Skip to main content

Assisted Facility Layout Planning for Sustainable Automotive Assembly

  • Conference paper
  • First Online:
Future Automotive Production Conference 2022

Abstract

Decisions in factory layout planning can be considered multi-dimensional and complex since they need to cope with numerous partially conflicting boundary conditions and objectives. However, they do have a significant impact on long-term efficiency and flexibility. Due to rising needs in this area, an assisted solution for optimizing factory layout planning is required. Generative Design (GD) is a summarizing term for iterative, mostly nature-analogue approaches that support an efficient analysis of large design spaces, allowing to effortlessly achieve mathematically optimized solutions not usually achievable by traditional methods. Although there have been decades of research on the underlying principles, generative planning of spatial arrangements for manufacturing facilities still lacks behind its potential. Therefore, the proposed paper will begin with a structured overview of terminology and different factory planning requirements, followed by possible mathematical approaches for facility layout planning problems (FLP) in manufacturing. Special attention is drawn to sustainability aspects, defining the requirements to be considered in an automated design and including empirical knowledge in complex scenarios. The paper finishes with the derivation of identified future research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Michael Clauß: Methode zum Einsatz von Web 2.0-Werkzeugen in der Fabrikplanung (2013). https://monarch.qucosa.de/api/qucosa%3A19915/attachment/ATT-0/. Accessed 22 Feb 2022

  2. VDI 5200 Blatt 1 Fabrikplanung—Planungsvorgehen, VDI-Gesellschaft Produktion und Logistik (Mar. 2011)

    Google Scholar 

  3. Augustin, H., Al-Shahmani, H., Dreßler, E., Krafzik, C., Liebler, C., Schmidt, P.: Gestaltung eines virtuellen Fabrikplanungsprozesses. ZWF 115(10), 659–662 (2020). https://doi.org/10.1515/zwf-2020-1151003. Accessed 3 Feb 2022

  4. Reinema, C., Pompe, A., Nyhuis, P.: Agiles Projektmanagement. ZWF 108(3), 113–117 (2013). https://doi.org/10.3139/104.110903

  5. Brunone, F., Cucuzza, M., Imperadori, M., Vanossi, A.: An innovative method for the management of the building process. In: Brunone, F., Cucuzza, M., Imperadori, M., Vanossi, A. (Eds.) Springer eBook collection, wood additive technologies: Application of active design optioneering, 1st ed., pp. 35–64. Springer, Cham (2021). Accessed 3 Mar 2022

    Google Scholar 

  6. Keshavarzi, M., Rahmani-Asl, M.: GenFloor: Interactive generative space layout system via encoded tree graphs. Front. Archit. Res. 10(4), 771–786 (2021). https://doi.org/10.1016/j.foar.2021.07.003. Accessed 1 Feb 2022

  7. Süße, M., Putz, M.: Generative design in factory layout planning. Procedia CIRP 99, 9–14 (2021). https://doi.org/10.1016/j.procir.2021.03.002. Accessed 23 Mar 2022

  8. Spacemaker A.S.: Spacemaker—AI architecture design | building information modelling. https://www.spacemakerai.com/. Accessed 4 Mar 2022

  9. Elie, D., Kubicki, S.: Technologies in the planning of refugees’ camps: A parametric participative framework for spatial camp planning. In: 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), Toronto, ON, Canada, Jul. 2017, pp. 207–212. Accessed 22 Feb 2022

    Google Scholar 

  10. Burggräf, P., Adlon, T., Hahn, V., Schulz-Isenbeck, T.: Fields of action towards automated facility layout design and optimization in factory planning—A systematic literature review. CIRP J. Manuf. Sci. Technol. 35, 864–871 (2021). https://doi.org/10.1016/j.cirpj.2021.09.013. Accessed 1 Mar 2022

  11. Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S.M.T., Fakhrzad, M.B.: Classification of facility layout problems: A review study. Int. J. Adv. Manuf. Technol. 94(1–4), 957–977 (2017). https://doi.org/10.1007/s00170-017-0895-8

    Article  Google Scholar 

  12. Kusiak, A., Heragu, S. S.: The facility layout problem. Eur. J. Oper. Res. 29(3), 229–251 (1987). https://doi.org/10.1016/0377-2217(87)90238-4. Accessed 3 Dec 2021

  13. Anjos, M.F., Vieira, M.V.: Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions. Eur. J. Oper. Res. 261(1), 1–16 (2017). https://doi.org/10.1016/j.ejor.2017.01.049. Accessed 1 Mar 2022

  14. Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: A survey. Ann. Rev. Cont. 31(2), 255–267 (2007). https://doi.org/10.1016/j.arcontrol.2007.04.001. Accessed 11 Dec 2021

  15. Pérez-Gosende, P., Mula, J., Díaz-Madroñero, M.: Facility layout planning. An extended literature review. Int. J. Prod. Res. 59(12), 3777–3816 (2021). https://doi.org/10.1080/00207543.2021.1897176. Accessed 15 Mar 2022

  16. Burggräf, P., Wagner, J., Heinbach, B.: Bibliometric study on the use of machine learning as resolution technique for facility layout problems. IEEE Access 9, 22569–22586 (2021). https://doi.org/10.1109/ACCESS.2021.3054563

    Article  Google Scholar 

  17. Burggräf, P., Dannapfel, M., Adlon, T., Kahmann, H., Schukat, E., Keens, J.: Capability-based assembly design: An approach for planning an agile assembly system in automotive industry. Procedia CIRP 93, 1206–1211 (2020). https://doi.org/10.1016/j.procir.2020.03.079. Accessed 21 Feb 2022

  18. Kern, W., Lämmermann, H., Bauernhansl, T.: An integrated logistics concept for a modular assembly system. Procedia Manufac. 11, 957–964 (2017). https://doi.org/10.1016/j.promfg.2017.07.200. Accessed 22 Feb 2022

  19. Neugebauer, R., Putz, M., Pfeifer, M., Todtermuschke, M.: Improving flexibility in car body assembly systems. CATS 2010: Responsive, costumer demand driven, adaptive assembly, pp. 115–120. Trondheim (2010). Accessed 11 Feb 2022

    Google Scholar 

  20. Elkington, J.: The triple bottom line. In: M. V. Russo (Ed.): Environmental management: Readings and cases, 2nd ed., pp. 49–66. SAGE, Los Angeles (2008). Accessed 15 Jan 2022

    Google Scholar 

  21. United Nations, THE 17 GOALS | Sustainable development. https://sdgs.un.org/goals. Accessed 4 Mar 2022

  22. Müller, E., Engelmann, J., Löffler, T., Strauch, J.: Energieeffiziente Fabriken planen und betreiben. Springer Berlin Heidelberg, Berlin (2009)

    Google Scholar 

  23. Nielsen, L., et al.: Towards quantitative factory life cycle evaluation. Procedia CIRP 55, 266–271 (2016). https://doi.org/10.1016/j.procir.2016.08.009

    Article  Google Scholar 

  24. Autodesk Inc.: About lighting analysis | Revit 2021 | Autodesk knowledge network. https://knowledge.autodesk.com/support/revit/learnexplore/caas/CloudHelp/cloudhelp/2021/ENU/Revit-Analyze/files/GUID-1F9669B3-338B-436D-B850-3FA4BC84A300-htm.html. Accessed 4 Mar 2022

  25. Süße, M., Ihlenfeldt, S., Putz, M.: Framework for increasing sustainability of factory systems by generative layout design. Procedia CIRP 105, 345–350 (2022). https://doi.org/10.1016/j.procir.2022.02.057. Accessed 5 Apr 2022

  26. Pelletier, N., Allacker, K., Manfredi, S., Chomkhamsri, K., Maia de Souza, D.: Organisation environmental footprint (OEF) guide. https://ec.europa.eu/environment/eussd/pdf/footprint/OEF%20Guide_final_July%202012_clean%20version.pdf. Accessed 19 Sep 2021

  27. Stacey, R. D., Mowles, C.: Strategic management and organisational dynamics: The challenge of complexity to ways of thinking about organisations. Pearson Education, Harlow (2016). Accessed 28 Feb 2022

    Google Scholar 

  28. Zimmerman, B.: Ralph Staceyʼs agreement & certainty matrix. https://www.betterevaluation.org/en/resources/guide/ralph_staceys_agreement_and_certainty_matrix. Accessed 4 Mar 2022

  29. Schwaber, K.: Agile project management with Scrum. Microsoft Press; Safari Books Online, Redmond (2004). https://learning.oreilly.com/library/view/-/9780735619937/?ar. Accessed 4 Mar 2022

  30. neptune.ai: 10 real-life applications of reinforcement learning—neptune.ai. https://neptune.ai/blog/reinforcement-learning-applications. Accessed 4 Mar 2022

  31. Arzate Cruz, C., Igarashi, T.: A survey on interactive reinforcement learning. In: Proceedings of the 2020 ACM designing interactive systems conference, Eindhoven, Netherlands, pp. 1195–1209 (2020). Accessed 11 Feb 2022

    Google Scholar 

  32. Arora, S., Doshi, P.: A survey of inverse reinforcement learning: Challenges, methods and progress. Artif. Intell. 297, 103500 (2021). https://doi.org/10.1016/j.artint.2021.103500. Accessed 25 Feb 2022

  33. Padakandla, S.: A survey of reinforcement learning algorithms for dynamically varying environments. ACM Comput. Surv. 54(6), 1–25 (2021). https://doi.org/10.1145/3459991. Accessed 26 Feb 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Süße .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Süße, M., Ahrens, A., Richter-Trummer, V., Ihlenfeldt, S. (2023). Assisted Facility Layout Planning for Sustainable Automotive Assembly. In: Dröder, K., Vietor, T. (eds) Future Automotive Production Conference 2022. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-39928-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-39928-3_13

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-39927-6

  • Online ISBN: 978-3-658-39928-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics