar 

  • George, J. P., Grabner, M., Karanitsch-Ackerl, S., Mayer, K., Weissenbacher, L., & Schueler, S. (2017). Genetic variation, phenotypic stability and repeatability of drought response in European larch throughout 50 years in a common garden experiment. Tree Physiology, 37, 33–46.

    Google Scholar 

  • George, J. P., Grabner, M., Campelo, F., Karanitsch-Ackerl, S., Mayer, K., Klumpp, R. T., & Schueler, S. (2019). Intra-specific variation in growth and wood density traits under waterlimited conditions: Long-term-, short-term-, and sudden responses of four conifer tree species. Science of the Total Environment, 660, 631–643.

    Article  Google Scholar 

  • George, J. P., Theroux-Rancourt, G., Rungwattana, K., Scheffknecht, S., Momirovic, N., Neuhauser, L., Weißenbacher, L., Watzinger, A., & Hietz, P. (2020). Assessing adaptive and plastic responses in growth and functional traits in a 10-year-old common garden experiment with pedunculate oak (Quercus robur L.) suggests that directional selection can drive climatic adaptation. Evolutionary Applications, 13, 2422–2438.

    Article  Google Scholar 

  • Hamrick, J. L., Godt, M. J. W., & Sherman-Broyles, S. L. (1992). Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95–124.

    Article  Google Scholar 

  • Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3, 203–207.

    Article  Google Scholar 

  • Jasser, C. (2016). Weißtanne – die Herkunft entscheidet fast alles. Aktuelle Auswertung von drei Herkunftsversuchen in Oberösterreich. Forstzeitung, 3, 8–9.

    Google Scholar 

  • Kapeller, S., Lexer, M. J., Geburek, T., Hiebl, J., & Schueler, S. (2012). Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271, 46–57.

    Article  Google Scholar 

  • Kerr, G., Stokes, V., Peace, A., & Jinks, R. (2015). Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain. European Journal of Forest Research, 134, 349–363.

    Article  Google Scholar 

  • Klumpp, R. T. (2002). Der Tannenprovenienzversuch „Knödelhütte Wien 1967“: Ergebnisse im Alter 24. Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz., 50(03), 44–49.

    Google Scholar 

  • Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., et al. (2012). Long distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15, 378–392.

    Article  Google Scholar 

  • Lapin, K., Oettel, J., Steiner, H., Langmaier, M., Sustic, D., Starlinger, F., Kindermann, G., & Frank, G. (2019). Invasive alien plant species in unmanaged forest reserves. Austria. NeoBiota, 48, 71.

    Article  Google Scholar 

  • Larsen, J. B. (1981). Waldbauliche und ertragskundliche Erfahrungen mit verschiedenen Provenienzen der Weißtanne (Abies alba Mill.) in Dänemark. Forstwissenschaftliches Centralblatt, 100, 275–287.

    Article  Google Scholar 

  • Latham, R. E., & Ricklefts, R. E. (1993). Continental comparisons of temperate-zone tree species diversity. In R. E. Ricklefs & D. Schluter (Hrsg.), Species diversity in ecological communities: Historical and geographical perspectives (S. 294–317). Univ Chicago Press.

    Google Scholar 

  • Lévesque, M., Rigling, A., Bugmann, H., Weber, P., & Brang, P. (2014). Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agricultural and Forest Meteorology, 197, 1–12.

    Article  Google Scholar 

  • Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462, 1052–1055.

    Article  Google Scholar 

  • Lstibůrek, M., Schueler, S., El-Kassaby, Y. A., Hodge, G. R., Stejskal, J., Korecký, J., Škorpík, P., Konrad, H., & Geburek, T. (2020). In Situ Genetic Evaluation of European Larch Across Climatic Regions Using Marker-Based Pedigree Reconstruction. Frontiers in Genetics, 11, 28.

    Article  Google Scholar 

  • Mayer, H., Reimoser, F., & Kral, F. (1980). Ergebnisse des Internationalen Tannenherkunftversuches Wien 1967–1978, Morphologie und Wuchsverhalten der Provenienzen. In Prof. Dr. Hannes Mayer (Hrsg.), IUFRO- Gruppe Ökosysteme: 3. Tannensymposium Wien 1980 (S. 109–138). Österreichischer Agrarverlag.

    Google Scholar 

  • Milesi, P., Berlin, M., Chen, J., Orsucci, M., Li, L., Jansson, G., Karlson, B., & Lascoux, M. (2019). Assessing the potential for assisted gene flow using past introduction of Norway spruce in Southern Sweden: Local adaptation and genetic basis of quantitative traits in trees. Evolutionary Applications, 2, 1946–1959.

    Article  Google Scholar 

  • Nathan, R., Horvitz, N., He, Y., Kuparinen, A., Schurr, F. M., & Katul, G. G. (2011). Spread of North American wind-dispersed trees in future environments. Ecology Letters, 14, 211–219.

    Article  Google Scholar 

  • Pavari, A. (1951). Esperienze e indagini su le provenienze e razze dell‘Abete bianco (Abies alba Mill.). Pubblicazioni della Stazione Seprimentale Di Selvicoltura Firenze, 8, 1–39.

    Google Scholar 

  • Pötzelsberger, E., Eckhart, T., & Hasenauer, H. (2019). Wachstumspotenziale für Douglasie in Österreich und Deutschland. Austrian Journal of Forest Science, 136, 69–86.

    Google Scholar 

  • Pötzelsberger, E., Spiecker, H., Neophytou, C., Mohren, F., Gazda, A., & Hasenauer, H. (2020). Growing non-native trees in European forests brings benefits and opportunities but also has its risks and limits. Current Forestry Reports, 6, 339–353.

    Article  Google Scholar 

  • Rehfeldt, G. E., Tchebakova, N. M., Parfenova, Y. I., Wykoff, W. R., Kuzmina, N. A., & Milyutin, L. I. (2002). Intraspecific responses to climate in Pinus sylvestris. Global Change Biology, 8, 912–929.

    Article  Google Scholar 

  • Rinallo, C., & Gellini, R. (1988). Morphological and anatomical traits identifying the silver fir (Abies alba Mill.) from the Serra San Bruno provenance. Giornale Botanico Italiano, 122, 149–166.

    Article  Google Scholar 

  • Sáenz-Romero, C., Lamy, J. B., Ducousso, A., Musch, B., Ehrenmann, F., Delzon, S., & Lee, S. J. (2017). Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology, 23, 2831–2847.

    Google Scholar 

  • Schodterer, H. (2019). Bundesweites Wildeinflussmonitoring 2016–2018 – Ergebnisse der Wem Periode 5. BFW-Praxisinformation, 48, 5–22.

    Google Scholar 

  • Schueler, S., Schlünzen, K. H., & Scholz, F. (2005). Viability and sensitivity of oak pollen and its implications for pollen-mediated gene flow. Trees, 19, 154–161.

    Article  Google Scholar 

  • Schueler, S., & Schlünzen, K. H. (2006). Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environmental Modeling Assessment, 11, 179–194.

    Article  Google Scholar 

  • Schüler, S., & Chakraborty, D. (2021). Limitierende Faktoren für den Douglasienanbau in Mitteleuropa im Klimawandel. Schweizerische Zeitschrift für Forstwesen, 172(2), 84–93.

    Article  Google Scholar 

  • Schueler, S., Falk, W., Koskela, J., Lefèvre, F., Bozzano, M., et al. (2014). Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Global Change Biology, 20, 1498–1511.

    Article  Google Scholar 

  • Schueler, S., & Liesebach, M. (2015). Latitudinal population transfer reduces temperature sum requirements for bud burst of European beech. Plant Ecology, 216, 111–122.

    Article  Google Scholar 

  • Schueler, S., George, J.-P., Karanitsch-Ackerl, S., Mayer, K., Klumpp, R. T., & Grabner, M. (2021). Evolvability of drought response in native and non-native conifers: opportunities for forest and genetic resource management in Europe. Frontiers in Plant Science, 12, 648312. doi: 10.3389/fpls.2021.648312

  • Schuster, K., & Ruhm, W. (2015). Gastbaumarten (S. 1–20). Landwirtschaftskammer Österreich.

    Google Scholar 

  • Svenning, J.-C., & Skov, F. (2004). Limited filling of potenzial range in European tree species. Ecology Letters, 7, 565–573.

    Article  Google Scholar 

  • Sykes, M. T., Prentice, I. C., & Cramer, W. (1996). A bioclimatic model for the potential distributions of North European tree species under present and future climates. Journal Biogeography, 23, 203–233.

    Google Scholar 

  • Thuiller, W. (2003). BIOMOD – optimizing predictions of species distributions and projecting potenzial future shifts under global change. Global Change Biology, 9, 1353–1362.

    Article  Google Scholar 

  • Thurm, E. A., Hernandez, L., Baltensweiler, A., et al. (2018). Alternative tree species under climate warming in managed European forests. Forest Ecology Management, 430, 485–497.

    Article  Google Scholar 

  • Tomiczek, C., Cech, T. L., Fürst, A., Hoyer-Tomiczek, U., Krehan, H., Perny, B., & Steyrer, G. (2008). Forstschutzsituation 2007 in Österreich. Forstschutz Aktuell, 42, 3–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Schüler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schüler, S., Lapin, K., Chakraborty, D. (2023). Baumartenwechsel und Herkunftswahl im Klimawandel. In: Hesser, F., Braun, M. (eds) Waldbewirtschaftung in der Klimakrise. Studien zum Marketing natürlicher Ressourcen. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-39054-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-39054-9_3

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-39053-2

  • Online ISBN: 978-3-658-39054-9

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics