Skip to main content

Sensitivity Reduction and Robustness

  • Chapter
Theory of Sensitivity in Dynamic Systems
  • 336 Accesses

Abstract

In Chapters Two to Five we devote our attentions primarily to issues regarding parameter-sensitivity analysis. In spite of different uncertainties which may exist in a dynamical system, we expect that our controller will ultimately maintain qualitatively and/or quantitatively the overall system operation as desired. Or it will maintain this operation within a prespecified class of such operations which this is really the key issue in any robustness methodology. Therefore we must incorporate in control synthesis algorithm any information regarding possible discrepancies in system “output”, in order to generate new controllers that can stand against the consequences of some possible uncertainties. This incorporation is by no means a simple task, and before we let our expectations exceed our means, we examine some of our earlier assumptions and review the class of problems which currently can be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

[A] Trajectory — Sensitivity Comparison Certain Feedback Properties of Linear Systems

  1. B.D.O. Anderson, “Sensitivity improvement using optimal design,” Proc. IEE, vol. 113, pp. 1084–1086, 1966.

    Google Scholar 

  2. D. Bensoussan, “Sensitivity reduction in single-input single-output systems,” IJC, vol. 39, no. 2, pp. 321–335, 1984.

    MathSciNet  MATH  Google Scholar 

  3. D. Bensoussan, “Decentralized control and sensitivity reduction of weakly coupled plants,” IJC, vol. 40, no. 6, pp. 1099–1118, 1984.

    MathSciNet  MATH  Google Scholar 

  4. R.W. Brockett and M.D. Mesarovic, “The reproducibility of multivariable systems,” JMAA, vol. 11, pp. 548–563, 1965.

    MathSciNet  MATH  Google Scholar 

  5. B.M. Chen, A. Saberi, and P. Sannuti, “A new stable compensator design for exact and approximate loop transfer recovery,” Automatica, vol. 27, no. 2, pp. 257–280, 1991.

    MathSciNet  MATH  Google Scholar 

  6. B.M. Chen, A. Saberi, and P. Sannuti, “Necessary and sufficient conditions for a nonminimum phase plant to have a recoverable target loop — A stable compensator design for LTR,” Automatica, vol. 28, no. 3, pp. 493–507, 1992.

    MathSciNet  MATH  Google Scholar 

  7. J.B. Cruz, Jr., and W.R. Perkins, “A new approach to the sensitivity problem in multivariable feedback system design,” IEEE-TAC, vol. AC-9, pp. 216–223, July 1964.

    Google Scholar 

  8. J.B. Cruz, Jr., and W.R. Perkins, “Criteria for system sensitivity to parameter variations,” Proc. IFAC, vol. 1 (of the 3rd Congress), pp. 18C. 1–18C. 7, 1966.

    Google Scholar 

  9. J.B. Cruz, Jr., and N. Sundararajan, “Sensitivity improvement of semi-closed loop systems,” in Proc. 2nd IFAC Symp. Multivariable Technical Control Systems, pp. 1–15, 1971.

    Google Scholar 

  10. R.M. DeSantis and S. Lefebvre, “Comparative sensitivity and absolute invariant compensators,” in Proc. Allerton Conf., pp. 964–973, 1976.

    Google Scholar 

  11. R.M. DeSantis and W.A. Porter, “Circle type conditions for sensitivity reduction,” ACTA, vol. 2, no. 2, pp. 26–36, May 1974.

    MathSciNet  Google Scholar 

  12. C.A. Desoer and W.S. Chan, “The feedback interconnection of lumped linear time-invariant systems,” JFI, vol. 300, nos. 5 amp 6, pp. 335–351, 1975.

    Google Scholar 

  13. M. Eslami, “On sensitivity comparison of linear systems,” in Proc. MECO’ 77 (M.H. Hamza, Ed.), pp. 119–123, Zurich, June 20–21, 1977.

    Google Scholar 

  14. R.L. Gonzales, “Synthesis for minimum sensitivity under worst case conditions,” in Proc. Allerton Conf., pp. 527–537, 1966.

    Google Scholar 

  15. O.R. Gonzalez and P.J. Antsaklis, “Sensitivity considerations in the control of generalized plants,” IEEE-TAC, vol. AC-34, no. 8, pp. 885–889, Aug. 1989.

    Google Scholar 

  16. G. Grubel and G. Kreisselmeier, “A generalized comparison sensitivity concept for sensitivity reduction in control system design,” in Proc. Joint Auto. Contr. Conf., pp. 328–332, 1974.

    Google Scholar 

  17. Y. Hontoir and J.B. Cruz, Jr., “Sensitivity reduction in linear systems,” Automatica, vol. 8, pp. 445–449, 1972.

    MathSciNet  MATH  Google Scholar 

  18. Y. Hontoir and J.B. Cruz, “A probabilistic likelihood approach to trajectory sensitivity,” Automatica, vol. 10, pp. 49–60, 1974.

    MathSciNet  MATH  Google Scholar 

  19. W.F. Horton and C.T. Leondes, “Sensitivity in multivariable control systems,” ASME-JBE, pp. 246–250, June 1969.

    Google Scholar 

  20. O.L.R. Jacobs, “Cost of uncertainty about controlled objects,” Proc. IEE, vol. 136, Pt. D, no. 4, pp. 177–187, July 1989.

    Google Scholar 

  21. A.V. Knyazev, “Frozen-parameter method for integral equations of feedback system dynamics,” ARC, vol. 41, no. 10, pp. 1347–1348, Oct. 1980.

    MATH  Google Scholar 

  22. E. Kreindler, “On the definition and application of the sensitivity function,” JFI, vol. 285, pp. 26–36, Jan. 1968.

    MATH  Google Scholar 

  23. E. Kreindler, “Closed-loop sensitivity reduction of linear optimal control systems,” IEEE-TAC, vol. AC-13, no. 3, pp. 254–262, June 1968.

    Google Scholar 

  24. E. Kreindler, “On trajectory sensitivity in optimal control,” Proc. IEEE, vol. 57, no. 4, pp. 695–696, April 1969.

    Google Scholar 

  25. G. Kreisselmeier and G. Grubel, “The design of optimally parameter insensitive control systems,” in Proc. IFAC, vol. 3 (of the 5th Congress), pp. 31.1.1–31.1. 6, 1972.

    Google Scholar 

  26. B. Krogh and J.B. Cruz, Jr., “Design of sensitivity-reducing compensators using observers,” IEEE-TAC, vol. AC-23, no. 6, pp. 1058–1062, Dec. 1978. Addendum, ibid., vol. AC-24, no. 2, p. 353, April 1979.

    MathSciNet  Google Scholar 

  27. D.F. Looze and J.S. Freudenberg, “Limitations of feedback properties imposed by open-loop right half plane poles,” IEEE-TAC, vol. AC-36, no. 6, pp. 736–739, 1991.

    MathSciNet  Google Scholar 

  28. A.GJ. MacFarlane, “Return-difference and return-ratio matrices and their use in analysis and design of multivariable feedback control systems,” Proc. IEE, vol. 117, no. 10, pp. 20372049, Oct. 1970.

    Google Scholar 

  29. A.GJ. MacFarlane, “Return-difference and return-ratio matrices and their use in analysis and design of multivariable feedback control systems,” Proc. IEE, vol. 118, no. 7, pp. 946–947, July 1971.

    MathSciNet  Google Scholar 

  30. P.J. Marino, “On the synthesis of insensitive linear feedback control systems,” IJC, vol. 6, no. 1, pp. 33–50, 1967.

    MATH  Google Scholar 

  31. W.R. Perkins and J.B. Cruz, Jr., “The parameter variation problem in state feedback control systems,” ASME-JBE, vol. 87, pp. 120–124, 1965.

    Google Scholar 

  32. A.GJ. MacFarlane, “Feedback properties of linear regulators,” IEEE-TAC, vol. AC-16, no$16, pp. 659–663, Dec. 1971.

    Google Scholar 

  33. W.R. Perkins, J.B. Cruz, Jr., and R.L. Gonzales, “Design of minimum sensitivity systems,” IEEE-TAC, vol. AC-13, no. 2, pp. 159–167, April 1968.

    Google Scholar 

  34. H.J. Perlis, “On the residue of a sensitivity function,” IEEE-TAC, vol. AC-10, pp. 496–497, Oct. 1965.

    Google Scholar 

  35. W.A. Porter, “A design technique for improving system sensitivity,” in Proc. Alterton Conf., pp. 517–526, 1966.

    Google Scholar 

  36. W.A. Porter, “On the reduction of sensitivity in multivariate systems,” IJC, vol. 5, no. 1, pp. 1–9, 1967.

    Google Scholar 

  37. V.R. Suie and V.V. Athani, “Directional sensitivity tradeoffs in multivariable feedback systems,” Automatica, vol. 27, no. 5, pp. 869–872, 1991.

    MathSciNet  Google Scholar 

  38. N. Sundararajan and J.B. Cruz, Jr., “Trajectory insensitivity of optimal feedback systems,” IEEE-TAC, vol. AC-15, pp. 663–665, Dec. 1970.

    Google Scholar 

  39. C. Verde and P.M. Frank, “Sensitivity reduction of linear quadratic regulator by matrix modification,” IJC, vol. 48, no. 1, pp. 211–223, 1988.

    MathSciNet  MATH  Google Scholar 

[B] Performance - Index Sensitivity Comparison

  1. P. Courtin and J. Rootenberg, “Performance index sensitivity of optimal control systems,” IEEE-TAC, vol. AC-16, no. 3, pp. 275–277, June 1971.

    Google Scholar 

  2. P. Dorato, “On sensitivity in optimal control systems,” IEEE-TAC, vol. AC-8, pp. 256–257, July 1963.

    Google Scholar 

  3. J.C. Dunn, “Further results on the sensitivity of optimally controlled systems,” IEEE-TAC, vol. AC-12, pp. 324–326, June 1967.

    Google Scholar 

  4. H.S. Kang and A.K. Mahalanabis, “Sensitivity of the performance of optimal stochastic systems,” Proc. IEEE, vol. 61, no. 3, pp. 389–390, 1973.

    Google Scholar 

  5. P.V. Kokotovic, J. Heller, and P. Sannuti, “Sensitivity comparison of optimal controls,” IJC, vol. 9, no. 1, pp. 111–115, Jan. 1969.

    MATH  Google Scholar 

  6. E. Kreindler, “On performance sensitivity of optimal control systems,” IJC, vol. 15, no. 3, pp. 481–486, 1972.

    MathSciNet  MATH  Google Scholar 

  7. A. Orbach and R. Fischl, “Performance index sensitivity of optimal control of first order in time-and space-distributed parameter systems,” IEEE-TAC, voL AC-25, no. 2, pp. 314–317, April 1980.

    Google Scholar 

  8. B. Pagurek, “Sensitivity of the performance of optimal linear control systems to parameter variations,” IJC, vol. 1, pp. 33–45, 1965.

    MATH  Google Scholar 

  9. B. Pagurek, “Sensitivity of the performance of optimal control systems to plant parameter vari- ations,” IEEE-TAC, AC-10, pp. 178–180, April 1965.

    Google Scholar 

  10. W.A. Porter, “Sensitivity problems in linear systems,” IEEE-TAC, vol. AC-10, July 1965.

    Google Scholar 

  11. N.K. Sinha and S.R. Atluri, “Sensitivity of optimal control systems,” in Proc. Allerton Conf., pp. 508–516, 1966.

    Google Scholar 

  12. N.K. Sinha, S.R. Atluri, and H.S. Witsenhausen, “On the sensitivity of optimal control systems with quadratic performance criteria,” IEEE-TAC, vol. AC-12, pp. 208–209, April 1967.

    Google Scholar 

  13. F.E. Thau, “A Comparison of closed-loop and open-loop optimum systems,” IEEE-TAC, vol. AC-11, pp. 619–620, July 1966.

    Google Scholar 

  14. H.S. Witsenhausen, “On the sensitivity of optimal control systems,” IEEE-TAC, vol. AC-10, pp. 495–496, Oct. 1965.

    Google Scholar 

  15. D.C. Youla and P. Dorato, “On the comparison of the sensitivities of open-loop and closed-loop optimal control systems,” IEEE-TAC, vol. AC-13, pp. 186–188, April 1968.

    Google Scholar 

[C] Optimality - Index Sensitivity: Analysis and Synthesis

  1. Y.V. Aleksandrov, “Sensitivity of the quality criterion of linear optimal systems,” ECy, vol. 9, no. 5, pp. 948–953, Sept./Oct. 1971.

    Google Scholar 

  2. Y.V. Aleksandrov, “Guaranteed sensitivity of linear optimal systems,” ECy, vol. 13, no. 2, pp. 140–145, March/April 1975.

    Google Scholar 

  3. M. Aoki, “On performance losses in some adaptive control systems: I, ASME-JBE, pp. 9094, March 1965.

    Google Scholar 

  4. N. Becker, “A note on performance index sensitivity of time optimal control systems,” IEEE-TAC, vol. AC-25, no. 4, pp. 819–821, Aug. 1980.

    Google Scholar 

  5. D.S. Bernstein and W.M. Haddad, “Robust stability and performance analysis for linear dynamic systems,” IEEE-TAC, vol. AC-34, no. 7, pp. 751–758, July 1989.

    Google Scholar 

  6. B.Z. Bobrovsky and D. Graupe, “Analysis of optimal-cost sensitivity to parameter changes,” IEEE-TAC,vol. AC-16, pp. 487–488, Oct. 1971.

    Google Scholar 

  7. W.A. Brown and W.J. Vetter, “Sub-optimal design of the linear regulator with incomplete state feedback via second-order sensitivity,” IJC, vol. 16, no. 1, pp. 1–7, 1972.

    MATH  Google Scholar 

  8. RJ. Bums and K.S.P. Kumar, “Sensitivity considerations in specific optimum controls,” IJC, vol. 5, no. 3, pp. 289–296, 1967.

    Google Scholar 

  9. B.N. Chatterji, “Sensitivity of performance of control systems to unintentional coupling signals,” IJC, vol. 12, no. 2, pp. 265–272, 1970.

    MATH  Google Scholar 

  10. M. Eslami, “Sensitivity analysis and synthesis in automatic control systems,” Ph.D. Dissertation, The University of Wisconsin - Madison, May 1978.

    Google Scholar 

  11. M. Goujon and M. Lecrique, “Influence de la precision des regulateurs sur les performances des systemes de reglage,” Automatisme, vol. XVI, no. 2, pp. 100–110, Feb. 1971.

    Google Scholar 

  12. D. Graupe, “Optimal linear control subject to sensitivity constraints,” IEEE-TAC, vol. AC-19, no. 5, pp. 593–594, Oct. 1974.

    MATH  Google Scholar 

  13. A.J. Koivo, “Performance Sensitivity of dynamic systems,” in Proc. Joint Auto. Contr. Conf., pp. 444–453, 1968.

    Google Scholar 

  14. ], “Performance sensitivity of dynamical systems,” Proc. IEE, vol. 117, no. 4, pp. 825–830, April 1970.

    Google Scholar 

  15. B. Kurtaran and M. Sidar, “Analysis of cost sensitivity for linear-quadratic stochastic problems with instantaneous output feedback,” IEEE-TAC, vol. AC-19, no. 5, pp. 589–590, Oct. 1974.

    MathSciNet  Google Scholar 

  16. W.S. Levine and M. Athans, “On the determination of the optimal constant output feedback gain for linear multivariable systems,” IEEE-TAC, vol. AC-15, pp. 44–48, Feb. 1970.

    Google Scholar 

  17. E.P. Maslov and A.M. Petrovsky, “Sensitivity of linear systems with respect to random disturbances,” Automatica, vol. 5, pp. 275–278, 1969.

    MathSciNet  MATH  Google Scholar 

  18. N.H. McClamroch, L.G. Clark, and J.K. Aggarwal, “Sensitivity of linear control systems to large parameter variations,” Automatica, vol. 5, pp. 257–263, 1969.

    MathSciNet  MATH  Google Scholar 

  19. J. Medanic, “Three segment method in the sensitivity design of control systems,” in Proc. Allerton Conf., pp. 439–450, 1967.

    Google Scholar 

  20. M. Midy, “Influence d’une non-linearite sur les parametres de reglage d’une boucle de regulation analogique (application a une regulation de debit),” Automatisme, vol. XVI, no. 2, pp. 116–121, Feb. 1971.

    Google Scholar 

  21. L. Platzman and M. Athans, “Explicit cost sensitivity analysis for linear systems with quadratic criteria,” IEEE-TAC, vol. AC-20, no. 2, pp. 252–254, April 1975.

    MathSciNet  Google Scholar 

  22. J.J. Rissanen, “Performance deterioration of optimum systems,” IEEE-TAC, vol. AC-11, pp. 530–532, July 1966.

    Google Scholar 

  23. R.A. Rohrer and M. Sobral, Jr., “Sensitivity considerations in optimal system design,” IEEE-TAC, vol. AC-10, pp. 43–48, Jan. 1965.

    Google Scholar 

  24. Y.E. Sagalov, “Analysis of sensitivity of an optimal system with parameter variation,” ARC, no. 2, pp. 180–184, Feb. 1974.

    Google Scholar 

  25. M.P. Sakharov, “Parametric sensitivity in the problem of control with an incomplete plant model,” ARC, no. 6, pp. 877–883, June 1973.

    Google Scholar 

  26. D.M. Salmon, “Minimax controller design,” IEEE-TAC, vol. AC-13, no. 4, pp. 369–376, Aug. 1968.

    Google Scholar 

  27. N.K. Sinha and S.H. Dai, “Reduction of the sensitivity of an optimal control system to plant parameter variations,” IEEE-TAC, vol. AC-15, pp. 589–590, Oct. 1970.

    Google Scholar 

  28. J.S. Tyler, Jr., and F.B. Tuteur, “The use of a quadratic performance index to design multivariable control systems,” IEEE-TAC, vol. AC-11, no. 1, pp. 84–92, Jan. 1966.

    Google Scholar 

  29. A.A. Vengerov, V.L. Rozhanskii, and G.M. Ulanov, “Estimation of sensitivity of integral performance criteria of systems of variable structure,” ARC, no. 2, pp. 245–250, Feb. 1971.

    Google Scholar 

  30. R.A. Werner, “Feedback control with magnitude constraints for systems with unknown parameters,” in Proc. Allerton Conf, pp. 418–427, 1967.

    Google Scholar 

  31. R.A. Werner and J.B. Cruz, Jr., “Feedback control which preserves optimality for systems with unknown parameters,” IEEE-TAC, vol. AC-13, no. 6, pp. 621–629, Dec. 1968.

    MathSciNet  Google Scholar 

  32. M.A. Zohdy and J.D. Aplevich, “Output feedback controllers optimal for time-multiplied performance indices,” Elect. Lett., vol. 11, no. 16, pp. 360–361, Aug. 1975.

    Google Scholar 

[D] Trajectory — Sensitivity Optimization

  1. M.A. Abouelwafa and M.H. Hamza, “Design of an adaptive controller using multi-level and sensitivity concepts,” IJSS, vol. 10, no. 3, pp. 243–250, 1979.

    MathSciNet  MATH  Google Scholar 

  2. A.J. Bradt, “Sensitivity functions in the design of optimal controllers,” IEEE-TAC, voL AC-13, pp. 110–111, Feb. 1968.

    Google Scholar 

  3. P.C. Byrne and M. Burke, “Optimization with trajectory sensitivity considerations,” IEEE-TAC, vol. AC-21, no. 2, pp. 282–283, April 1976. Comments, by P.J. Fleming and M.M. Newmann, ibid., vol. AC-22, no. 1, p. 151, Feb. 1977.

    Google Scholar 

  4. J.F. Cassidy, Jr., and I. Lee, “On the optimal feedback control of a large launch vehicle to reduce trajectory sensitivity,” in Proc. Joint Auto. Contr. Conf, pp. 587–595, June 1967.

    Google Scholar 

  5. V.V. Ciric and J.V. Leeds, “Further results on sensitivity consideration of multiple-input controller design for dynamic optimization,” IJC, vol. 15, no. 5, pp. 849–863, 1972.

    MathSciNet  MATH  Google Scholar 

  6. RN. Crane and A.R. Stubberud, “Minimum sensitive linear feedback compensators,” in Proc. Asilomar Conf, pp. 405–409, 1971.

    Google Scholar 

  7. RN. Crane and A.R. Stubberud, “Closed-loop formulations of optimal control problems for minimum sensitivity,” in Control and Dynamic Systems advances in theory and applications, vol. 9 (C.T. Leondes, Ed.). New York: Academic Press, pp. 375–505, 1973.

    Google Scholar 

  8. H. D’Angelo, M.L. Moe, and T.C. Hendricks, “Trajectory sensitivity of an optimal control system,” in Proc. Allerton Conf., pp. 489–498, Oct. 1966.

    Google Scholar 

  9. H.J. Dougherty, I. Lee, and P.M. DeRusso, “Synthesis of optimal feedback control systems subject to parameter variations,” preprints of Joint Auto. Contr. Conf., pp. 125–133, 1967.

    Google Scholar 

  10. M. Eslami, “Sensitivity analysis and synthesis in automatic control systems,” Ph.D. Dissertation, The University of Wisconsin — Madison, May 1978.

    Google Scholar 

  11. M. Eslami, “On sensitivity measure optimization with large parameter variation,” The Univer- sity of Wisconsin-Madison, Dept. of ECE, Report ECE-79–3, 32 pp., Jan. 1979.

    Google Scholar 

  12. M. Eslami, “On sensitivity minimization algorithms with quadratic performances,” in Proc. 21st IEEE Conf. on Decision and Contr., pp. 637–641, Dec. 1982.

    Google Scholar 

  13. M. Eslami, “Robust quadratic optimization of systems with large parameter variations,” JOCAM, voL 12, no. 1, pp. 33–48, 1991. Corrections, ibid., vol. 15, 1994.

    Google Scholar 

  14. M. Eslami and R.S. Marleau, “On sensitivity minimization with an adaptive controller,” in Proc. Joint Auto. Contr. Conf., pp. 219–228, Oct. 1978.

    Google Scholar 

  15. M. Eslami and R.S. Marleau, “On trajectory sensitivity minimization with an adaptive controller,” in Advances in Control (D.G. Lainiotis and T.S. Tzannes, Eds.). Boston: D. Reidel Pub. Company, pp. 342–350, 1980.

    Google Scholar 

  16. P.J. Fleming and M.M. Newmann, “Trajectory sensitivity reduction in the optimal linear regulator,” in Recent Mathematical Development in Control (DJ. Bell, Ed.). New York: Academic Press, pp. 137–151, 1973.

    Google Scholar 

  17. P.J. Fleming and M.M. Newmann, “Design algorithms for a sensitivity constrained suboptimal regulator,” IJC, vol 25, no. 6, pp. 965–978, 1977.

    MathSciNet  MATH  Google Scholar 

  18. I.-K. Fong, T.-S. Kuo, K.-C. Kuo, C.-F. Hsu, and M.-Y. Wu, “Sensitivity analysis of linear uncertain systems and its application in the synthesis of an insensitive linear regulator,” IJSS, vol. 18, no. 1, pp. 43–55, 1987.

    MATH  Google Scholar 

  19. G. Fronza and A. Locatelli, “Insensitivity by linear feedback,” JFI, vol. 296, no. 4, pp. 237247, Oct. 1973.

    Google Scholar 

  20. S. Fu, M.E. Sawan, Y. Fu, and M.T. Tran, “Trajectory sensitivity analysis: A new criterion,” IJSS, vol. 16, no. 6, pp. 769–775, 1985.

    MATH  Google Scholar 

  21. M. Gopal and P. Pratapachandran Nair, “Sensitivity reduced optimal linear regulator with prescribed closed-loop eigenvalues,” IEEE-TAC, vol. AC-29, no. 7, pp. 661–664, July 1984.

    MathSciNet  Google Scholar 

  22. M. Gopal and P. Pratapachandran Nair, “On the design of a sensitivity-reducing optimal dead-beat controller,” IJC, vol. 42, no. 4, pp. 877–886, 1985.

    MATH  Google Scholar 

  23. G. Grubel and G. Kreisselmeier, “Effective parameter sensitivity reduction through minimization of sensitivity measure,” in Proc. Joint Auto. Contr., pp. 79–86, 1971.

    Google Scholar 

  24. R.P. Hamalainen and T. Eirola, “Trajectory sensitivity reduction in non-zero-sum differential games,” IJSS, vol. 11, no. 2, pp. 207–222, 1980.

    MathSciNet  Google Scholar 

  25. A.R. Hanafy, “Two-level optimization technique to minimize trajectory sensitivity,” in Proc. Joint Auto. Contr. Conf., pp. 568–575, 1976.

    Google Scholar 

  26. E. Higginbotham, “Optimal sensitivity and state control of regulators containing plant and measurement noise,” in Proc. Allerton Conf., pp. 677–680, 1969.

    Google Scholar 

  27. Y. Hontoir and J.B. Cruz, Jr., “Minimum trajectory sensitivity design of systems with random parameters,” IJC, vol. 20, no. 3, pp. 353–362, 1974.

    MATH  Google Scholar 

  28. S.J. Kahne, “Low sensitivity design of optimal linear control systems,” IEEE-TAES, vol. AES-4, pp. 374–379, May 1968.

    Google Scholar 

  29. Y. Kamiya, “Construction of a low parameter and disturbance sensitivity system by a model-following method,” IJC, vol. 23, no. 4, pp. 515–524, 1976.

    MATH  Google Scholar 

  30. I.H. Khalifa and A.A.R. Hanafy, “A note on trajectory sensitivity reduction using a three-term controller,” IEEE-TAC, vol. AC-29, no. 8, pp. 739–740, Aug. 1984. Errata, ibid., vol. AC-31, no. 1, pp. 93–94, Jan. 1986.

    Google Scholar 

  31. D.L. Kleinman and P. Krishna Rao, “An information matrix approach for aircraft parameter-insensitive control,” in Proc. IEEE Conf. on Decision and Contr., 1977.

    Google Scholar 

  32. E. Kreindler, “On minimization of trajectory sensitivity,” IJC, vol. 8, no. 1, pp. 89–96, 1968.

    Google Scholar 

  33. E. Kreindler, “Formulation of the minimum trajectory sensitivity problem,” IEEE-TAC, vol. AC-14, pp. 206–207, April 1969.

    Google Scholar 

  34. C.T. Leondes and P. Pezet, “Sensitivity requirements for suboptimal controllers,” IEEE-TAC, vol. AC-20, no. 3, pp. 426–428, June 1975.

    Google Scholar 

  35. C.T. Leondes and T.K. Sui, “Payoff sensitivity of linear quadratic differential games to parameter change,” ASME-JDSMC, vol. 103, pp. 36–38, March 1981.

    MathSciNet  MATH  Google Scholar 

  36. J.F. Lowinger and J.A. Gibson, “Desensitizing algorithms for state-restrained optimal control assessments,” IJC, vol. 21, no. 3, pp. 353–373, 1975.

    MATH  Google Scholar 

  37. J.Y.S. Luh and E.R. Cross, “Optimal controller design for minimum trajectory sensitivity,” IJC, vol. 7, no. 6, pp. 557–568, 1968.

    MATH  Google Scholar 

  38. M.M. Missaghie and F.W. Fairman, “Sensitivity reducing observers for optimal feedback control,” IEEE-TAC, vol. AC-22, no. 6, pp. 952–957, Dec. 1977.

    MathSciNet  Google Scholar 

  39. M.M. Missaghie and F.W. Fairman, “Desensitizing observers for LQG feedback control,” IJSS, vol. 12, no. 2, pp. 161–175, 1979.

    Google Scholar 

  40. R.B. Newell and D.B. Fisher, “Experimental evaluation of optimal, multivariable regulatory controllers with model-following capabilities,” Automatica, vol. 8, pp. 247–262, 1972.

    Google Scholar 

  41. M.M. Newmann, “On attempts to reduce the sensitivity of the optimal linear regulator to a parameter change,” ITC, vol. 11, no. 6, pp. 1079–1084, 1970.

    MATH  Google Scholar 

  42. K. Okada and R.E. Skelton, “Sensitivity controller for uncertain systems,” JGCD, vol. 13, no. 2, pp. 321–329, 1990.

    MathSciNet  MATH  Google Scholar 

  43. J. O’Reilly, “Low-sensitivity feedback controllers for linear systems with incomplete state information,” IJC, vol. 29, no. 6, pp. 1047–1058, 1979.

    MathSciNet  MATH  Google Scholar 

  44. A.I. Petrov, A.G. Zubov, and V.V. Minin, “Analysis of trajectory sensitivity of adaptive stochastic control systems,” SJAIS, vol. 18, no. 2, pp. 50–59, 1985.

    MATH  Google Scholar 

  45. S.G. Rao and A.C. Soudack, “Synthesis of optimal control systems with near sensitivity feedback,” IEEE-TAC, vol. AC-16, pp. 194–196, April 1971.

    Google Scholar 

  46. J.H. Rillings and R.J. Roy, “Analog sensitivity design of Saturn V launch vehicle,” IEEE-TAC, vol. AC-15, no. 4, pp. 437–442, Aug. 1970.

    Google Scholar 

  47. M. Saif, “Stability constrained robust linear regulator,” CAC, vol. 16, no. 3, pp. 66–69, 1988.

    MathSciNet  Google Scholar 

  48. M. Saif, “Design of a trajectory insensitive regulator with prescribed degree of stability,” ASME-JDSMC, vol. 112, pp. 513–516, Sept. 1990.

    MATH  Google Scholar 

  49. P. Sannuti and J.B. Cruz, Jr., “A note on trajectory sensitivity of optimal control systems,” (with reply by A.J. Bradt) IEEE-TAC, vol. AC-13, pp. 111–113, Feb. 1968.

    Google Scholar 

  50. V.V.S. Sarnia and B.L. Deekshatulu, “Sensitivity design of optimal linear systems,” IJC, vol. 8, no. 6, pp. 653–658, 1968.

    Google Scholar 

  51. M.E. Sezer and D.D. Siljak, “Sensitivity of large-scale control systems,” JFI, vol. 312, nos. 3 /4, pp. 179–197, Sept/Oct. 1981.

    Google Scholar 

  52. P. Stavmulakis and P.E. Sarachik, “Low sensitivity feedback gains deterministic and stochastic control systems,” IJC, vol. 19, no. 1, pp. 15–31, 1974.

    Google Scholar 

  53. R. Subbayyan, V.V.S. Sarma, and M.C. Vaithilingam, “Trajectory sensitivity modification in optimal linear systems,” IEEE-TAC, vol. AC-22, no. 4, pp. 657–659, Aug. 1977.

    Google Scholar 

  54. R. Subbayyan, V.V.S. Sarma, and M.C. Vaithilingam, “An approach for sensitivity-reduced design of linear regulators,” IJSS, vol. 9, no. 1, pp. 65–74, Jan. 1978.

    MathSciNet  MATH  Google Scholar 

  55. R. Subbayyan and M.C. Vaithilingam, “Sensitivity-reduced design of linear regulators,” IJC, voL 29, no. 3, pp. 435–440, 1979.

    MATH  Google Scholar 

  56. S.D. Weinrich and L. Lapidus, “Optimally sensitive and adaptive control systems,” AIChe J., vol. 17, no. 6, pp. 1471–1480, Nov. 1971.

    Google Scholar 

  57. C.A. Winsor and R.J. Roy, “The application of specific optimal control to the design of desensitized model following control systems,” IEEE-TAC, vol. AC-15, no. 3, pp. 326–333, June 1970.

    Google Scholar 

  58. S.C. Yang and W.L. Garrard, “A low sensitivity, modern approach to the longitudinal control of automated transit vehicles,” ASME-JDSMC, vol. 96, pp. 218–228, June 1974.

    Google Scholar 

[E] Sensitivity with Respect to System - Auxiliary Parameters

  1. Also consult Section [C] of the references in this chapter.

    Google Scholar 

  2. Y. Bar-Ness, “Pole sensitivity of the quadratic optimal regulator,” Elect. Len., voL 12, no. 13, pp. 341–343, June 1976.

    Google Scholar 

  3. Y.V. Kosyuk, “Analysis of nonstationary control systems by the method of `frozen’ coefficients,” SAC, vol. 3, no. 6, pp. 19–27, 1970.

    Google Scholar 

  4. K. Sugimoto and Y. Yamamoto, “Generalized robustness of optimality of linear quadratic regulators,” IJC, vol. 51, no. 3, pp. 521–533, 1990. Corrections, ibid., vol. 52, no. 5, pp. 1277–1278, 1990.

    MathSciNet  Google Scholar 

  5. D.F. Wilkie and H.M. Van Schieveen, “On the sensitivity of the linear state regulator,” IJC, vol. 12, no. 4, pp. 709–719, 1970.

    MATH  Google Scholar 

[F] Sensitivity Reduction and/or Optimization: Other Methods and Applications

  1. P.R. Belanger, “Some aspects of control tolerances and first-order sensitivity in optimal control systems,” IEEE-TAC, vol. AC-11, no. 1, p. 77–83, 1966.

    Google Scholar 

  2. P.R. Belanger, “A paper machine color control system design using modern techniques,” IEEE- TAC, vol. AC-14, no. 6, pp. 610–616, Dec. 1969.

    Google Scholar 

  3. C.S. Berger, “Robust controller design by minimisation of the variation of the coefficients of the closed-loop characteristic equation,” Proc. IEE, vol. 131, Pt. D, no. 3, pp. 103–107, May 1984.

    Google Scholar 

  4. C.S. Berger,,“Robust control of discrete systems,” Proc. IEE, vol. 136, Pt. D, pp. 165–170, July 1989.

    Google Scholar 

  5. S.P. Bingulac, “On the role of orthonormality of sensitivity functions in parameter optimization problems,” Automatica, vol. 5, pp. 513–517, 1969.

    MATH  Google Scholar 

  6. V.A. Bodner, V.I. Vasil’ev, and F.A. Shaimardanov, “An algorithmic method of synthesis of a low-sensitive automatic control system,” ARC, no. 4, pp. 529–533, April 1974.

    Google Scholar 

  7. A. Burzio and D.D. Siljak, “Minimization of sensitivity with stability constraints in linear control systems,” IEEE-TAC, vol. AC-11, no. 3, pp. 567–569, July 1967.

    Google Scholar 

  8. E.M. Butler and R.A. Rohrer, “On relative sensitivity for certain linear optimal control problems,” in Proc. Asilomar Conf., vol. 279–286, 1968.

    Google Scholar 

  9. G.W. Carlock and A.P. Sage, “Sensitivity and error analysis algorithms for combined estimation and control systems,” IJC, vol. 21, no. 3, pp. 417–441, 1975.

    MathSciNet  MATH  Google Scholar 

  10. S.S.L. Chang and P.E. Barry, “Optimal control of systems with uncertain parameters,” in Proc. IFAC, vol. 3 (of the 5th Congress), pp. 31.6.1–31.6. 5, 1972.

    Google Scholar 

  11. D.J. Cloud and B. Kouvaritakis, “Weighting sequences, optimal truncation and optimal frequency-response uncertainty bounds,” Proc. IEE, vol. 134, Pt. D, no. 3, pp. 153–170, May 1987.

    Google Scholar 

  12. J.B. Cruz, Jr., “Probabilistic sensitivity properties of neighboring optimal feedback systems,” Iran. J. Sei amp Tech., vol. 3, no. 4, pp. 271–282, 1975.

    Google Scholar 

  13. A.R. Daniels, Y.B. Lee, and M.K. Pal, “Nonlinear power-system optimisation using dynamic sensitivity analysis,” Proc. IEE, vol. 123, no. 4, pp. 365–370, 1976.

    Google Scholar 

  14. A.R. Daniels, Y.B. Lee, and M.K. Pal, “Combined suboptimal excitation control and governing of a.c. turbogenerators using dynamic sensitivity analysis,” Proc. IEE, vol. 124, no. 5, pp. 473–478, May 1977.

    Google Scholar 

  15. M. Darwish, J.D. Delacour, and J. Fantin, “Sensitivity analysis of optimal regulators with application to large scale power systems,” JASE, vol. 2, no. 4, pp. 259–268, Dec. 1977.

    Google Scholar 

  16. R.M. DeSantis and J. Conan, “Practical sensitivity reduction tests with application to power systems,” IJSS, vol. 8, no. 9, pp. 1067–1080, 1977.

    MathSciNet  Google Scholar 

  17. T.S. Dillon, K. Morsztyn, and T. Tun, “Sensitivity analysis of the problem of economic dispatch of thermal power systems,” IJC, vol. 22, no. 2, pp. 229–248, 1975.

    Google Scholar 

  18. T.S. Dillon and T. Tun, “Application of sensitivity methods to the problem of optimal control of hydro-thermal power systems,” JOCAM, vol. 2, pp. 117–143, 1981.

    MATH  Google Scholar 

  19. P. Dorato and A. Kestenbaum, “Application of game theory to the sensitivity design of systems with optimal controller structures,” in Proc. Allerton Conf., pp. 35–45, 1965.

    Google Scholar 

  20. ], “Application of game theory to the sensitivity design of optimal systems,” IEEE- TAC, vol. AC-12, pp. 85–87, 1967.

    Google Scholar 

  21. M. El-Hodiri, “Sensitivity analysis for an optimal control problem,” IEEE-TAC, vol. AC-20, no. 2, pp. 251–252, April 1975.

    Google Scholar 

  22. M.M. Elmetwally and N.D. Rao, “Sensitivity analysis in the optimal design of sychronous machine regulators,” IEEE-PAS, vol-PAS 93, no. 5, pp. 1310–1317, Sept./Oct. 1974.

    Google Scholar 

  23. M.M. Elmetwally and N.D. Rao, “Low-sensitivity control of nuclear reactors,” Elect. Lett., vol. 11, no. 13, pp. 269–270, June 1975.

    Google Scholar 

  24. A.N. Ennachenko and R.M. Yusupov, The use of sensitivity functions in synthesizing linear multicoupled control systems,“ ECy, vol. 14, pp. 146–154, March/April 1976.

    Google Scholar 

  25. T. Fuji and N. Mizushima, “Robustness of the optimality property of an optimal regulator: Multi-input case,” IJC, vol. 39, no. 3, pp. 441–453, 1984.

    Google Scholar 

  26. A.T. Fuller and A.S.I. Zinober, “On the existence of constant-ratio trajectories in nominally time-optimal control systems subject to parameter variation,” JFI, voL 303, pp. 359–369, April 1977.

    MATH  Google Scholar 

  27. M. Gavrilovic, R. Petrovic, and D.D. Siljak, “Adjoint method in sensitivity analysis of optimal systems,” JFI, vol. 276, no. 1, pp. 26–38, July 1963.

    MathSciNet  MATH  Google Scholar 

  28. V.I. Gorodetskiy, F.M. Zakharin, V.M. Ponomarev, and R.M. Yusupov, “Direct and inverse problems of sensitivity theory,” ECy, vol. 9, no. 5, pp. 935–942, Sept./Oct. 1971.

    MathSciNet  Google Scholar 

  29. P.L. Graf and R. Shoureshi, “Gain-sensitivity augmentation for near-optimal control of linear parameter-dependent plants,” JGCD, vol. 13, no. 2, pp. 310–320, 1990.

    MathSciNet  MATH  Google Scholar 

  30. A.W.J. Griffin, R.J. Paul, and C.G. Legge, “Direct-sensitivity method of solving boundary-value problems in optimal-control studies,” Proc. IEE, vol. 116, no. 9, pp. 1611–1612, Sept. 1969.

    MathSciNet  Google Scholar 

  31. R.E. Griffin and A.P. Sage, “Sensitivity analysis of fixed point linear smoothing algorithms,” IJC, vol. 8, no. 4, pp. 321–337, 1968.

    MathSciNet  MATH  Google Scholar 

  32. R.E. Griffin and A.P. Sage, “Sensitivity analysis of discrete filtering and smoothing algorithms,” AIAA J., voL 7, no. 10, pp. 1890–1897, 1969.

    MATH  Google Scholar 

  33. G. Guardabassi, A. Locatelli, C. Maffezzoni, and N. Schiavoni, “Computer-aided design of structurally constrained multivariable regulators Part 1: Problem statement, analysis and solution,” Proc. IEE, vol. 130, Pt. D, no. 4, pp. 155–164, July 1983.

    Google Scholar 

  34. G. Guardabassi, A. Locatelli, C. Maffezzoni, and N. Schiavoni, “Computer-aided design of structurally constrained multivariable regulators via parameter optimisation Part 2: Applications,” Proc. IEE, vol. 130, Pt. D, no. 4, pp. 165–172, July 1983.

    Google Scholar 

  35. N.J. Guinzy and A.P. Sage, “Identification and modelling of large-scale systems using sensitivity analysis,” IJC, vol. 17, no. 5, pp. 1073–1087, 1973.

    MATH  Google Scholar 

  36. A.H. Haddad, J.B. Cruz, Jr., and P.V. Kokotovic. Haddad, J.B. Cruz, Jr., and P.V. Kokotovic, “Design of control systems with random parameters,” IJC, vol. 13, no. 5, pp. 981–992, 1971.

    MATH  Google Scholar 

  37. M. Hassan and M.G. Singh, “A hierarchical model-following controller for certain non-linear systems,” IJSS, vol. 7, no. 7, p. 727–730, 1976.

    MathSciNet  MATH  Google Scholar 

  38. M. Hassan and M.G. Singh, “Synchronous machine control using a two level model follower,” Automatica, vol. 13, pp. 173–176, March 1977.

    MathSciNet  Google Scholar 

  39. D.R. Howard and Z.V. Rekasius, “Error analysis with the maximum principle,” IEEE-TAC, vol. Ac-9, pp. 223–229, July 1964.

    Google Scholar 

  40. C.L. Irwin and V. Komkov, “Sensitivity analysis and model optimization for reaction-diffusion systems,” JOTA, vol. 44, no. 4, pp. 569–584, 1984.

    MathSciNet  MATH  Google Scholar 

  41. H. Ishitani and S. Yamamura, “Sensitivity analysis of optimal control systems,” EEJ, vol. 87, no. 12, pp. 63–74, 1967.

    Google Scholar 

  42. Y.B. Kadimov, E.Y. Kuliyev, and S.I. Myachin, “Some questions concerning the application of the sensitivity theory to an analysis of transient processes while simulating systems with distributed parameters on analog computers,” Proc. IFAC, vol. 3 (of the 5th Congress), pp. 31.4.1–31. 4. 9, 1972.

    Google Scholar 

  43. H.S. Kang, “Minimum sensitivity design of M.V. systems,” IJC, vol. 11, no. 5, pp. 791–801, 1970.

    MATH  Google Scholar 

  44. B.Y. Katkovnik, “Sensitivity of gradient networks,” ARC, no. 12, pp. 1983–1989, Dec. 1970.

    MathSciNet  Google Scholar 

  45. J.M. Kelly, G. Leitmann, and A.G. Soldatos, “Robust control of base-isolated structures under earthquake excitation,” JOTA, vol. 53, no. 2, pp. 159–180, 1980.

    MathSciNet  Google Scholar 

  46. D.L. Kleinman, “Solving the optimal attention allocation problem in manual control,” IEEE-TAC, vol. AC-21, no. 6, pp. 813–822, Dec. 1976.

    Google Scholar 

  47. P.V. Kokotovic, J.B. Cruz, Jr., J. E. Heller, and P. Sannuti, “Synthesis of optimally sensitive systems,” Proc. IEEE, vol. 56, pp. 1318–1324, 1968.

    Google Scholar 

  48. V. Komkov and N. Coleman, “Optimality of design and sensitivity analysis of beam theory,” IJC, vol. 18, no. 4, pp. 731–740, 1973.

    MATH  Google Scholar 

  49. D.V. Lebedev, “Sensitivity of parameters of plant motion to errors of inertial navigation and control system,” SAC, vol. 9, pp. 41–47, Nov./Dec. 1976.

    Google Scholar 

  50. C.-K. Lee and C.-T. Chen, “Sensitivity comparisons of various analogue computer simulations,” IJC, vol. 10, no. 2, pp. 227–233, 1969.

    MathSciNet  MATH  Google Scholar 

  51. N.G. Malek, O.T. Tan, P.M. Julich, and E.C. Tacker, “Trajectory-sensitivity design of load-frequency control systems,” Proc. IEE, vol. 120, no. 10, pp. 1273–1277, 1973.

    Google Scholar 

  52. J.E. Marshall and S.V. Salehi, “Improvement of system performance by the use of time-delay elements,” Proc. IEE, vol. 129, Pt. D, no. 5, pp. 177–181, Sept. 1982. Comments, with reply, by P.H. Landers, ibid., vol. 130, Pt. D, no. 2, p. 92, March 1983.

    Google Scholar 

  53. K. Nordstrom, “Trade-off between noise sensitivity and robustness for LQG regulators,” IJC, vol. 46, no. 5, pp. 1689–1714, 1987.

    MathSciNet  Google Scholar 

  54. D.E. Olson and I.M. Horowitz, “Design of dominant-type control systems with large parameter variations,” IJC, vol. 12, no. 4, pp. 545–554, 1970.

    MATH  Google Scholar 

  55. C.S. Padilla and J.B. Cruz, Jr., “A linear dynamic feedback controller for stochastic systems with unknown parameters,” IEEE-TAC, vol. AC-22, no. 1, pp. 50–55, 1977.

    MathSciNet  Google Scholar 

  56. C.S. Padilla and J.B. Cruz, “Sensitivity adaptive feedback with estimation redistribution,” IEEE-TAC, vol. AC-23, no. 3, pp. 445–451, 1978.

    MathSciNet  Google Scholar 

  57. C.S. Padilla, J.B. Cruz, Jr., and R.A. Padilla, “A simple algorithm for SAFER control,” IJC, vol. 32, no. 6, pp. 1111–1118, 1980.

    MATH  Google Scholar 

  58. P.N. Paraskevopoulos, “Sensitivity reduction in exact model–matching of linear multivariable systems,” JFI, vol. 305, no. 2, pp. 99–118, Feb. 1978.

    MATH  Google Scholar 

  59. P.N. Paraskevopoulos, “Decoupling controller design via exact model–matching techniques,” Proc. IEE, vol. 125, no. 11, pp. 1285–1289, Nov. 1978.

    MathSciNet  Google Scholar 

  60. H.J. Payne, E. Polak, D.C. Collins, and W.S. Meisel, “An algorithm for bicriteria optimization based on the sensitivity function,” IEEE-TAC, vol. AC-20, no. 4, pp. 546–548, Aug. 1975.

    MathSciNet  Google Scholar 

  61. D.C. Reddy, “General sensitivity-reduction criterion for single-input multiple-output systems,” Elect. Leu., vol. 6, pp. 86–87, Feb. 1970.

    Google Scholar 

  62. J. Rissanen, “Drift compensation of linear systems by parameter adjustments,” ASME-JBE, pp. 415–418, June 1966.

    Google Scholar 

  63. P. Ronge, “Performance index sensitivity of optimal control systems with uncertain parameters,” JOCAM, vol. 6, pp. 359–384, 1985.

    MATH  Google Scholar 

  64. J. Rootenberg, “The sensitivity of optimally designed control systems, with minimum fuel performance index,” IJC, vol. 20, no. 1, pp. 101–112, 1974.

    MathSciNet  MATH  Google Scholar 

  65. J. Rootenberg and P. Courtin, “System sensitivity for optimal problems with singular control,” IJC, vol. 20, no. 5, pp. 787–800, 1974.

    MathSciNet  MATH  Google Scholar 

  66. M.V. Rybashov, “Insensitivity of gradient systems in the solution of linear problems on analog computers,” ARC, no. 10, pp. 1679–1687, Oct. 1969.

    MathSciNet  Google Scholar 

  67. M.P. Sakharov, “Simplification of sensitivity models in the design of self-adjusting and adaptive systems,” ARC, vol. 29, no. 5, pp. 743–747, May 1968.

    Google Scholar 

  68. M.P. Sakharov, “Application of simplification conditions of sensitivity models in the design of nonscanning adaptive systems,” ARC, vol. 32, pp. 1080–1086, July 1971.

    Google Scholar 

  69. M.P. Sakharov, “On parameter adaptation algorithms for simplified sensitivity models,” ARC, vol. 32, no. 10, pp. 1664, 1669, Oct. 1971.

    Google Scholar 

  70. A.A. Sbaiti and A.P. Sage, “System optimization using quasilinearization and sensitivity analysis,” IJC, vol. 16, no. 2, pp. 343–352, 1972.

    MATH  Google Scholar 

  71. [71] D.B. Schaechter, “Closed-loop control performance sensitivity to parameter variations,” JGCD,vol. 6, no. 5, pp. 399–402, 1983.

    Google Scholar 

  72. L.A. Shirokov, “Parametric optimization with an ideal reference model,” SAC, vol. 15, no. 5, pp. 26–30, 1970.

    MathSciNet  Google Scholar 

  73. D.D. Siljak and R.C. Dorf, “On the minimization of sensitivity in optimal control systems,” in Proc. Allerton Conf., pp. 225–229, 1965.

    Google Scholar 

  74. C.S. Sims and J.L. Melsa, “Sensitivity reduction in specific optimal control by the use of a dynamical controller,” IJC, vol. 8, pp. 491–502, 1968.

    Google Scholar 

  75. R.T. Stefani, “Reducing the sensitivity to parameter variations of a minimum-order reduced-order observer,” IJC, vol. 35, no. 6, pp. 983–995, 1982.

    MathSciNet  Google Scholar 

  76. M.G. Strintzis and B. Liu, “Sensitivity minimization in the design of linear multivariable feedback systems,” in Proc. Allerton Conf., pp. 163–172, 1970.

    Google Scholar 

  77. A. Swiemiak, “State-inequalities approach to control systems with uncertainty,” Proc. IEE, vol. 129, Pt. D, no. 6, pp. 271–275, Nov. 1982.

    Google Scholar 

  78. A. Swiemiak, “Control laws for systems with inequality models of uncertainty,” Proc. IEE, vol. 133, Pt. D, no. 4, pp. 153–158, July 1986.

    Google Scholar 

  79. D.R. Towill and Z. Mehdi, “A new approach to system transient response sensitivity,” IJC, vol. 15, no. 2, pp. 319–331, 1972.

    MATH  Google Scholar 

  80. T.-P. Tsai and T.-S. Wang, “Optimal design of non-minimum-phase control systems with large plant uncertainty,” IJC, vol. 45, no. 6, pp. 2147–2159, 1987.

    MATH  Google Scholar 

  81. A.K. Tugcu, O. Coskunoglu, and R.E. Reid, “Performance criterion sensitivity analysis of ship-steering models with respect to shaping filter design parameters,” JOCAM, vol. 6, pp. 77–90, 1985.

    Google Scholar 

  82. S.G. Tzafestas, “Model-matching multicontroller design of reduced sensitivity,” ACTA, vol. 3, no. 3, pp. 67–69, Sept. 1975.

    Google Scholar 

  83. S.G. Tzafestas and P.N. Paraskevopoulos, “A sensitivity approach to the decoupling of linear systems with parameter disturbances,” in Proc. Joint Auto. Contr., pp. 92–100, 1973.

    Google Scholar 

  84. S.S. Venkata, W.J. Eccles, and J.H. Noland, “Multi-parameter sensitivity analysis of power-system stability by Popov’s method,” IJC, vol. 17, no. 2, pp. 291–304, 1973.

    MATH  Google Scholar 

  85. M.J. Vilenius, “The application of sensitivity analysis to electrohydraulic position control servos,” ASME-JDSMC, vol. 105, pp. 77–82, Tune 1983.

    Google Scholar 

  86. J.C. Wauer, J.M.H. Bruckner, and C.H. Humphrey, “Airplane performance sensitivities to lateral and vertical profiles,” JGCD, vol. 4, no. 6, pp. 606–613, 1981. Errata, ibid., vol. 5, no. 2, p. 224, 1982.

    Google Scholar 

  87. A.I. Yermachenko, “Synthesis of linear control systems with limited sensitivity,” ECy, vol. 9, no. 5, pp. 943–948, Sept./Oct. 1971.

    Google Scholar 

  88. K.-K. D. Young, “Near insensitivity of linear feedback systems,” JFI, vol. 314, no. 2, pp. 129–142, 1982.

    Google Scholar 

  89. A.S.I. Zinober and A.T. Fuller, “The sensitivity of nominally time-optimal control systems to parameter variation,” IJC, vol. 17, no. 4, pp. 673–703, 1973.

    MATH  Google Scholar 

[G] Optimal Inputs for System Identification! Auxiliary Inputs for System Control (The Effects of the Human Operator)

  1. M. Aoki and R. Staley, “On input signal synthesis in parameter identification,” Automatica, vol. 6, pp. 431–440, 1970.

    MATH  Google Scholar 

  2. O. Berman, E. Modiano, and J.A. Schnabel, “Sensitivity analysis and robust regression in investment performance evaluation,” IJSS, vol. 15, no. 5, pp. 481–489, 1984.

    Google Scholar 

  3. C. Bonivento, “Structural insensitivity versus identifiability,” IEEE-TAC, vol. AC-18, no. 2, pp. 190–192, April 1973.

    Google Scholar 

  4. V.N. Bukov, “Optimal algorithms in problems with bounded controllable coordinates,” ECy, vol. 20, no. 2, pp. 133–140, 1982.

    Google Scholar 

  5. M. Eslami, “Optimal input (policy) for system identification versus system sensitivity reduction with plant-operator,” The Univ. of Wisconsin-Madison, Dept. of Elec. and Computer Eng’g, Tech. Report ECE-79–2, 27 pp., Jan. 1979.

    Google Scholar 

  6. M. Eslami, “Optimal input for identification versus sensitivity reduction of systems with large parameter variations,” JOTA, vol. 77, no. 3, pp. 591–612, June 1993.

    MathSciNet  MATH  Google Scholar 

  7. R.M. Gagliardi, “Input selection for parameter identification in discrete systems,” IEEE-TAC, vol. AC-12, pp. 597–599, Oct. 1967.

    Google Scholar 

  8. N.D. Georganas, “Optimal inputs and sensitivities for nonlinear process parameter estimation using imbedding techniques,” IEEE-TAC, vol. AC-21, no. 3, pp. 415–417, June 1976.

    Google Scholar 

  9. J.C. Geromel and Ji. da Cruz, “On the robustness of optimal regulators for nonlinear discrete-time systems,” IEEE-TAC, vol. AC-32, no. 8, pp. 703–712, Aug. 1987.

    Google Scholar 

  10. R.E. Kalaba and K. Spingarn, “Optimal inputs and sensitivities for parameter estimation,” JOTA, vol. 11, no. 1, pp. 56–67, 1973.

    MathSciNet  MATH  Google Scholar 

  11. R.E. Kalaba and K. Spingarn, “Optimal input system identification for nonlinear dynamic systems,” JOTA, vol. 21, no. 1, pp. 91–102, Jan. 1977.

    MathSciNet  MATH  Google Scholar 

  12. V.S. Levadi, “Design of input signals for parameter estimation,” IEEE-TAC, vol. AC-11, pp. 205–211, April 1966.

    Google Scholar 

  13. K.Y. Lim and M. Eslami, “Adaptive controller designs for robot manipulator systems using Lyapunov direct method,” IEEE-TAC, vol. AC-30, pp. 1229–1233, Dec. 1985. Comments, with reply, by Y.H. Chen, ibid., vol. AC-32, no. 2, pp. 190–192, Feb. 1987, and, with reply, by R.H. Middelton, ibid., vol. AC-32, no. 8, p. 749, Aug. 1987.

    Google Scholar 

  14. K.Y. Lim and M. Eslami, “Adaptive controller design for robot manipulator systems yielding reduced Carte- sian error,” IEEE-TAC, vol. AC-32, no. 2, pp. 184–187, Feb. 1987. Correction, ibid., vol. AC-38, no. 2, p. 384, 1993.

    Google Scholar 

  15. K.Y. Lim and M. Eslami, “Robust adaptive controller designs for robot manipulator systems,” IEEE-JRA, vol. RA-3, no. 1, pp. 54–66, 1987. Correction, ibid., vol. RA-9, no. 1, p. 119, 1993.

    Google Scholar 

  16. A.A. Lopez-Toledo and M. Athans, “Optimal policies for identification of stochastic linear systems,” IEEE-TAC, vol. AC-20, pp. 754–765, Dec. 1975.

    Google Scholar 

  17. R.K. Mehra, “Synthesis of optimal inputs for multiinput/multioutput systems with process noise, Parts I and II,” Division of Engineering and Applied Physics, Harvard University, Cambridge, MA, Tech. Rep. TR 649, Feb. 1974.

    Google Scholar 

  18. R.K. Mehra, “Optimal inputs for linear system identification,” IEEE-TAC, vol. AC-19, no. 3, pp. 192–200, June 1974. Comments, by M.B. Zarrop and G.C. Goodwin, ibid., vol. AC-20, no. 2, pp. 299–300, April 1975.

    Google Scholar 

  19. R.K. Mehra, “Optimal input signals for parameter estimation in dynamic systems-survey and new results,” IEEE-TAC, vol. AC-19, no. 6, pp. 753–768, Dec. 1974.

    Google Scholar 

  20. R.K. Mehra and D.G. Lainiotis, Eds., System Identification: Advances and Case Studies. New York: Academic Press, 1976. Reviewed by P. Eykhoff, IEEE-TAC, vol. AC-23, no. 4, p. 766, 1978.

    Google Scholar 

  21. N.E. Nahi and G. Napjus, “Design of optimal probing signals for vector parameter estimation,” in Proc. IEEE Conf. on Decision Contr., pp. 162–168, 1971.

    Google Scholar 

  22. N.E. Nahi and D.E. Wallis, Jr., “Optimal inputs for parameter estimation in dynamic systems with white observation noise,” in Proc. Joint Auto. Contr. Conf, pp. 506–512, 1969.

    Google Scholar 

  23. Y. Sawaragi and K. Ogino, “Sensitivity approach to optimal input synthesis for parameter identification of bilinear system,” in Proc. IFAC, vol. 3 (of the 5th Congress), pp. 31.2.131.2. 6, 1972.

    Google Scholar 

  24. F.C. Schweppe, “On the accuracy and resolution of radar signals,” IEEE-TAES, vol. AES-I, pp. 235–245, Dec. 1965.

    Google Scholar 

  25. Y. Stepanenko and J. Yuan, “Robust adaptive control of a class of nonlinear mechanical systems with unbounded and fast-varying uncertainties,” Automatica, vol. 28, no. 2, pp. 265–276, 1992.

    MathSciNet  MATH  Google Scholar 

  26. K. Watanabe and D.M. Himmelblau, “Instrument fault detection in systems with uncertainties,” IJSS, vol. 13, no. 2, pp. 137–158, 1982.

    MATH  Google Scholar 

  27. C. Yaling, “Sensitivity operator and approximate algorithm for parameter estimation,” IJC, vol. 46, no. 2, pp. 537–546, 1987.

    MathSciNet  MATH  Google Scholar 

[H] Sensitivity Considerations in Hardy Spaces

  • Also consult references on disturbance rejection in § 6.12.K2; and on sensitivity issues in selected multidisciplinary optimization methods, and numerical methods in § 6.12.P; as well as entries on stability robustness analysis in § 5.12.E, and § 5.12.G.

    Google Scholar 

[HI] Sensitivity Considerations in Hardy Spaces Pertinent References on Feedback System Design and Mathematics

  1. Also consult references in § 6.12.A, § 2.9.A, and § 2.9.E.

    Google Scholar 

  2. V.M. Adamjan, D.Z. Arov, and M.G. Krein, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem,” Math. USSR Sbornik, vol. 15, pp. 31–73, 1971.

    Google Scholar 

  3. V.M. Adamjan, D.Z. Arov, and M.G. Krein, “Infinite Hankel block matrices and related extension problems,” Amer. Math. Soc. Translations, series 2, vol. 111, pp. 133–156, 1978.

    Google Scholar 

  4. J.A. Ball and J.W. Helton, “A Beurling-Lax theorem for the Lie group U(m, n) which contains most classical interpolation theory,” JOT, vol. 9, pp. 107–142, 1983.

    MathSciNet  MATH  Google Scholar 

  5. J.J. Bongiorno, Jr., “Minimum sensitivity design of linear multivariable feedback control systems by matrix spectral factorization,” IEEE-TAC, vol. AC-14, pp. 665–573, 1969.

    Google Scholar 

  6. J.B. Conway, A Course in Functional Analysis. New York: Springer — Verlag, 1985.

    MATH  Google Scholar 

  7. P. Delsarte, Y. Genin, and Y. Kamp, “Schur parameterization of positive definite blockToeplitz systems,” SIAM-JAM, vol. 36, no. 1, pp. 34–46, 1979.

    MathSciNet  MATH  Google Scholar 

  8. P. Delsarte, Y. Genin, and Y. Kamp, “The Nevanlinna-Pick problem for matrix-valued functions,” SIAM JAM, vol. 36, no. 1, pp. 47–61, 1979.

    MathSciNet  MATH  Google Scholar 

  9. C.A. Desoer and W.S. Chan, “The feedback interconnection of lumped linear time-invariant systems,” JFI, vol. 300, nos. 5 amp 6, pp. 335–351, 1975.

    Google Scholar 

  10. C.A. Desoer, R.-W. Liu, J. Murray, and R. Saeks, “Feedback system design: The fractional representation approach to analysis and synthesis,” IEEE-TAC, vol. AC-25, no. 3, pp. 399412, 1980.

    Google Scholar 

  11. P.L. Duren, Theory of H“ Spaces. New York: Academic Press, 1970.

    Google Scholar 

  12. P. Koosis, Introduction to H p Spaces. Cambridge, England: Cambridge Univ. Press, 1980.

    Google Scholar 

  13. S.-Y. Kung and D.W. Lin, “Optimal Hankel-norm model reductions: Multivariable systems,” IEEE-TAC, vol. AC-26, no. 4, pp. 832–852, 1981.

    MathSciNet  Google Scholar 

  14. Z. Nehari, “On bounded bilinear forms,” Annals of Mathematics, vol. 65, pp. 153–162, 1957.

    MathSciNet  MATH  Google Scholar 

  15. R. Nevanlinna, Analytic Funstions. [Translated from German by P. Emig.] New York: Springer - Verlag, 1970.

    Google Scholar 

  16. R. Redheffer, “Inequalities for a matrix Riccati equation,” JMM, vol. 8, pp. 349–367, 1959.

    MathSciNet  MATH  Google Scholar 

  17. R. Redheffer, “Supplementary notes on matrix Riccati equations,” JMM, vol. 9, pp. 745–748, 1960.

    MathSciNet  MATH  Google Scholar 

  18. R.M. Redheffer, “On a certain linear fractional transformation,” JMP,vol. 39, pp. 269–286, 1960. [This is the same author as the preceding one.]

    Google Scholar 

  19. W.T. Reid, “Solutions of a Riccati matrix differential equation as functions of initial values,” JMM, vol. 8, pp. 221–230, 1959.

    MATH  Google Scholar 

  20. W.T. Reid, ‘Properties of solutions of a Riccati matrix differential equation,“ JMM, vol. 9, pp. 749–769, 1960.

    MATH  Google Scholar 

  21. D. Sarason, “Generalized interpolation in Hm, Trans. of American Mathematical Society, vol. 127, no. 2, pp. 179–203, 1967.

    MathSciNet  MATH  Google Scholar 

  22. G. Stein and M. Athans, “The LQG/LTR procedure for multivariable feedback control design,” IEEE-TAC, vol. AC-32, no. 2, pp. 105–114, 1987.

    Google Scholar 

  23. B. Sz: Nagy and C. Foins, Harmonic Analysis of Operators on Hilbert Space. Amsterdam: North-Holland Publ., 1970.

    Google Scholar 

  24. M. Vidyasagar, Control System Synthesis: A Factorization Approach. Cambridge, MA: MIT Press, 1985. Reviewed by B.F. Wyman, IEEE-TAC, vol. AC-31, no. 11, p. 1085, 1986, and by F.M. Callier, Automatica, vol. 22, no. 4, pp. 500–501, 1986.

    Google Scholar 

  25. J.C. Willems, “Least squares stationary optimal control and the algebraic Riccati equation,” IEEE-TAC, vol. AC-16, no. 6, pp. 621–634, 1971.

    Google Scholar 

  26. D.C. Youla, JJ. Bongiorno, Jr., and H.A. Jabr, “Modern Wiener-Hopf design of optimal controllers Part I: The single-input-output case,” IEEE-TAC, vol. AC-21, pp. 3–13, 1976.

    Google Scholar 

  27. D.C. Youla, H.A. Jabr, and J.J. Bongiorno, Jr., “Modern Wiener-Hopf design of optimal controllers-Part II: The multivariable case,” IEEE-TAC, vol. AC-21, pp. 319–338, 1976.

    Google Scholar 

[H2] Sensitivity Considerations in Hardy Spaces Complex - Domain Approach

  1. B. Bamieh, J.B. Pearson, B.A. Francis, and A. Tannenbaum, “A lifting technique for linear periodic systems with applications to sampled-data control,” SCL, vol. 17, pp. 79–88, 1991.

    MathSciNet  MATH  Google Scholar 

  2. P. Boekhoudt, “Solution of polynomial equations in H„ optimal control,” CTAT, vol. 6, no. 3, pp. 321–337, 1990.

    MathSciNet  Google Scholar 

  3. M.J. Englehart and M.C. Smith, “A four-block problem for H. design Properties and applications,” Automatica, vol. 27, no. 5, pp. 811–818, 1991.

    MathSciNet  MATH  Google Scholar 

  4. N.A. Fairbaim and Mi. Grimble, H„ robust controller for self-tuning applications Part 3. Self-tuning controller implementation,“ IJC, vol. 52, no. 1, pp. 15–36, 1990.

    Google Scholar 

  5. D.S. Flamm and S.K. Mitter, H°° sensitivity minimization for delay systems,“ SCL, vol. 9, pp. 17–24, 1987.

    Google Scholar 

  6. C. Foias and A. Tannenbaum, “Weighted optimization theory for nonlinear systems,” SIAMJCO, vol. 27, no. 4, pp. 842–860, July 1989.

    MathSciNet  Google Scholar 

  7. C. Foins, A. Tannenbaum, and G. Zames, “On decoupling the H°°-optimal sensitivity problem for products of plants,” SCL, vol. 7, pp. 239–245, 1986.

    Google Scholar 

  8. C. Foins, A. Tannenbaum, and G. Zames, “Weighted sensitivity minimization for delay systems,” IEEE-TAC, vol. AC-31, no. 8, pp. 763–766, Aug. 1986.

    Google Scholar 

  9. C. Foins, A. Tannenbaum, and G. Zames, “On the H°°-optimal sensitivity problem for systems with delays,” SIAM-JCO, vol. 25, no. 3, pp. 686–705, May 1987.

    Google Scholar 

  10. Y.K. Foo and L Postlethwaite, “An H”-minimax approach to the design of robust control systems,“ SCL, vol. 5, pp. 81–88, 1984.

    MathSciNet  MATH  Google Scholar 

  11. Y.K. Foo and L Postlethwaite, “An H”-minimax approach to the design of robust control systems, Part II: All solutions, all-pass form solutions and the `best’ solution,“ SCL, vol. 7, pp. 261–268, 1986.

    MathSciNet  Google Scholar 

  12. B.A. Francis, A Course in H„ Control Theory. New York: Springer - Verlag, 1987. Reviewed by G. Conte, IEEE-TAC,vol. AC-32, no. 12, pp. 1144–1145, 1987, and by P.P. Khargonekar, SIAM R.,voL 30, no. 2, pp. 335–336, 1988.

    Google Scholar 

  13. B.A. Francis and J.C. Doyle, “Linear control theory with an H„ optimality criterion,” SIAMJCO, vol. 25, no. 4, pp. 815–844, July 1987.

    MathSciNet  MATH  Google Scholar 

  14. B.A. Francis, J.W. Helton, and G. Zames, H“-optimal feedback controllers for linear multivariable systems,” IEEE-TAC, vol. AC-29, no. 10, pp. 888–900, Oct. 1984.

    MathSciNet  Google Scholar 

  15. B.A. Francis and G. Zames, “On H°°-optimal sensitivity theory for SISO feedback systems,” IEEE-TAG, vol. AC-29, no. 1, pp. 9–16, Jan. 1984.

    MathSciNet  Google Scholar 

  16. D. Fragopoulos, M.J. Grimble, and U. Shaked, H„ controller design for the SISO case using a Wiener approach,“ IEEE-TAC, voL AC-36, no. 10, pp. 1204–1208, 1991.

    MathSciNet  Google Scholar 

  17. K. Glover, D.J.N. Limbeer, J.C. Doyle, E.M. Kasenally, and M.G. Safonov, “A characterization of all solutions to the four block general distance problem,” SIAM-KO, vol. 29, no. 2, pp. 283–324, 1991.

    MATH  Google Scholar 

  18. M. Green, H„ controller synthesis by J-lossless coprime factorization,“ SIAM-KO, vol. 30, no. 3, pp. 522–547, 1992.

    Google Scholar 

  19. M.J. Grimble, H„ robust controller for self-tuning control applications Part 1. Controller design,“ IJC, vol. 46, no. 4, pp. 1429–1444, 1987.

    MATH  Google Scholar 

  20. M.J. Grimble, H robust controller for self-tuning control applications Part 2. Self-tuning and robustness,“ IJC, vol. 46, no. 5, pp. 1819–1840, 1987.

    MATH  Google Scholar 

  21. M.J. Grimble, “Optimal H„ multivariable robust controllers and the relationship to LQG design problems,” IJC, vol. 48, no. 1, pp. 33–58, 1988.

    MathSciNet  MATH  Google Scholar 

  22. M.J. Grimble, “Extensions to H„ multivariable robust controllers and the relationship to LQG design problems,” IJC, vol. 50, no. 1, pp. 309–338, 1989.

    MathSciNet  MATH  Google Scholar 

  23. M.J. Grimble,, “Predictive H„ model reference optimal control law for SISO systems,” Proc. IEE, vol. 136, Pt. D, no. 6, pp. 273–284, Nov. 1989.

    Google Scholar 

  24. ], M.J. Grimble, “Generalised H„ multivariable controllers,” Proc. IEE, vol. 136, Pt. D, no. 6, pp. 285–297, Nov. 1989.

    Google Scholar 

  25. M.J. Grimble, “Comments on Stem’s postulated high-frequency behavior of H°° optimal controll- ers,” IEEE-TAC, vol. AC-35, no. 6, pp. 762–765, June 1990. Comments by J.M. Krause, ibid., vol. AC-37, no. 5, p. 702, 1992.

    Google Scholar 

  26. M.J. Grimble, “Hm controllers with a PID structure,” ASME-JDSMC, vol. 112, pp. 325–336, Sept. 1990.

    MATH  Google Scholar 

  27. M.J. Grimble, “H„ observations weighted control law, ASME-JDSMC, vol. 112, pp. 337–348, Sept. 1990.

    MATH  Google Scholar 

  28. S. Hara and T. Sugie, “Inner-outer factorization for strictly proper functions with jco-axis zeros,” SCL, vol. 16, pp. 179–185, 1991.

    MathSciNet  MATH  Google Scholar 

  29. S. Hara, T. Sugie, and R. Kondo, H„ control problem with jtw-axis zeros,“ Automatica, vol. 28, no. 1, pp. 55–70, 1992.

    MathSciNet  MATH  Google Scholar 

  30. J.W. Helton, “Worst case analysis in the frequency domain: The H°° approach to control,” IEEE-TAC, vol. AC-30, no. 12, pp. 1154–1170, Dec. 1985.

    Google Scholar 

  31. H. Ito, H. Ohmori, and A. Sono, “Design of stable controllers attaining low H°° weighted sensitivity,” IEEE-TAC, vol. AC-38, no. 3, pp. 485–488, 1993.

    MathSciNet  Google Scholar 

  32. P.P. Khargonekar and A. Tannenbaum, “Non-Euclidian matrices and robust stabilization of systems with parameter uncertainty,” IEEE-TAC, vol. AC-30, pp. 1005–1013, Oct. 1985.

    Google Scholar 

  33. R. Kondo and S. Hara, “On cancellation in H„ optimal controllers,” SCL, vol. 13, pp. 205210, 1989.

    Google Scholar 

  34. H. Kwakernaak, “A polynomial approach to minimax frequency domain optimization of multivariable feedback systems,” IJC, vol. 44, no. 1, pp. 117–156, 1986.

    MathSciNet  MATH  Google Scholar 

  35. D.K. Le and A.E. Frazho, “A numerical procedure for a non-rational H°°-optimization problem in control design,” SCL, vol. 16, pp. 9–15, 1991.

    MathSciNet  MATH  Google Scholar 

  36. K.E. Lenz, “Simple mixed sensitivity optimal controllers,” SCL, vol. 17, pp. 363–373, 1991.

    Google Scholar 

  37. K.E. Lenz, P.P. Khargonekar, and J.C. Doyle, “When is a controller H”-optimal?“ MCSS, vol. 1, pp. 107–122, 1988.

    MathSciNet  MATH  Google Scholar 

  38. G.M.H. Leung, T.P. Perry, and B.A. Francis, “Performance analysis of sampled-data control systems,” Automatica, vol. 27, no. 4, pp. 699–704, 1991.

    MathSciNet  Google Scholar 

  39. D.W. Luse and J.A. Ball, “Frequency-scale decomposition of H°°-disk problems,” SIAMJCO, vol. 27, no. 4, pp. 814–835, July 1989.

    MathSciNet  MATH  Google Scholar 

  40. R.I. Ober and J.A. Sefton, “Stability of control systems and graphs of linear systems,” SCL, vol. 17, pp. 265–280, 1991.

    MathSciNet  MATH  Google Scholar 

  41. Y. Ohta, H. Maeda, and S. Kodama, “Unit interpolation in H,,: Bounds of norm and degree of interpolants,” SCL, vol. 17, pp. 251–256, 1991.

    MathSciNet  MATH  Google Scholar 

  42. Y. Ohta, G. Tadmor, and S.K. Mister, “Sensitivity reduction over a frequency band,” IJC, vol. 48, no. 5, pp. 2129–2138, 1988.

    MATH  Google Scholar 

  43. S.D. O’Young and B.A. Francis, “Sensitivity tradeoffs for multivariable plants,” IEEE-TAC, vol. AC-30, no. 7, pp. 625–632, July 1985.

    MathSciNet  Google Scholar 

  44. S.D. O’Young, I. Postlethwaite, and D.-W. Gu, “A treatment of jte-axis model-matching transformation zeros in the optimal H2 and H°° control designs,” IEEE-TAC, vol. AC-34, no. 5, pp. 551–553, May 1989.

    MathSciNet  Google Scholar 

  45. H. Ozbay and A. Tannenbaum, “On the structure of suboptimal H°° controllers in the sensitivity minimization problem for distributed stable plants,” Automatica, vol. 27, no. 2, pp. 293–305, 1991.

    MathSciNet  Google Scholar 

  46. J.R. Partington and K. Glover, “Robust stabilization of delay systems by approximation of coprime factors,” SCL, vol. 14, pp. 325–331, 1990.

    MathSciNet  MATH  Google Scholar 

  47. L. Qiu and Ei. Davison, “Feedback stability under simultaneous gap metric uncertainties in plant and controller,” SCL, vol. 18, pp. 9–22, 1992.

    MathSciNet  MATH  Google Scholar 

  48. S. Raman and E.-W. Bai, “A linear, robust and convergent interpolatory algorithm for quantifying model uncertainties,” SCL, vol. 18, pp. 173–177, 1992.

    MathSciNet  MATH  Google Scholar 

  49. R. Ravi, A.M. Pascoal, and P.P. Khargonekar, “Normalized coprime factorizations for linear time-varying systems,” SCL, vol. 18, pp. 455–465, 1992.

    MathSciNet  Google Scholar 

  50. M. Saeki, “Methods of solving a polynomial equation for an H°° optimal control problem for a single-input single-output discrete-time system,” IEEE-TAC, vol. AC-34, no. 2, pp. 166–168, Feb. 1989.

    Google Scholar 

  51. M. Saeki, H“/LTR procedure with specified degree of recovery,” Automatisa, vol. 28, no. 3, pp. 509–517, 1992.

    Google Scholar 

  52. M.G. Safonov and V.X. Le, “An alternative solution to the H„-optimal control problem,” SCL, vol. 10, pp. 155–158, 1988.

    MathSciNet  MATH  Google Scholar 

  53. J. Sefton and K. Glover, “Pole/zero cancellations in the general H„ problem with reference to a two block design,” SCL, vol. 14, pp. 295–306, 1990.

    MathSciNet  MATH  Google Scholar 

  54. U. Shaked, “The explicit structure of inner matrices and its applications in H°°-optimization,” IEEE-TAC, vol. AC-34, no. 7, pp. 734–738, July 1989.

    Google Scholar 

  55. M.C. Smith, “Well-posedness of H°° optimal control problems,” SIAM-JCO, vol. 28, no. 2, pp. 342–358, March 1990.

    MATH  Google Scholar 

  56. T. Sugie and S. Hara, H„-suboptimal control problem with boundary constraints,“ SCL, vol. 13, pp. 93–99, 1989.

    Google Scholar 

  57. G. Tadmor, “An interpolation problem associated with H°°-optimal design in systems with distributed input lags,” SCL, vol. 8, pp. 313–319, 1987.

    MathSciNet  MATH  Google Scholar 

  58. M.C. Tsai, E.J.M. Geddes, and I. Postlethwaite, “Pole-zero cancellations and closed-loop properties of an H°° mixed sensitivity design problem,” Automatica, vol. 28, no. 3, pp. 519–530, 1992.

    MathSciNet  MATH  Google Scholar 

  59. L.Y. Wang and G. Zames, “Lipschitz continuity of H°° interpolation,” SCL, vol. 14, pp. 381387, 1990.

    Google Scholar 

  60. N.E. Wu and G. Gu, “Discrete Fourier transform and H°°-approximation,” IEEE-TAC, vol. AC-35, no. 9, pp. 1044–1046, Sept. 1990.

    Google Scholar 

  61. Q.-H. Wu and M. Mansour, “Robust output regulation for a class of linear multivariable systems,” SCL, vol. 13, pp. 227–232, 1989.

    MathSciNet  MATH  Google Scholar 

  62. Q.-H. Wu and M. Mansour, “Decentralized robust output regulation using H”-optimization techniques,“ CTAT, vol. 6, no. 2, pp. 187–214, 1990.

    MathSciNet  Google Scholar 

  63. Q.-H. Wu and M. Mansour, H°°-optimal solutions of robust regulator problem for linear MIMO systems,“ IJC, vol. 52, no. 5, pp. 1241–1262, 1990.

    MATH  Google Scholar 

  64. I. Yaesh and U. Shaked, “Nondefinite least squares and its relation to H„-minimum error state estimation,” IEEE-TAC, vol. AC-36, no. 12, pp. 1469–1472, 1991.

    MathSciNet  Google Scholar 

  65. J.-S. Young, C.E. Lin, and F.-B. Yeh, “Characterization of the sub-layers for 2-block H”-optimal control problem,“ SCL, vol. 15, pp. 193–198, 1990.

    MathSciNet  MATH  Google Scholar 

  66. G. Zanies, “Feedback and optimal sensitivity: Model reference transformation, multiplicative seminorms, and approximate inverses,” IEEE-TAC, vol. AC-26, no. 2, pp. 301–320, April 1981.

    Google Scholar 

  67. G. Zames and D. Bensoussan, “Multivariable feedback, sensitivity, and decentralized control,” IEEE-TAC, vol. AC-28, no. 11, pp. 1030–1035, Nov. 1983.

    MathSciNet  Google Scholar 

  68. G. Zames and B.A. Francis, “Feedback, minimax sensitivity, and optimal robustness,” IEEE-TAC, vol. AC-28, no. 5, pp. 585–601, May 1983.

    MathSciNet  Google Scholar 

[H3] Sensitivity Considerations in Hardy Spaces State - Space Approach

  1. D.S. Bernstein and W.M. Haddad, “LQG control with an H°° performance bound: A Riccati approach,” IEEE-TAC, vol. AC-34, no. 3, pp. 293–305, March 1989.

    Google Scholar 

  2. P.M.M. Bongers and O.H. Bosgra, “Normalized coprime factorizations for systems in generalized state-space form,” IEEE-TAC, vol. AC-38, no. 2, pp. 348–350, 1993.

    MathSciNet  Google Scholar 

  3. B.-C. Chang, “A stable state-space realization in formulation of H°° norm computation,” IEEE-TAC, vol. AC-32, no. 9, pg. 811–815, Sept. 1987.

    Google Scholar 

  4. C.E. de Souza, M. Fu, and L. Xie, H m analysis and synthesis of discrete-time systems with time-varying uncertainty,“ IEEE-TAC, vol. AC-38, no. 3, pp. 459–462, 1993.

    MathSciNet  Google Scholar 

  5. C.E. de Souza and L. Xie, “On the discrete-time bounded real lemma with application in the characterization of static state feedback H„ controllers,” SCL, vol. 18, pp. 61–71, 1992.

    MathSciNet  MATH  Google Scholar 

  6. J.C. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis, “State-space solutions to standard H2 and H°° control problems,” IEEE-TAC vol. AC-34, pp. 831–847, Aug. 1989. [cf., [27 and 56].]

    Google Scholar 

  7. M.K.H. Fan and A.L. Tits, “A measure of worst-case H„ performance and of largest acceptable uncertainty,” SCL, vol. 18, pp. 409–421, 1992.

    MathSciNet  MATH  Google Scholar 

  8. M.K.H. Fan, AL. Tits, and J.C. Doyle, “Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics,” IEEE-TAC, vol. AC-36, no. 1, pp. 25–38, 1991.

    MathSciNet  Google Scholar 

  9. B.A. Francis and J.C. Doyle, “Linear control theory with an H., optimality criterion,” SIAMJCO, voL 25, no. 4, pp. 815–844, July 1987.

    Google Scholar 

  10. K. Glover and J.C. Doyle, “State-space formulae for all stabilizing controllers that satisfy an H„-norm bound and relations to risk sensitivity,” SCL, vol. 11, pp. 167–172, 1988.

    MathSciNet  MATH  Google Scholar 

  11. M. Green, K. Glover, D.J.N. Limebeer, and J.C. Doyle, “A J-spectral factorization approach to H”“ control,” SIAM-JCO, vol. 28, pp. 1350–1371, 1990.

    MathSciNet  MATH  Google Scholar 

  12. W.M. Haddad and D.S. Bernstein, “Generalized Riccati equations for the full-and reduced-order mixed-norm H2/H„ standard problem,” SCL, vol. 14, pp. 185–197, 1990.

    MathSciNet  MATH  Google Scholar 

  13. W.M. Haddad and D.S. Bernstein, “Robust stabilization with positive real uncertainty: Beyond the small gain theorem,” SCL, vol. 17, pp. 191–208, 1991.

    MathSciNet  MATH  Google Scholar 

  14. H.S. Hvostov, “Simplifying H”“ controller synthesis via classical feedback system structure,” IEEE-TAC, vol. AC-35, no. 4, pp. 485–488, April 1990.

    Google Scholar 

  15. Y.S. Hung and B. Pokrud, “An H” approach to feedback design with two objective functions,“ IEEE-TAC, vol. AC-37, no. 6, pp. 820–824, 1992.

    Google Scholar 

  16. P.A. Iglesias, D. Mustafa, and K. Glover, “Discrete time H„ controllers satisfying a minimum entropy criterion,” SCL, vol. 14, pp. 275–286, 1990.

    MathSciNet  MATH  Google Scholar 

  17. P.P. Khargonekar, K.M. Nagpal, and K.R. Poona, H„ control with transients,“ SIAM-KO, vol. 29, no. 6, pp. 1373–1393, 1991.

    MathSciNet  MATH  Google Scholar 

  18. P.P. Khargonekar, I.R. Petersen, and M.A. Rotes, H„-optimal control with state-feedback,“ IEEE-TAC, vol. AC-33, no. 8, pp. 786–788, 1988.

    MathSciNet  Google Scholar 

  19. P.P. Khargonekar, I.R. Petersen, and K. Zhou, “Robust stabilization of uncertain linear systems: Quadratic stabilizability and H” control theory,“ IEEE-TAC, vol. AC-35, no. 3, pp. 356–361, 1990.

    MathSciNet  Google Scholar 

  20. P.P. Khargonekar and M.A. Rotea, “Multiple objective optimal control of linear systems: The quadratic norm case,” IEEE-TAC, vol. AC-36, no. 1, pp. 14–24, 1991.

    MathSciNet  Google Scholar 

  21. P.P. Khargonekar and M.A. Rotea, “Mixed H2/ H., control: A convex optimization approach,” IEEE-TAC, vol. AC- 36, no. 7, pp. 824–837, 1991.

    MathSciNet  MATH  Google Scholar 

  22. H. Kimura, Y. Lu, and R. Kawatani, “On the structure of H°° control systems and related extensions,” IEEE-TAC, vol. AC-36, no. 6, pp. 653–667, 1991.

    MathSciNet  Google Scholar 

  23. V.X. Le and M.G. Safonov, “Rational matrix GCD’s and the design of squaring-down compensators–A state-space theory,” IEEE-TAC, vol. AC-37, no. 3, pp. 384–392, 1992.

    Google Scholar 

  24. D.J.N. Limebeer and G.D. Halikias, “A controller degree bound for H°°-optimal control problems of the second kind,” SIAM-JCO, vol. 26, no. 3, pp. 646–677, 1988.

    MathSciNet  MATH  Google Scholar 

  25. D.J.N. Limebeer and Y.S. Hung, “An analysis of the pole-zero cancellations in H°°-optimal problems of the first kind,” SIAM-JCO, vol. 25, no. 6, pp. 1457–1493, 1987.

    MathSciNet  MATH  Google Scholar 

  26. A.N. Madiwale, W.M. Haddad, and D.S. Bernstein, “Robust H” control design for systems with structured parameter uncertainty,“ SCL, vol. 12, pp. 393–407, 1989.

    MathSciNet  MATH  Google Scholar 

  27. T. Mita, K.Z. Liu, and S. Ohuchi, “Correction of the FI results in H., control and parameterization of H„ state feedback controllers,” IEEE-TAC, vol. AC-38, no. 2, pp. 343–347, 1993.

    MathSciNet  Google Scholar 

  28. J.B. Moore and T.T. Tay, “Loop recovery via H`°IH 2 sensitivity recovery,” IJC, vol. 49, no. 4, pp. 1249–1271, 1989.

    MathSciNet  MATH  Google Scholar 

  29. D. Mustafa, “Relations between maximum-entropy /H.. control and combined H.,/LQG control,” SCL, vol. 12, pp. 193–203, 1989.

    MathSciNet  MATH  Google Scholar 

  30. D. Mustafa and K. Glover, “Controller reduction by H„-balanced truncation,” IEEE-TAC, vol. AC-36, no. 6, pp. 668–682, 1991.

    MathSciNet  Google Scholar 

  31. D. Mustafa and K. Glover, Minimum Entropy H„ Control. Berlin: Springer–Verlag, 1990. Reviewed by D.S. Bernstein, IEEE-TAC, vol. AC-37, no. 8, pp. 1276–1277, 1992, and by J.A. Ball, SIAM R., vol. 35, no. 4, pp. 652–655, Dec. 1993.

    Google Scholar 

  32. D. Mustafa, K. Glover, and D.J.N. Limebeer, “Solutions to the H. general distance problem which minimize an entropy integral,” Automatica, vol. 27, no. 1, pp. 193–199, 1991.

    MathSciNet  MATH  Google Scholar 

  33. I.R. Petersen, “Disturbance attenuation and H°° optimization: A design method based on the algebraic Riccati equation,” IEEE-TAC, vol. AC-32, no. 5, pp. 427–429, May 1987.

    Google Scholar 

  34. I.R. Petersen and C. Hollot, “High gain observers applied to problems in the stabilization of uncertain linear systems, disturbance attenuation and H°° optimization,” IJACSP, vol. 2, pp. 347–369, 1988.

    MATH  Google Scholar 

  35. R. Ravi, K.M. Nagpal, and P.P. Khargonekar, H°° control of linear time-varying systems: A state-space approach,“ SIAM-JCO, vol. 29, no. 6, pp. 1394–1413, 1991.

    MathSciNet  MATH  Google Scholar 

  36. M.A. Rotea and P.P. Khargonekar, “H2-optimal control with an H’”-constraint: The state feedback case,“ Automatica, vol. 27, no. 2, pp. 307–316, 1991.

    MathSciNet  MATH  Google Scholar 

  37. M.G. Safonov, D.J.N. Limebeer, and R.Y. Chiang, “Simplifying the H°° theory via loop-shifting, matrix-pencil and descriptor concepts,” IJC, vol. 50, no. 6, pp. 2467–2488, 1989.

    MathSciNet  MATH  Google Scholar 

  38. C. Scherer, H°°-control by state-feedback and fast algorithms for the computation of optimal H`“-norms,” IEEE-TAC, vol. AC-35, no. 10, pp. 1090–1099, Oct. 1990.

    Google Scholar 

  39. G. Shi, Y. Zou, and C. Yang, “An algebraic approach to robust H°° control via state feedback,” SCL, vol. 18, pp. 365–370, 1992.

    MathSciNet  MATH  Google Scholar 

  40. A.A. Stoorvogel, “The singular H2 control problem,” Automatica voL 28, no. 3, pp. 627–631, 1992.

    Google Scholar 

  41. G. Tadmor, “Uncertain feedback loops and robustness in general linear systems,” Automatica, vol. 27, no. 6, pp. 1039–1042, 1991.

    MathSciNet  Google Scholar 

  42. H.T. Toivonen, “Sampled-data control of continuous-time systems with an H. optimality criterion,” Automatica, vol. 28, no. 1, pp. 45–54, 1992.

    MathSciNet  MATH  Google Scholar 

  43. M.-C. Tsai, D.-W. Gu, and I. Postlethwaite, “A state-space approach to super-optimal H°° control problems,” IEEE-TAC, vol. AC-33, no. 9, pp. 833–843, Sept. 1988.

    MathSciNet  Google Scholar 

  44. K. Uchida and M. Fujita, “Finite horizon H°° control problems with terminal penalties,” IEEE-TAC, vol. AC-37, no. 11, pp. 1762–1767, 1992.

    MathSciNet  Google Scholar 

  45. A.J. van der Schaft, “On a state space approach to nonlinear H. control,” SCL, vol. 16, pp. 1–8, 1991.

    MathSciNet  MATH  Google Scholar 

  46. A.J. van der Schaft, “L2-gain analysis of nonlinear systems and nonlinear state feedback H. control,” IEEE-TAC, vol. AC-37, no. 6, pp. 770–784, 1992.

    Google Scholar 

  47. D.J. Walker, “Relationship between three discrete-time H°° algebraic Riccati equation solutions,” IJC, vol. 52, no. 4, pp. 801–809, 1990.

    MATH  Google Scholar 

  48. L. Xie and C.E. de Souza, “State feedback H. optimal control problems for non-detectable systems,” SCL, vol. 13, pp. 315–319, 1989.

    MathSciNet  MATH  Google Scholar 

  49. L. Xie and C.E. de Souza, “Robust H. control for linear time-invariant systems with norm-bounded uncer- tainty in the input matrix,” SCL, vol. 14, pp. 389–396, 1990.

    MathSciNet  MATH  Google Scholar 

  50. L. Xie and C.E. de Souza, “Robust H. control for linear systems with norm-bounded time-varying uncer- tainty,” IEEE-TAC, vol. AC-37, no. 8, pp. 1188–1191, 1992.

    Google Scholar 

  51. I. Yaesh and U. Shaked, “Minimum H°°-norm regulation of linear discrete-time systems and its relation to linear quadratic discrete games,” IEEE-TAC, vol. AC-35, no. 9, pp. 1061–1064, Sept. 1990.

    MathSciNet  Google Scholar 

  52. I. Yaesh and U. Shaked, H„-optimal one-step-ahead output feedback control of discrete-time systems,“ IEEE-TAC, vol. AC-37, no. 8, pp. 1245–1250, 1992.

    MathSciNet  Google Scholar 

  53. H.-H. Yeh, S.S. Banda, and B.-C. Chang, “Necessary and sufficient conditions for mixed H2 and H. optimal control,” IEEE-TAC, vol. AC-37, no. 3, pp. 355–358, 1992.

    MathSciNet  Google Scholar 

  54. H.-H. Yeh, S.S. Banda, S.A. Heise, and A.C. Bartlett, “Robust control design with real-parameter uncertainty and unmodeled dynamics,” JGCD, vol. 13, no. 6, pp. 1117–1125, 1990.

    MathSciNet  MATH  Google Scholar 

  55. K. Zhou, “Comparison between H2 and H. controIlers,” IEEE-TAC, vol. AC-37, no. 8, pp. 1261–1265, 1992.

    Google Scholar 

  56. K. Zhou, “On the parameterization of H. controllers,” IEEE-TAC, vol. AC-37, no. 9, pp. 1442–1446, 1992.

    Google Scholar 

  57. K. Zhou and P.P. Khargonekar, “On the weighted sensitivity minimization problem for delay systems,” SCL, vol. 8, pp. 307–312, 1987.

    MathSciNet  MATH  Google Scholar 

  58. K. Zhou and P.P. Khargonekar, “An algebraic Riccati equation approach to H°° optimization,” SCL, vol. 11, pp. 85–91, 1988.

    MathSciNet  MATH  Google Scholar 

[H4] Sensitivity Considerations in Hardy Spaces Operator Approach

  1. J.A. Ball and N. Cohen, “Sensitivity minimization in an H°° norm: Parametrization of all suboptimal solutions,” IJC, vol. 45, no. 3, pp. 785–816, 1987.

    MathSciNet  Google Scholar 

  2. J.A. Ball and A.C.M. Ran, “Optimal Hankel norm model reductions and Wiener-Hopf factorization I: The canonical case,” SIAM-KO, vol. 25, no. 2, pp. 362–382, 1987.

    MathSciNet  MATH  Google Scholar 

  3. ], “Optimal Hankel norm model reductions and Wiener-Hopf factorization II: The noncanonical case,” lEOT, vol. 10, pp. 416–436, 1987.

    Google Scholar 

  4. F. Fagnani, “An operator-theoretic approach to the mixed-sensitivity minimization problem,” SCL, vol. 17, pp. 227–235, 1991.

    MathSciNet  MATH  Google Scholar 

  5. K. Glover, “All optimal Hankel-norm approximations of linear multivariable systems and their L°°-error bounds,” IJC, vol. 39, no. 6, pp. 1115–1193, 1984.

    MathSciNet  MATH  Google Scholar 

  6. K. Glover and D. McFarlane, “Robust stabilization of normalized coprime factor plant descriptions with H’”-bounded uncertainty,“ IEEE-TAC, vol. AC-34, pp. 821–830, 1989.

    Google Scholar 

  7. B. Hanzon, “The area enclosed by the (oriented) Nyquist diagram and the Hilbert-SchmidtHankel norm of a linear system,” IEEE-TAC, vol. AC-37, no. 6, pp. 835–839, 1992.

    Google Scholar 

  8. E.A. Jonckheere and J.-C. Juang, “Fast computation of achievable feedback performance in mixed sensitivity H`° design,” IEEE-TAC, vol. AC-32, no. 10, pp. 896–906, 1987.

    MathSciNet  Google Scholar 

  9. D. McFarlane and K. Glover, “A loop shaping design procedure using H„ synthesis,” IEEE-TAC, vol. AC-37, no. 6, pp. 759–769, 1992.

    MathSciNet  Google Scholar 

  10. G. Michaletzky, “Hankel-norm approximation of a rational function using stochastic realizations,” SCL, vol. 13, pp. 211–216, 1989.

    MathSciNet  MATH  Google Scholar 

  11. H. Ozbay and A. Tannenbaum, “A skew Toeplitz approach to the N’” optimal control of multivariable distributed systems,“ SIAM-JCO, vol. 28, no. 3, pp. 653–670, May 1990.

    MathSciNet  Google Scholar 

  12. M.G. Safonov and M.S. Verma, ’Z„ optimization and Hankel approximation,“ IEEE-TAC, vol. AC-30, no. 3, pp. 279–280, 1985.

    MathSciNet  Google Scholar 

  13. C.-D. Yang and F.-B. Yeh, “An efficient algorithm on optimal Hankel-norm approximation for multivariable systems,” IEEE-TAC, vol. AC-37, no. 6, pp. 815–820, 1992.

    Google Scholar 

  14. J.-S. Young and C.E. Lin, “Construction of the maximal Schmidt pair for the 4-block H°°-optimal control problem,” IEEE-TAC, vol. AC-37, no. 8, pp. 1250–1252, 1992.

    Google Scholar 

[H5] Sensitivity Considerations in Hardy Spaces Computational Issues and Optimization Approaches

  1. T. Auba and Y. Funahashi, “Upper and lower bounds of Gramian for a class of perturbed linear systems,” IEEE-TAC, vol. AC-37, no. 10, pp. 1659–1661, 1992.

    MathSciNet  Google Scholar 

  2. A.C. Antoulas, “On minimal realization: A polynomial approach,” SCL, vol. 14, pp. 319–324, 1990.

    MathSciNet  MATH  Google Scholar 

  3. S. Boyd and V. Balakrishnan, “A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its Lm norm,” SCL, vol. 15, pp. 1–7, 1990.

    MathSciNet  MATH  Google Scholar 

  4. S. Boyd, V. Balakrishnan, and P. Kabamba, “On computing the H„ norm of a transfer matrix,” in Proc. Amer. Contr. Conf., pp. 396–397, 1988.

    Google Scholar 

  5. S. Boyd, V. Balakrishnan, and P. Kabamba, “A bisection method for computing the If norm of a transfer matrix and related problems,” MCSS vol. 2, pp. 207–219, 1989. [cf., [P. 11 amp 12].]

    Google Scholar 

  6. N.A. Bruinsma and M. Steinbuch, “A fast algorithm to compute the H„-norm of a transfer function matrix,” SCL, vol. 14, pp. 287–293, 1990.

    MathSciNet  MATH  Google Scholar 

  7. B.-C. Chang and S.S. Banda, “Optimal H°° norm computation for multivariable systems with multiple zeros,” IEEE-TAC, vol. AC-34, no. 5, pp. 553–557, May 1989.

    Google Scholar 

  8. B.-C. Chang, S.S. Banda, and T.E. McQuade, “Fast iterative computation of optimal two-block H°°-norm,” IEEE-TAC, vol. AC-34, no. 7, pp. 738–743, July 1989.

    MathSciNet  Google Scholar 

  9. B.M. Chen, A. Saberi, and U.-L. Ly, “Exact computation of the infimum in H„-optimization via output feedback,” IEEE-TAC, vol. AC-37, no. 1, pp. 70–78, 1992.

    MathSciNet  Google Scholar 

  10. B.M. Chen, A. Saberi, P. Sannuti, and Y. Shamash, “Construction and parameterization of all static and dynamic H2-optimal state feedback solutions, optimal fixed modes, and fixed decoupling zeros,” IEEE-TAC, vol. AC-38, no. 2, pp. 248–261, 1993.

    MathSciNet  Google Scholar 

  11. G. Chen and R.J.P. de Figueiredo, “Construction of the left coprime fractional representation for a class of nonlinear control systems,” SCL, vol. 14, pp. 353–361, 1991.

    MathSciNet  Google Scholar 

  12. C.-C. Chu, J.C. Doyle, and E.B. Lee, “The general distance problem in H„ optimal control theory,” IJC, vol. 44, no. 2, pp. 565–596, 1986.

    MathSciNet  MATH  Google Scholar 

  13. D.F. Enns, “Model reduction with balanced realizations: An error bound and a frequency weighted generalization,” in Proc. 23rd IEEE Conf. on Decision and Contr., pp. 127–132, Dec. 1984.

    Google Scholar 

  14. C.H. Fang and F.R. Chang, “A connection between state-space and doubly coprime matrix-fraction descriptions of multivariable systems,” SCL, vol. 14, pp. 261–265, 1990.

    MATH  Google Scholar 

  15. Y.K. Foo, “Convergent inequalities for four-block ‘y-iteration in H°° optimization problems,” CTAT, vol. 6, no. 3, pp. 463–472, 1990.

    MathSciNet  Google Scholar 

  16. T.T. Georgiou and P.P. Khargonekar, “A constructive algorithm for sensitivity optimization of periodic systems,” SIAM-JCO, vol. 25, no. 2, pp. 334–340, March 1987.

    MathSciNet  Google Scholar 

  17. D.-W. Gu and D.Q. Mayne, “A new problem in control system design,” IEEE-TAC, vol. AC-35, no. 1, pp. 114–117, Jan. 1990.

    Google Scholar 

  18. D.-W. Gu, M.C. Tsai, and I. Postlethwaite, “Improved formulae for the 2-block H°° superoptimal solution,” Automatica, vol. 26, no. 2, pp. 437–440, 1990.

    MATH  Google Scholar 

  19. ], “A frame approach to the H’” superoptimal solution,“ IEEE-TAC, vol. AC-35, no. 7, pp. 829–835, 1990.

    Google Scholar 

  20. L. Guo, L. Xia, and Y. Liu, “Recursive algorithm for the computation of the H°°-norm of polynomials,” IEEE-TAC, vol. AC-33, no. 12, pp. 1154–1158, Dec. 1988.

    MathSciNet  Google Scholar 

  21. L. He and E. Polak, “Effective diagonalization strategies for solution of a class of optimal design problems,” IEEE-TAC, vol. AC-35, no. 3, pp. 258–267, March 1990.

    Google Scholar 

  22. J. Lam and B.D.O. Anderson, “L1 impulse response error bound for balanced truncation,” SCL, vol. 18, pp. 129–137, 1992.

    MathSciNet  MATH  Google Scholar 

  23. Y. Liu and K.L. Teo, “Convergence rate for an approximation approach to H„-norm optimization problems with an application to controller order reduction,” Automatica, vol. 28, no. 3, pp. 617–621, 1992.

    MathSciNet  MATH  Google Scholar 

  24. P. Pandey, C. Kenney, A. Packard, and A.J. Laub, “A gradient method for computing the optimal H„ norm,” IEEE-TAC, vol. AC-36, no. 7, pp. 887–890, 1991.

    MathSciNet  Google Scholar 

  25. E. Polak and D.Q. Mayne, “Algorithm models for nondifferentiable optimization,” SIAM-KO, vol. 23, no. 3, pp. 477–491, May 1985.

    MathSciNet  MATH  Google Scholar 

  26. E. Polak and S.E. Salcudean, “On the design of linear multivariable feedback systems via constrained nondifferentiable optimization in H’” spaces,“ IEEE-TAC, vol. AC-34, no. 3, pp. 268–276, 1989.

    MathSciNet  Google Scholar 

  27. E. Polak, S.E. Salcudean, and D.Q. Mayne, “Adaptive control of ARMA plants using worst-case design by semi-infinite optimization,” IEEE-TAC, vol. AC-32, no. 5, pp. 388–396, May 1987.

    MathSciNet  Google Scholar 

  28. E. Polak and EJ. Wiest, “Variable-metric technique for the solution of affinely parameterized nondifferentiable optimal design problems,” JOTA, vol. 66, no. 3, pp. 391–414, 1990.

    MathSciNet  MATH  Google Scholar 

  29. E. Polak and T.L. Wuu, “On the design of stablizing compensators via semiinfinite optimization,” IEEE-TAC, vol. AC-34, no. 2, pp. 196–200, Feb. 1989.

    MathSciNet  Google Scholar 

  30. F. Reza, “The application of Caratheodory-Schur optimization,” Computers Elect. Engng, vol. 17, no. 1, pp. 49–53, 1991.

    MATH  Google Scholar 

  31. G. Robel, “On computing the infinity norm,” IEEE-TAC, vol. AC-34, no. 8, pp. 882–884, 1989.

    Google Scholar 

  32. U. Shaked and I. Yaesh, “A simple method for deriving J-spectral factors,” IEEE-TAC, vol. AC-37, no. 6, pp. 891–895, 1992.

    MathSciNet  Google Scholar 

  33. K. Sugimoto and Y. Yamamoto, “A polynomial matrix method for computing stable rational doubly coprime factorization,” SCL, vol. 14, pp. 267–273, 1990.

    MathSciNet  MATH  Google Scholar 

  34. C.P. Therapos, “Balance realization of stable transfer function matrices,” IEEE-TAC, vol. AC-37, no. 2, pp. 281–285, 1992.

    Google Scholar 

  35. RJ. Veillette and J.V. Medanic, “H„-norm bounds for ARE-based designs,” SCL, vol. 13, pp. 193–204, 1989.

    MathSciNet  MATH  Google Scholar 

  36. C.-D. Yang and F.-B. Yeh, “A simple algorithm on minimal balanced realization for transfer function matrices,” IEEE-TAC, vol. AC-34, no. 8, pp. 879–882, 1989.

    Google Scholar 

  37. F.-B. Yeh and L.-F. Wei, “Inner-outer factorizations of right-invertible real-rational matrices,” SCL, vol. 14, pp. 31–36, 1990.

    MathSciNet  MATH  Google Scholar 

[H6] Sensitivity Considerations in Hardy Spaces Applications and Extensions

  1. Publications in this area are pouring in and these are just representative.

    Google Scholar 

  2. T. Basar and P. Bernhard, H„—Optimal Control and Related Minimax Design Problems, a dynamic game approach. Boston: Birkhauser, 1991. Reviewed by D. Ghose, J. Indian Sciences, vol. 72, March/April 1992, and by A. Halanay and V. Ionescu, J. Rev. Romanian Sciences, Techn.-Electrotech et Energie, vol. 37, no. 2, p. 245, Bucharest 1992.

    MathSciNet  Google Scholar 

  3. A.R. Guesalaga and H.W. Kropholler, “Improved temperature and humidity control using H m synthesis,” Proc. IEE, vol. 137, Pt. D, no. 6, pp. 374–380, 1990.

    Google Scholar 

  4. H. Kazerooni, T.-I. Tsay, and K. Hollerbach, “A controller design framework for telerobotic systems,” IEEE-TCST, vol. 1, no. 1, pp. 50–62, 1993.

    Google Scholar 

  5. M. Moran and E. Zafiriou, Robust Process Control. Englewood Cliffs, NJ: Prentice-Hall, 1989. Reviewed by J.C. Kantor, AIChE J., vol. 37, no. 12, pp. 1905–1906, 1991.

    Google Scholar 

  6. D.E. Rivera and M. Morari, “Low-order SISO controller tuning methods for the H2, H„ and 1.t objective functions,” Automatica, vol. 26, no. 2, pp. 361–369, 1990.

    MATH  Google Scholar 

  7. D.E. Rivera and M. Morari, “Plant and controller reduction problems for closed-loop performance,” IEEE-TAC, vol. AC-37, no. 3, pp. 398–404, 1992.

    MathSciNet  Google Scholar 

  8. A. Yue and I. Postlethwaite, “Improvement of helicopter handling qualities using H’”—optimization,“ Proc. IEE, vol. 137, Pt. D, no. 3, pp. 115–129, 1990.

    Google Scholar 

[I] Conference Proceedings/Reports and Book Reviews on Invariance Theory

  1. [1] Invariance Theory and Its Use in Control Devices. Proc. First All-Union Conf. on Invariance Theory and its use in Control Systems. Moscow: Izd-vo AN SSSR, 1959. [A commentary on this meeting and its resolutions can be found in ARC vol. 20, no. 8, pp. 1109–1115, 1959.]

    Google Scholar 

  2. [2] Invariance Theory in Control Systems. Proc. Second All-Union Conf. on Invariance Theory and its use in Control Systems. Moscow: Nauka Press, 1964.

    Google Scholar 

  3. [3] Theory of Invariance of Control Systems. Proc. Third All-Union Conf. on Invariance Theory and Its Use in Control Systems. Moscow: Nauka Press, 1970.

    Google Scholar 

  4. [4] Invariance Theory and the Theory of Sensitivity of Control Systems. Materials of Fourth All-Union Conf., Parts 1–3, AN SSSR and AN Ukr SSR, 1971.

    Google Scholar 

  5. [5] News Items, Fifth All-Union Conference on Invariance Theory, Sensitivity Theory, and Their Applications. Republican School-Seminar on Invariance, Stability and Sensitivity. SAC vol. 9, pp. 73–74, Jan./Feb. 1976.

    Google Scholar 

  6. Invariance Theory, Sensitivity Theory, and Applications, Six All-Union Conference (Reports of Papers) [in Russian], Inst. of Control Problems, Moscow (1982).

    Google Scholar 

  7. Seventh All-Union Conference on the Theory of Invariance and Sensitivity of Automatic Systems (Reports of Papers) (Academician V.A. Trapeznikov, General Chairman), Baku, June 1987. [The author could not locate any other information on this and the previous entry.]

    Google Scholar 

  8. The fiftieth anniversary of publishing Professor G.V. Shchipanov’s work: “Theory and methods of design of automatic regulators,” SJAIS, vol. 22, no. 2, pp. 82–95, 1989.

    Google Scholar 

  9. N.M. Chumakov, “Fourth all-union conference on the theory of invariance and the theory of sensitivity of automatic systems,” ARC, no. 3, pp. 511–514, March 1972.

    Google Scholar 

  10. N.A. Kachanova and P.I. Chinaev, “Conference on invariance theory and its applications to automatic devices,” ARC, vol. 20, no. 8, pp. 1109–1114, Resolutions of this conference, ibid, pp. 1114–1115, Aug. 1959.

    Google Scholar 

  11. V.S. Kulebakin, Teoriia Invariantnosti i Ee Primenenie v Avtomati-Cheskikh Ustroistvakh. Moskva: 1959.

    Google Scholar 

  12. V.M. Kuntsevich, “Conclusion of discussion on the invariance of automatic control systems,” SJAIS, vol. 21, no. 2, pp. 98–99, 1988.

    Google Scholar 

  13. L.N. Mikhailov, “Some remarks on the theory of complete compensation of disturbances,” Avtomatika i Telemekhanika, no. 5, [pp. 145–154 in Russian], 1940.

    Google Scholar 

  14. T. Soveshch, Theory of Invariance and Its Application to Automatic Control [in Russian]. Izd-vo AN Uk. SSR, 1959.

    Google Scholar 

  15. M. Ulanov, “(Book Review) `The Problem of Invariance Theory In Automatic Control’,” By A.I. Kukhtenko, ARC, vol. 27, no. 4, pp. 729–731, April 1966.

    Google Scholar 

  16. S.D. Zemlyakov, “Third all-union meeting on invariance theory and its applications in automatic control systems,” ARC, no. 4, pp. 681–684, April 1967.

    Google Scholar 

[J] Selected Techniques from Invariance Theory

  1. J.K. Aggarwal, H.T. Banks, and N.H. McClamroch, “Invariance in linear systems,” JMAA, vol. 29, pp. 498–506, 1970.

    MathSciNet  MATH  Google Scholar 

  2. S. Barnett, C. Storey, J.B. Cruz, and W.R. Perkins, “Comment on `Invariance and sensitivity’,” IEEE-TAC, vol. AC-12, pp. 210–211, April 1967.

    Google Scholar 

  3. C. Bonivento, R. Gudorzi, and G. Marro, “Parametric insensitivity and controlled invariance,” in Proc. 3rd IFAC Symp. on Sensitivity, Adaptivity and Optimality, pp. 177–182, Ischia, Italy, 1973.

    Google Scholar 

  4. V.G. Borisov, SN. Diligenskii, and A.Y. Efremov, “Synthesis of invariant control systems using eigenstructures,” ARC, vol. 51, no. 7, pp. 855–866, 1990.

    MathSciNet  MATH  Google Scholar 

  5. L.M. Boychuk, “Necessary and sufficient conditions for absolute invariance of control systems with indirect measurement of disturbances,” SAC, vol. 2, no. 4, pp. 13–18, 1969.

    MathSciNet  Google Scholar 

  6. L.M. Boychuk, “Was there a mistake in G.V. Shchipanov’s work?” SJAIS, vol. 19, no. 3, pp. 82–94, 1986. Comments by A.G. Ivakhnenko, ibid., pp. 95–97, and in vol. 20, no. 3, p. 87, 1987.

    Google Scholar 

  7. L.M. Boychuk, “Invariant filtering of discrete processes,” SJAIS, vol. 20, no. 2, pp. 9–15, 1987.

    MATH  Google Scholar 

  8. L.M. Boychuk and G.S. Finin, “A method of controlling objects with variable parameters based on using coordinating systems,” SJAIS, vol. 22, no. 6, pp. 37–44, 1989.

    MathSciNet  Google Scholar 

  9. L.M. Boychuk and A.M. Voronin, “Invariance theory in control systems (a survey),” SAC, vol. 2, no. 4, pp. 1–13, 1969.

    MathSciNet  Google Scholar 

  10. L.M. Boychuk and Y.P. Yurachkovskiy, “Static stability and homeostatism of coordinating automatic control systems,” SJAIS, vol. 23, no. 6, pp. 33–43, 1990.

    Google Scholar 

  11. J.B. Cruz, Jr., and W.R. Perkins, “On invariance and sensitivity,” in IEEE Int. Cony. Record, vol. 14, Pt. 7, pp. 159–162, 1966.

    Google Scholar 

  12. J.B. Cruz, Jr., and W.R. Perkins, “Conditions for signal and parameter invariance in dynamical systems,” IEEE- TAC, vol. AC-11, pp. 614–615, July 1966.

    Google Scholar 

  13. V.I. Elkin, “Realization, invariance, and autonomy of nonlinear controllable dynamic systems,” ARC, vol. 42, no. 7, pp. 878–885, 1981.

    MathSciNet  MATH  Google Scholar 

  14. A.T. Fam and J.S. Meditch, “On input-output parametric invariance in linear systems,” IEEE-TAC, vol. AC-21, No. 6, pp. 870–871, Dec. 1976.

    MathSciNet  Google Scholar 

  15. A.R. Gaiduk, “Analytic design of invariant control systems for one-dimensional plants,” ARC, vol. 42, no. 5, pp. 557–565, 1981.

    Google Scholar 

  16. A.R. Gaiduk, “Design of control systems with a given form of inputs,” ARC, vol. 45, no. 6, pp. 692–699, 1984.

    MathSciNet  Google Scholar 

  17. A.R. Gaiduk, “Selecting the feedback in a control system of minimum complexity,” ARC, vol. 51, no. 5, pp. 593–600, 1990.

    MathSciNet  Google Scholar 

  18. C. Gori-Giogi and O.M. Grasselli, “A new approach to the study of parameter insensitivity,” Automatica, vol. 11, pp. 181–188, 1975.

    Google Scholar 

  19. J.M. Ham, “Parameter invariance through the use of nonlinear comparators,” in Proc. Allerton Conf., pp. 578–588, 1965.

    Google Scholar 

  20. J.M. Ham and M.A. Hassan, “Appropriate parameter invariance with nonlinear feedback,” IEEE-TAC, vol. AC-10, no. 1, pp. 87–89, 1965.

    Google Scholar 

  21. A.G. Ivakhnenko and L.M. Boychuk, “Ensuring a given motion of an invariant servo system (as applied to the construction of differentiators),” SJAIS, vol. 20, no. 5, pp. 62–64, 1987.

    Google Scholar 

  22. V.I. Ivanenko, “Some questions regarding indeterminacy and dynamics in control problems,” SJAIS, vol. 20, no. 5, pp. 31–41, 1987.

    MathSciNet  MATH  Google Scholar 

  23. C.D. Johnson, “Invariant hyperplanes for linear dynamical systems,” IEEE-TAC, vol. AC-11, pp. 113–116, Jan. 1966.

    Google Scholar 

  24. Y.S. Kan and A.I. Kibzun, “Stabilization of a dynamic system which is under the action of undetermined and random disturbances,” ARC, vol. 51, no. 12, pp. 1665–1673, 1990.

    MathSciNet  MATH  Google Scholar 

  25. Y.S. Kharin, “Training of invariant recognition systems,” SAC, vol. 11, no. 1, pp. 17–26, 1978.

    Google Scholar 

  26. M.M. Khrustalev and M.V. Azanov, “A parametric family of generating functions and sufficient conditions for the optimality of discontinuous systems,” SJAIS, vol. 22, no. 6, pp. 78–84, 1989.

    MathSciNet  MATH  Google Scholar 

  27. Y.R. Kotta, “Designing nonlinear discrete-time systems which are invariant under disturbances,” ARC, vol. 51, no. 3, pp. 294–300, 1990.

    MathSciNet  MATH  Google Scholar 

  28. A.I. Kukhtenko, “Criteria for absolute invariance for control systems with variable parameters,” Izv. AN SSSR, Otd. tekhn., Energetika i Avtomatika, no. 2, 1961.

    Google Scholar 

  29. A.I. Kukhtenko, “What can the `abstract theory of systems’ offer control science?” SAC, vol. 12, no. 4, pp. 1–8, 1979.

    MathSciNet  MATH  Google Scholar 

  30. A.I. Kukhtenko, “The basic steps in the development of invariance theory,” SAC, vol. 17, no. 2, pp. 1–10, 1984.

    MathSciNet  MATH  Google Scholar 

  31. A.I. Kukhtenko, “Basic steps in the development of invariance theory Part 2. Extension of the sub- ject area of investigations,” SJAIS, vol. 18, no. 2, pp. 1–11, 1985.

    MathSciNet  Google Scholar 

  32. A.I. Kukhtenko, “The basic steps in the development of invariance theory Part III. Nonlinear invariant systems,” SJAIS, vol. 18, no. 6, pp. 1–11, 1985.

    MathSciNet  Google Scholar 

  33. R.M. Kukuliyev, “Application of invariance theory to the synthesis of inertial damped navigational systems for complex motion of an object,” SJAIS, vol. 22, no. 1, pp. 31–39, 1989.

    Google Scholar 

  34. M.B. Leitman, “Use of the invariance principle for improving the accuracy and dynamic characteristics of compensation data-measurement transducers,” ARC, vol. 39, no. 7, pp. 1077–1087, 1978.

    Google Scholar 

  35. N.N. Luzin, “Study of matrix theory of differential equations,” Avtomatika i Telemekhanika, no. 5, 1940.

    Google Scholar 

  36. N.H. McClamroch, J.K. Aggarwal, and L.G. Clark, “On parameter invariance in linear control systems,” IJC, vol. 5, no. 4, pp. 361–367, 1967.

    MATH  Google Scholar 

  37. N.H. McClamroch, J.K. Aggarwal, and L.G. Clark, “Sensitivity of linear control systems to large parameter variations,” Avtomatica, vol. 5, pp. 257–263, 1969.

    MathSciNet  MATH  Google Scholar 

  38. V.S. Mechetnyy, “Double invariance of control systems,” SAC, vol. 2, no. 4, pp. 21–27, 1969.

    Google Scholar 

  39. V.S. Mechetnyy, “Generalized conditions for absolute invariance of horizontal flight coordinates under atmospheric disturbances,” SAC, vol. 4, no. 1, pp. 5–9, 1971.

    Google Scholar 

  40. B.G. Mel’nikov, “Sensitivity of the optimum probability filters,” ECy, vol. 23, no. 5, pp. 138–144, 1985.

    MATH  Google Scholar 

  41. A.N. Michel and V. Vittal, On the mechanism of transient instability of power systems,“ CSSP, vol. 4, no. 3, pp. 413–434, 1985.

    MathSciNet  Google Scholar 

  42. T. Mita, “Design of a zero-sensitive systems,” IJC, vol. 24, no. 1, pp. 75–81, 1976. Comment on this and a sequence of other related papers of this author by B. Porter, ibid., vol. 27, no. 2, pp. 325–326, 1978. Author’s reply, ibid., vol. 29, no. 3, p. 535, 1979.

    MathSciNet  MATH  Google Scholar 

  43. T. Mita and K. Hasegawa, “Zeroing and the design of a zero-sensitivity system,” EEJ, vol. 95, no. 5, pp. 118–125, Sept/Oct. 1975.

    Google Scholar 

  44. V.A. Orlov, “Technique for the analysis of invariant and optimal systems with periodic parameters,” ARC, vol. 27, no. 9, pp. 1522–1534, Sept. 1966.

    Google Scholar 

  45. T.K.C. Peng, “Invariance and stability for bounded uncertain systems,” SIAM J. Contr., vol. 10, no. 4, pp. 679–690, Nov. 1972.

    MATH  Google Scholar 

  46. B.N. Petrov, V.V. Dement’yeva, and M.M. Khrustalev, “Synthesis of an invariant dynamic system with program control,” ECy, vol. 19, no. 4, pp. 148–151, 1981.

    MathSciNet  MATH  Google Scholar 

  47. B.N. Petrov and P.D. Krut’ko, “Sensitivity theory in automatic control,” ECy, vol. 8, no. 2, pp. 380–389, 1970.

    MathSciNet  Google Scholar 

  48. B.N. Petrov, V.Y. Rutkovski, and I.N. Krutova, “The problems of invariance, sensitivity and optimization in the theory of one class of self-adapting systems,” Proc. IFAC, vol. 1 (of the 3rd Congress), pp. 18D. 1–18D. 10, 1966.

    Google Scholar 

  49. V.P. Pichkurenko and O.V. Fokin, “Invariance conditions in stationary and nonstationary systems,” SAC, vol. 14, no. 4, pp. 27–38, 1969.

    MathSciNet  Google Scholar 

  50. J. Preminger and J. Rootenberg, “Some considerations relating to control systems employing the invariance principle,” IEEE-TAC, vol. AC-9, pp. 209–215, July 1964.

    Google Scholar 

  51. L.I. Rozonoer, “A variational approach to the problem of invariance of automatic control systems. I,” ARC, vol. 24, no. 6, pp. 680–691, Nov., 1963.

    MATH  Google Scholar 

  52. L.I. Rozonoer, “A variational approach to the problem of invariance II,” ARC vol. 24, no. 7, pp. 793–800, Dec. 1963. [cf., [63] and [49] for comments.]

    Google Scholar 

  53. R.S. Rutman, “Conditions of zero sensitivity in linear control systems,” ECy, vol. 7, no. 2, pp. 137–145, March/April 1969.

    Google Scholar 

  54. R.S. Rutman and M.S. Epelman, “Parametric invariance of linear dynamic systems,” Dokl. Adad. Nauk. USSR, vol. 159, no. 4, pp. 764–766, 1964.

    MathSciNet  Google Scholar 

  55. B.A. Ryabov and G.P. Sachkov, “Estimating the value of E-invariant systems,” SJAIS, vol. 23, no. 4, pp. 23–30, 1990.

    MathSciNet  MATH  Google Scholar 

  56. P.H. Shac, “Invariance and controllability in certain linear processes,” ARC vol. 37, no. 7, pp. 994–1003, 1976. [The author of this paper seems to be the same as the next one.]

    Google Scholar 

  57. F.H. Shak, “Invariance in linear discrete processes,” ARC, vol. 34, no. 6, pp. 991–976, June 1973.

    Google Scholar 

  58. G.V. Shchipanov, “Theory and methods of design of control systems,” Avtomatika i Telemekhanika no. 1, 1939. [This entry which has been cited (with a minor variation) in a number of papers in this area is included here only for historical reasons. The actual paper has been recently reappeared, with perhaps a more accurate tide than the earlier translation, in [I. 8].]

    Google Scholar 

  59. Y.B. Shtessel and A.Y. Evnin, “Invariant control of output of nonlinear systems,” ARC, vol. 51, no. 3, pp. 315–323, 1990.

    MathSciNet  MATH  Google Scholar 

  60. E.M. Solnechnyi, “Making the dynamic properties of a single-channel control system approach absolute invariance,” ARC, vol. 46, no. 4, pp. 449–456, 1985.

    MathSciNet  Google Scholar 

  61. E.M. Solnechnyy, “Investigation of the stability of a Shchipanov system of intentionally introduced small stabilizing inertialities,” LIAIS, vol. 20, no. 6, pp. 79–83, 1987.

    Google Scholar 

  62. E.M. Solnechnyi, “Conditions of stability and robustness of a single-channel invariant system of any order,” ARC, vol. 49, no. 7, pp. 864–873, 1988.

    MathSciNet  MATH  Google Scholar 

  63. R.O. Spas’kyy, “Absolute invariance conditions for nonlinear systems of differential equations,” SAC, vol. 14, no. 4, pp. 39–44, 1969.

    MathSciNet  Google Scholar 

  64. A.F. Starikov, “Invariance in linear systems,” ECy, vol. 23, no. 2, pp. 131–133, 1985.

    Google Scholar 

  65. A.V. Ushakov, “Conditions of zero parametric sensitivity in the tracking problem,” ARC, vol. 42, no. 9, pp. 1157–1163, Sept. 1981.

    MATH  Google Scholar 

  66. A.V. Ushakov and A.A. Dzhamanbaev, “A geometrical approach in the problem of finding a class of regulators that ensure zero parametric sensitivity,” SJAIS vol. 20, no. 5, pp. 84-, 1987. [The author regretfully could not locate the rest of this article, it has been apparently deleted in the course of production.]

    Google Scholar 

  67. V.A. Utkin and V.I. Utkin, “Design of invariant systems by the method of separation of motions,” ARC, vol. 44, no. 12, pp. 1559–1566, Dec. 1983.

    MATH  Google Scholar 

  68. V.V. Velichenko, “The variational method in invariance theory,” SAC, vol. 5, no. 3, pp. 1–16, May/June 1972.

    MATH  Google Scholar 

  69. V.V. Velichenko, “Invariance of discontinuous systems,” ARC, no. 8, pp. 1336–1341, Aug. 1973.

    Google Scholar 

  70. A.M. Voronin, “Structural analysis of a class of invariant control systems,” SAC, vol. 3, no. 4, pp. 8–10, 1970.

    Google Scholar 

  71. M. Vukobratovic, “Invariance and sensitivity of multivariate dynamic systems,” SAC, vol. 13, no. 4, pp. 1–7, 1968.

    Google Scholar 

  72. P.KC. Wang, “Invariance, uncontrollability, and unobservability in dynamical systems,” IEEE-TAC, vol. AC-10, pp. 366–367, July 1965.

    Google Scholar 

  73. S.V. Yemel’yanov, S.K. Korovin, and B.V. Ulanov, “Control of nonstationary dynamic systems with coordinate-parametric feedback,” ECy, vol. 20, no. 6, pp. 120–130, 1982.

    MathSciNet  Google Scholar 

[K] Bounded Uncertainty and Disturbance Rejection [K1] Bounded Uncertainty

  1. M.A. Aizerman and Y.S. Pyatnitskiy, “Theory of dynamic systems which incorporate elements with incomplete information and its relation to the theory of discontinuous systems,” JFI, vol. 306, no. 6, pp. 379–408, 1978.

    MATH  Google Scholar 

  2. Y.I. Alimov, “On the application of Lyapunov’s direct method to differential equations with ambiguous right sides,” ARC, vol. 22, no. 7, pp. 713–725, July 1961.

    MathSciNet  MATH  Google Scholar 

  3. G.M. Bairn and V.T. Strashko, “A minimax approach to static plant control with incomplete information,” SAC, vol. 11, no. 5, pp. 1–6, 1978.

    Google Scholar 

  4. G.M. Bairn and V.T. Strashko, “Minimax control of multivalued controlled processes,” SAC, vol. 12, no. 3, pp. 46–55, 1979.

    Google Scholar 

  5. EA. Barbashin, “On the theory of generalized dynamical systems,” Uch. Zap. Moskov. Gosudarst. Univ. no. 135, 1949, pp. 110–133.

    Google Scholar 

  6. B.R. Barmish, “Robust solution of perturbed dynamical equations from within a convex restraint set,” IEEE-TAC, vol. AC-24, no. 6, pp. 921–926, 1979.

    Google Scholar 

  7. B.R. Barmish, “Stabilization of uncertain systems via linear control,” IEEE-TAC, vol. AC-28, no. 8, pp. 848–850, Aug. 1983.

    Google Scholar 

  8. B.R. Barmish, “Necessary and sufficient conditions for quadratic stablizability of an uncertain system,” JOTA, vol. 46, no. 4, pp. 399–408, 1985.

    MathSciNet  MATH  Google Scholar 

  9. B.R. Barmish, L.E. Blume, and S.D. Chikte, “Robustness of systems with uncertainties in the input,” JMAA, vol. 84, pp. 208–234, 1981.

    MathSciNet  MATH  Google Scholar 

  10. B.R. Barmish, M. Corless, and G. Leitmann, “A new class of stabilizing controllers for uncertain dynamical systems,” SIAM-JCO, vol. 21, no. 2, pp. 246–255, March 1983.

    MathSciNet  MATH  Google Scholar 

  11. B.R. Barmish and G. Leitmann, “On ultimate boundedness control of uncertain systems in the absence of matching assumptions,” IEEE-TAC, vol. AC-27, no. 1, pp. 153–158, Feb. 1982.

    MathSciNet  Google Scholar 

  12. B.R. Barmish, W.E. Schmitendorf, and G. Leitmann, “A note on avoidance control,” ASMEJDSMC, vol. 103, pp. 69–70, March 1981.

    MathSciNet  Google Scholar 

  13. G. Basile and G. Marro, “On the robust controlled invariant,” SCL, vol. 9, pp. 191–195, 1987.

    MATH  Google Scholar 

  14. A.S. Belen’kii, “Min-max problems with monotone functions on polyhedral sets,” ARC, vol. 43, no. 10, pp. 1304–1314, Oct. 1982.

    MathSciNet  Google Scholar 

  15. A.S. Belen’kii, “Search for min-max of two monotone functions in polyhedral set,” ARC, vol. 43, no. 11, pp. 1389–1393, Nov. 1982.

    Google Scholar 

  16. J. Bernussou, P.L.D. Peres, and J.C. Geromel, “A linear programming oriented procedure for quadratic stabilization of uncertain systems,” SCL, vol. 13, pp. 65–72, 1989.

    MathSciNet  MATH  Google Scholar 

  17. V.N. Bukov, “Optimal algorithms in problems with bounded controllable coordinates,” ECy, vol. 20, no. 2, pp. 133–140, 1982.

    Google Scholar 

  18. C.H. Chao and H.L. Stafford, “On the robustness of linear stabilizing feedback control for linear uncertain systems: Multi-input case,” JOTA, vol. 64, no. 2, pp. 229–244, 1990.

    MATH  Google Scholar 

  19. C.H. Chao and H.L. Stafford, “Necessary and sufficient condition in Lyapunov robust control: Multi-input case,” JOTA, vol. 66, no. 1, pp. 1–21, 1990.

    MATH  Google Scholar 

  20. Y.H. Chen, “Robust output feedback controller. Direct design,” IJC, vol. 46, no. 3, pp. 10831091, 1987.

    Google Scholar 

  21. Y.H. Chen, “Robust output feedback controller: Indirect design,” IJC, vol. 46, no. 3, pp. 1093–1103, 1987.

    MATH  Google Scholar 

  22. Y.H. Chen, “On the robustness of mismatched uncertain dynamical systems,” ASME-JDSMC, vol. 109, pp. 29–35, 1987.

    MATH  Google Scholar 

  23. Y.H. Chen, “Design of robust controllers for uncertain dynamical systems,” IEEE-TAC, vol. AC-33, no. 5, pp. 487–491, May 1988.

    Google Scholar 

  24. Y.H. Chen and G. Leitmann, “Robustness of uncertain systems in the absence of matching assumptions,” IJC, vol. 45, no. 5, pp. 1527–1542, 1987.

    MathSciNet  MATH  Google Scholar 

  25. M.J. Corless and G. Leitmann, “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE-TAC, vol. AC-26, no. 5, pp. 1139–1144, Oct. 1981. Erratum, ibid., vol. AC-28, no. 2, p. 249, Feb. 1983.

    MathSciNet  Google Scholar 

  26. M.J. Corless and G. Leitmann, “Controller design for uncertain systems via Lyapunov function,” in Proc. Ameri-

    Google Scholar 

  27. can Contr. Conf. pp. 2019–2025, 1988.

    Google Scholar 

  28. A.F. Filippov, “Differential equations with many-valued discontinuous right-hand side,” Soviet Mathematics, vol. 4, no. 4, pp. 941–945, 1963.

    MATH  Google Scholar 

  29. ], Differential Equations with Discontinuous Righthand Sides. Dordrecht, the Neth- erlands: Kluwer, 1988. Reviewed by S.R. Bernfeld, SIAM R., vol. 32, no. 2, pp. 312–315, 1990.

    Google Scholar 

  30. A.R. Galimidi and B.R. Barmish, “The constrained Lyapunov problem and its application to robust output feedback stabilization,” IEEE-TAC, vol. AC-31, pp. 410–419, May 1986.

    Google Scholar 

  31. F. Garofalo and G. Leitmann, “Guaranteeing ultimate boundedness and exponential rate of convergence for a class of nominally linear uncertain systems,” ASME-JDSMC, vol. 111, pp. 584–588, Dec. 1989.

    MATH  Google Scholar 

  32. D.P. Goodall and E.P. Ryan, “Feedback controlled differential inclusions and stabilization of uncertain dynamical systems,” SIAM-JCO, vol. 26, no. 6, pp. 1431–1441, 1988.

    MathSciNet  MATH  Google Scholar 

  33. G. Gu, “Stabilizability conditions of multivariable uncertain systems via output feedback control,” IEEE-TAC, vol. AC-35, no. 8, pp. 925–927, Aug. 1990.

    Google Scholar 

  34. S. Gutman, “Uncertain dynamical systems - A Lyapunov min-max approach,” IEEE-TAC, vol. AC-24, no. 3, pp. 437–443, June 1979. Correction, ibid., vol. AC-25, no. 3, p. 613, June 1980.

    Google Scholar 

  35. S. Gutman, “Synthesis of min-max strategies,” JOTA, vol. 46, no. 4, pp. 515–523, 1985.

    MATH  Google Scholar 

  36. I.-J. Ha, “New matching conditions for output regulation of a class of uncertain nonlinear systems,” IEEE-TAC, vol. AC-34, no. 1, pp. 116–119, Jan. 1989.

    Google Scholar 

  37. T.H. Hopp and W.E. Schmitendorf, “Design of a linear controller for robust tracking and model following,” ASME-JDSMC, vol. 112, pp. 552–558, Dec. 1990.

    Google Scholar 

  38. F. Jabbari and W.E. Schmitendorf, “Effects of using observers on stabilization of uncertain linear systems,” IEEE-TAC, vol. AC-38, no. 2, pp. 266–271, 1993.

    MathSciNet  Google Scholar 

  39. K. Khorasani, “Robust stabilization of non-linear systems with unmodelled dynamics,” IJC, vol. 50, no. 3, pp. 827–844, 1989.

    MathSciNet  MATH  Google Scholar 

  40. N.F. Kirichenko, “Minimax control and estimation in dynamic systems,” SAC, vol. 15, no. 1, pp. 31–39, 1982.

    MATH  Google Scholar 

  41. N.A. Lehtomaki, D.A. Castanon, B.C. Levy, G. Stein, N.R. Sandell, Jr., and M. Athans, “Robustness and modeling error characterization,” IEEE-TAC, vol. AC-29, no. 3, pp. 211–220, March 1984.

    Google Scholar 

  42. G. Leitmann, “Guaranteed ultimate boundedness for a class of uncertain linear dynamical systems,” IEEE-TAC, vol. AC-23, no. 6, pp. 1109–1110, Dec. 1978.

    Google Scholar 

  43. G. Leitmann, “Guaranteed asymptotic stability for a class of uncertain linear dynamical sys- tems,” JOTA, vol. 27, no. 1, pp. 99–106, 1979.

    MathSciNet  MATH  Google Scholar 

  44. G. Leitmann, “Guaranteed asymptotic stability for some linear systems with bounded uncertain- ties,” ASME-JDSMC, vol. 101, pp. 212–216, Sept. 1979.

    MathSciNet  MATH  Google Scholar 

  45. ], “On the efficacy of nonlinear control in uncertain linear systems,” ASME-JDSMC, vol. 102, pp. 95–102, 1981.

    Google Scholar 

  46. G. Leitmann, E.P. Ryan, and A. Steinberg, “Feedback control of uncertain systems: Robustness with respect to neglected actuator and sensor dynamics,” IJC, vol. 43, no. 4, pp. 12431256, 1986.

    Google Scholar 

  47. T.-L. Liao, L.-C. Fu, and C.-F. Hsu, “Output tracking control of nonlinear systems with mismatched uncertainties,” SCL, vol. 18, pp. 39–47, 1992.

    MathSciNet  MATH  Google Scholar 

  48. A. Linnemann, I. Postlethwaite, and B.D.O. Anderson, “Almost disturbance decoupling with stabilization by measurement feedback,” SCL, vol. 12, pp. 225–234, 1989.

    MathSciNet  MATH  Google Scholar 

  49. A. Marchand, “Sur les champs de demi-droites et les equations differentielles du premier ordre,” Bulletin de la Societe Mathematique de France, vol. 62, pp. 1–38, 1934.

    Google Scholar 

  50. A. Marchand,, “Sur les champs continus de demi-cones convexes’ et leurs integrales,” Compositio Mathematica, vol. 3, pp. 89–127, 1936.

    MathSciNet  Google Scholar 

  51. P. Myszkorowski, “Practical stabilization of a class of uncertain nonlinear systems,” SCL, vol. 18, pp. 233–236, 1992.

    MathSciNet  MATH  Google Scholar 

  52. I.R. Petersen, “Structural stabilization of uncertain systems: Necessity of the matching condition,” SIAM-JCO, vol. 23, no. 2, pp. 286–296, March 1985.

    MATH  Google Scholar 

  53. S. Phoojaruenchanachai and K. Furuta, “Memoryless stabilization of uncertain linear systems including time-varying state delays,” IEEE-TAC, vol. AC-37, no. 7, pp. 1022–1026, 1992.

    MathSciNet  Google Scholar 

  54. Z. Qu, “Robust control of a class of nonlinear uncertain systems,” IEEE-TAC, vol. AC-37, no. 9, pp. 1437–1442, 1992.

    Google Scholar 

  55. Z. Qu, “Global stabilization of nonlinear systems with a class of unmatched uncertain- ties,” SCL, vol. 18, pp. 301–307, 1992.

    MATH  Google Scholar 

  56. M.A. Rotea and P.P. Khargonekar, “Stabilization of uncertain systems with norm bounded uncertainty - A control Lyapunov function approach,” SIAM-JCO, vol. 27, no. 6, pp. 14621476, 1989.

    Google Scholar 

  57. E. Roxin, “Stability in general control systems,” JDE, vol. 1, no. 2, pp. 115–150, 1965.

    MathSciNet  MATH  Google Scholar 

  58. E. Roxin, “On generalized dynamical systems defined by contingent equations,” JDE, vol. 1, no. 2, pp. 188–205, 1965.

    MathSciNet  MATH  Google Scholar 

  59. E. Roxin, “On asymptotic stability in control systems,” Rendiconti del Circolo Matematico, di Palermo, series II, vol. XV, pp. 193–208, 1966.

    MATH  Google Scholar 

  60. W.E. Schmitendorf, “Stability controllers for uncertain linear systems with additive disturbances,” IJC, vol. 47, no. 1, pp. 85–95, 1988.

    MathSciNet  MATH  Google Scholar 

  61. W.E. Schmitendorf and B.R. Barmish, “Null controllability of linear systems with constrained controls,” SIAM-JCO, vol. 18, no. 4, pp. 327–345, 1980.

    MathSciNet  MATH  Google Scholar 

  62. J.-C. Shen, B.-S. Chen, and F.-C. Kung, “Memoryless stabilization of uncertain dynamic delay systems: Riccati equation approach,” IEEE-TAC, vol. AC-36, no. 5, pp. 638–640, 1991.

    MathSciNet  Google Scholar 

  63. S.N. Singh, “Ultimate boundedness control of uncertain robotic systems,” IJSS, vol. 17, no. 6, pp. 859–863, 1986.

    MATH  Google Scholar 

  64. H.L. Stafford and C.H. Chao, “A necessary and sufficient condition in Lyapunov robust control,” JOTA, vol. 63, no. 2, pp. 191–203, 1989.

    Google Scholar 

  65. H.L. Stafford and C.H. Chao, “On the robustness of linear stabilizing feedback control for linear uncertain sys- tems,” JOTA, vol. 63, no. 2, pp. 205–212, 1989.

    Google Scholar 

  66. J.S. Thorp and B.R. Barmish, “On guaranteed stability of uncertain linear systems via linear control,” JOTA, vol. 35, no. 4, pp. 559–579, 1981.

    MathSciNet  MATH  Google Scholar 

  67. A. Trofino Neto, J.M. Dion, and L. Dugard, “Robustness bounds for LQ regulators,” IEEE-TAC, vol. AC-37, no. 9, pp. 1373–1377, 1992.

    Google Scholar 

  68. A. Trofino Neto, J.M. Dion, and L. Dugard, “On the robustness of LQ regulators for discrete-time systems,” IEEE-TAC, vol. AC-37, no. 10, pp. 1564–1568, 1992.

    Google Scholar 

  69. S.-C. Tsay, “Robust control for linear uncertain systems via linear quadratic state feedback,” SCL, vol. 15, pp. 199–205, 1990.

    MathSciNet  MATH  Google Scholar 

  70. D.J. Wilson and G. Leitmann, “Minimax control of systems with uncertain state measurements,” AMO, vol. 2, no. 4, pp. 315–336, 1976.

    MathSciNet  Google Scholar 

  71. S.C. Zaremba, “Sur les equations au paratingent,” Bulletin des Sciences Mathematiques, (2nd series), vol. 60, pp. 139–160, 1936.

    MATH  Google Scholar 

[K] Bounded Uncertainty and Disturbance Rejection [K2] Disturbance Rejection

  1. T. Basar, “A dynamic games approach to controller design: Disturbance rejection in discrete-time,” IEEE-TAC, vol. AC-36, no. 8, pp. 936–952, 1991.

    Google Scholar 

  2. S.P. Bhattacharyya, A.C. del Nero Gomes, and J.W. Howze, “The structure of robust disturbance rejection control,” IEEE-TAC, vol. AC-28, no. 9, pp. 874–881, Sept. 1983.

    MathSciNet  Google Scholar 

  3. B.C. Chang and J.B. Pearson, Jr., “Optimal disturbance reduction in linear multivariable systems,” IEEE-TAC, vol. AC-29, pp. 880–887, Oct. 1984.

    Google Scholar 

  4. H. Chapellat and M. Dahleh, “Analysis of time-varying control strategies for optimal disturbance rejection and robustness,” IEEE-TAC, vol. AC-37, no. 11, pp. 1734–1745, 1992.

    MathSciNet  Google Scholar 

  5. C.-M. Chien and B.-C. Wang, “An SISO uncertain system designed by an equivalent disturbance attenuation method,” CTAT, vol. 6, no. 2, pp. 257–271, 1990.

    Google Scholar 

  6. C. Commault, J.-M. Dion, and A. Perez, “Disturbance rejection for structured systems,” IEEE-TAC, vol. AC-36, no. 7, pp. 884–887, 1991.

    Google Scholar 

  7. M.A. Dahleh and J.B. Pearson, Jr., 1 1 -Optimal feedback controllers for MIMO discrete-time systems,“ IEEE-TAC, vol. AC-32, pp. 314–322, April 1987.

    Google Scholar 

  8. M.A. Dahleh and J.B. Pearson, “Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization,” IEEE-TAC, vol. AC-33, no. 8, pp. 722–731, Aug. 1988. Comments, with reply, by J. Wu, IL-J. Fang, J.-Y. Li, and J.-J. Chen, ibid., vol. AC-38, no. 5, p. 831, 1993.

    MathSciNet  Google Scholar 

  9. M.A. Dahleh and J.S. Shamma, “Rejection of persistent bounded disturbances: Nonlinear controllers,” SCL, vol. 18, pp. 245–252, 1992.

    MathSciNet  MATH  Google Scholar 

  10. M.A. Dahleh, P.G. Voulgaris, and L.S. Valavani, “Optimal and robust controllers for periodic and multirate systems,” IEEE-TAC, vol. AC-37, no. 1, pp. 90–99, 1992.

    MathSciNet  Google Scholar 

  11. R.J. de Figueiredo and G. Chen, “Optimal disturbance rejection for nonlinear control systems,” IEEE-TAC, vol. AC-34, no. 12, pp. 1242–1248, Dec. 1989.

    Google Scholar 

  12. G. Deodhare and M. Vidyasagar, “Every stabilizing controller is 11-and H„-optimal,” IEEE-TAC, vol. AC-36, no. 9, pp. 1070–1073, 1991.

    MathSciNet  Google Scholar 

  13. M. Fujita, K. Uchida, and F. Matsumura, “Asymptotic H°° disturbance attenuation based on perfect observation,” IEEE-TAC, vol. AC-36, no. 7, pp. 875–880, 1991.

    MathSciNet  Google Scholar 

  14. O.M. Grasselli and S. Longhi, “Robust output regulation under uncertainties of physical parameters,” SCL, vol. 16, pp. 33–40, 1991.

    MathSciNet  MATH  Google Scholar 

  15. A. Isidori and A. Astolfi, “Disturbance attenuation and H„-control via measurement feedback in nonlinear systems,” IEEE-TAC, vol. AC-37, no. 9, pp. 1283–1293, 1992.

    MathSciNet  Google Scholar 

  16. M.H. Khammash, “Necessary and sufficient conditions for the robustness of time-varying systems with applications to sampled-data systems,” IEEE-TAC, vol. AC-38, no. 1, pp. 49–57, 1993.

    Google Scholar 

  17. E. Noldus, “Disturbance rejection using dynamic output feedback,” Proc. IEE, vol. 129, Pt. D, no. 3, pp. 76–80, May. 1982.

    Google Scholar 

  18. H. Ozbay, “On L1 optimal control,” IEEE-TAC, vol. AC-34, pp. 884–885, Aug. 1989.

    Google Scholar 

  19. P.N. Paraskevopoulos, F.N. Koumboulis, and K.G. Tzierakis, “Disturbance rejection of left-invertible systems,” Automatica, vol. 28, no. 2, pp. 427–430, 1992.

    MathSciNet  MATH  Google Scholar 

  20. A.G. Parlos, A.F. Henry, F.C. Schweppe, L.A. Gould, and D.D. Lanning, “Nonlinear multivariable control of nuclear power plants based on the unknown-but-bounded disturbance model,” IEEE-TAC, vol. AC-33, no. 2, pp. 130–137, 1988.

    Google Scholar 

  21. J.B. Pearson and B. Bamieh, “On minimizing maximum errors,” IEEE-TAC, vol. AC-35, no. 5, pp. 598–601, May 1990.

    Google Scholar 

  22. W.A. Porter, “Concerning disturbance measures in linear systems,” IEEE-TAC, vol. AC-11, pp. 532–534, July 1966.

    Google Scholar 

  23. I. Rhee and J.L. Speyer, “A game theoretic approach to a finite-time disturbance attenuation problem,” IEEE-TAC, vol. AC-36, no. 9, pp. 1021–1032, 1991.

    MathSciNet  Google Scholar 

  24. J.S. Shamma, “Performance limitations in sensitivity reduction for nonlinear plants,” SCL, vol. 17, pp. 43–47, 1991.

    MathSciNet  MATH  Google Scholar 

  25. J.S. Shamma and M. Athans, “Guaranteed properties of gain scheduled control for linear parameter-varying plants,” Automafica, vol. 27, no. 3, pp. 559–564, 1991.

    MathSciNet  MATH  Google Scholar 

  26. J.S. Shamma and MA. Dahleh, “Time-varying versus time-invariant compensation for rejection of persistent bounded disturbances and robust stabilization,” IEEE-TAC, vol. AC-36, no. 7, pp. 838–847, 1991.

    MathSciNet  Google Scholar 

  27. N. Sivashankar and P.P. Khargonekar, “Robust stability and performance analysis of sampled-data systems,” IEEE-TAC, vol. AC-38, no. 1, pp. 58–69, 1993.

    MathSciNet  Google Scholar 

  28. R.E. Skelton and G. Zhu, “Optimal L„ bounds for disturbance robustness,” IEEE-TAC, vol. AC-37, no. 10, pp. 1568–1572, 1992.

    MathSciNet  Google Scholar 

  29. A.A. Stoorvogel and J.W. van der Woude, “The disturbance decoupling problem with measurement feedback and stability for systems with direct feedthrough matrices,” SCL, vol. 17, pp. 217–226, 1991.

    MathSciNet  MATH  Google Scholar 

  30. K.C.Q. Tsai, D.M. Auslander, “A statistical methodology of designing controllers for minimum sensitivity of parameter variations,” ASME-JDSMC, vol. 110, pp. 126–133, June 1988.

    MATH  Google Scholar 

  31. P.B. Usoro, F.C. Schweppe, D.N. Wormley, and L.A. Gould, “Ellipsoidal set-theoretic control synthesis,” ASME-JDSMC, vol. 104, pp. 331–336, Dec. 1982.

    MathSciNet  MATH  Google Scholar 

  32. M. Vidyasagar, “Optimal rejection of persistent bounded disturbances,” IEEE-TAC, vol. AC-31, no. 6, pp. 527–534, June 1986.

    Google Scholar 

  33. M. Vidyasagar, “Further results on the optimal rejection of persistent bounded disturbances,” IEEE-TAC, vol. AC-36, no. 6, pp. 642–652, 1991.

    Google Scholar 

  34. S. Weiland and J.C. Willems, “Almost disturbance decoupling with internal stability,” IEEE-TAC, vol. AC-34, no. 3, pp. 277–286, March 1989.

    MathSciNet  Google Scholar 

  35. G. Zhu and R.E. Skelton, “Robust discrete controllers guaranteeing 12 and 1.. performances,” IEEE-TAC, vol. AC-37, no. 10, pp. 1620–1625, 1992.

    Google Scholar 

[L] Sensitivity Analyses in Nonlinear, Time-Varying Systems, System Sensitivity Theory - Statistically Oriented, Certain Statistical Problems, and Certain Social and Economical Matters

  1. B.D.O. Anderson and J.B. Moore, “Tolerance of nonlinearities in time-varying optimal systems,” Elect. Lea., vol. 3, no. 6, pp. 250–251, June 1967.

    Google Scholar 

  2. D.P. Atherton, H.T. Dorrah, and S.T. Nichols, “The algebra of X. matrices: An effective tool for sensitivity analysis,” IEEE-TAC, vol. AC-21, no. 6, pp. 881–882, 1976.

    Google Scholar 

  3. O. Berman, E. Modiano, and JA. Schnabel, “Sensitivity analysis and robust regression in investment performance evaluation,” IJSS, vol. 15, no. 5, pp. 481–489, 1984.

    Google Scholar 

  4. X.-R. Cao and Y.-C. Ho, “Sensitivity analysis and optimization of throughput in a production line with blocking,” IEEE-TAC, vol. AC-32, no. 11, pp. 959–967, Nov. 1987.

    Google Scholar 

  5. X.-R. Cao and Y.-C. Ho, “Estimating the sojourn time sensitivity in queueing networks using perturbation analysis,” JOTA, vol. 53, no. 3, pp. 353–375, 1987.

    MathSciNet  MATH  Google Scholar 

  6. C.G. Cassandras and S.G. Strickland, “On-line sensitivity analysis of Markov chains,” IEEE-TAC, vol. AC-34, no. 1, pp. 76–86, Jan. 1989.

    MathSciNet  Google Scholar 

  7. C.G. Cassandras and S.G. Strickland, “Observable augmented systems for sensitivity analysis of Markov and semi- Markov processes,” IEEE-TAC, vol. AC-34, no. 10, pp. 1026–1037, Oct. 1989.

    MathSciNet  Google Scholar 

  8. P.I. Dekhtyarenko and A.Z. Zakharyan, “Effect of parameter deviations of nonlinear loops on equivalent transfer function,” SAC, vol. 6, pp. 5–12, Nov./Dec. 1973.

    Google Scholar 

  9. R.M. DeSantis and W.A. Porter, “A generalized Nyquist plot and its use in sensitivity analysis,” IJSS, vol. 5, no. 12, pp. 1143–1153, 1974.

    MathSciNet  MATH  Google Scholar 

  10. D. Efthymiatos and S. Tzafestas, “A generalized sensitivity approach to feedback systems in Hilbert space,” IJSS, vol. 4, no. 1, pp. 87–95, 1973.

    MATH  Google Scholar 

  11. D.L. Erickson and F.E. Norton, “Application of sensitivity constrained optimal control to national economic policy formulation,” in Control and Dynamic Systems advances in theory and applications, vol. 9 (C.T. Leondes, Ed.). New York Academic Press, pp. 131–237, 1973.

    Google Scholar 

  12. M.A. Eyler, “Sensitivity of sample values to parameter changes,” JOTA, vol. 45, no. 1, pp. 159–163, 1985.

    MathSciNet  MATH  Google Scholar 

  13. A. Feintuch, P.P. Khargonekar, and A. Tannenbaum, “On the sensitivity minimization problem for linear time-varying periodic systems,” SIAM-JCO, voL 24, no. 5, pp. 1076–1085, 1986.

    MathSciNet  MATH  Google Scholar 

  14. I.V. Filatov and S.N. Sharov, “An investigation of parametric sensitivity of nonlinear dynamic correcting devices,” ECy, vol. 15, pp. 166–169, 1977.

    Google Scholar 

  15. A. Ford and P. Gardiner, “A new measure of sensitivity for social system simulation models,” IEEE-TSMC, vol. SMC-9, no. 3, pp. 105–114, 1979.

    Google Scholar 

  16. J.S. Gibson and L.G. Clark, “Sensitivity analysis for a class of evolution equations,” JMAA, voL 58, pp. 22–31, 1977.

    Google Scholar 

  17. W.-B. Gong, C.G. Cassandras, and J. Pan, “Perturbation analysis of a multiclass queueing system with admission control,” IEEE-TAC, vol. AC-36, no. 6, pp. 707–723, 1991.

    MathSciNet  Google Scholar 

  18. D.A. Hanson, W.R. Perkins, and J.B. Cruz, Jr., “Public investment strategies for regional development: An analysis based on optimization and sensitivity results,” IEEE-TSMC, vol. SMC-6, no. 3, pp. 165–176, March 1976.

    Google Scholar 

  19. R.J. Herbert, “Structural sensitivity of feedback controls for second-order nonlinear systems,” JOTA, vol. 30, no. 3, pp. 395–421, 1980.

    MathSciNet  MATH  Google Scholar 

  20. Y.-C. Ho, “Parametric sensitivity of a statistical experiment,” IEEE-TAC, vol. AC-24, no. 6, pp. 982–983, Dec. 1979.

    Google Scholar 

  21. J.M. Holtzman, “On using perturbation analysis to do sensitivity analysis: Derivatives versus differences,” IEEE-TAC, vol. AC-37, no. 2, pp. 243–247, 1992.

    Google Scholar 

  22. Y.B. Kadimov, E.Y. Kuliyev, and S.I. Myachin, “Some questions concerning the application of the sensitivity theory to an analysis of transient processes while simulating systems with distributed parameters on analog computers,” Proc. IFAC, voL 3 (of the 5th Congress), pp. 31.4.1–31. 4. 9, 1972.

    Google Scholar 

  23. V. Kaitala and G. Leitmann, “Stabilizing employment in a fluctuating resource economy,” JOTA, vol. 67, no. 1, pp. 1–16, 1990.

    MathSciNet  MATH  Google Scholar 

  24. K.-I. Kanatani, “Generalized global sensitivity and correlation analysis,” IC, vol. 47, pp. 3758, 1980.

    MathSciNet  Google Scholar 

  25. Y.S. Kharin, “Robustness of decision rules in the presence of errors of classification of the training sample,” ARC, vol. 44, no. 11, pp. 1470–1479, Nov. 1983.

    MathSciNet  MATH  Google Scholar 

  26. D.G. Lainiotis and F.L. Sims, “Sensitivity analysis of discrete Kalman filters,” IJC, vol. 12, no. 4, pp. 657–669, 1970.

    MATH  Google Scholar 

  27. D.H. Martin, “Prediction sensitivity to functional perturbations in modelling with ordinary differential equations,” AMO, vol. 6, pp. 123–137, 1980.

    MATH  Google Scholar 

  28. N.H. McClamroch, “Evaluation of suboptimality and sensitivity in control and filtering processes,” IEEE-TAC, vol. AC-14, pp. 282–285, June 1969.

    Google Scholar 

  29. L.H. Meyer, F.Q. Raines, T.J. Tarn, and S.K. Gupta, “Optimal coordination of aggregate stabilization policy and price controls: A sensitivity analysis,” Proc. IFAC, vol. 3 (of the 6rd Congress), pp. 62.4.1–62. 4. 8, 1975.

    Google Scholar 

  30. K.S. Miller and F.J. Murray, “A. mathematical basis for an error analysis of differential analyzers,” JMP, vol. 32, nos. 2 and 3, pp. 136–163, July/Oct. 1953.

    Google Scholar 

  31. R.W. Newcomb and B.D.O. Anderson, “A distributional approach to time-varying sensitivity,” SIAM-JAM, vol. 15, no. 4, pp. 1001–1010, 1967.

    MathSciNet  MATH  Google Scholar 

  32. W.R. Perkins and J.B. Cruz, Jr., “Sensitivity operator for linear time-varying systems,” in Sensitivity Methods in Control Theory (L. Radanovic, Ed.). New York: Pergamon Press 1966. (Proc. Int. Symp. Dubrovink, Aug. 1964.)

    Google Scholar 

  33. W.A. Porter, “Some theoretical limitations of system sensitivity reduction,” in Proc. Allerton Conf., pp. 241–251, 1965.

    Google Scholar 

  34. W.A. Porter and R.M. DeSantis, “Sensitivity analysis in multilinear systems,” IJSS, vol. 7, no. 2, pp. 191–205, 1976.

    MathSciNet  MATH  Google Scholar 

  35. J. Rootenberg and P. Courtin, “Sensitivity of optimal control systems with bang-bang control,” IJC, vol. 18, no. 3, pp. 537–543, 1973.

    MathSciNet  MATH  Google Scholar 

  36. A.P. Sage, “Sensitivity analysis in systems for planning and decision support,” JFI, vol. 312, nos. 3 /4, pp. 265–291, Sept./Oct. 1981.

    Google Scholar 

  37. F.R. Shupp, “Financing fiscal policy: A sensitivity analysis,” JFI, vol. 312, nos. 3/4, pp. 293306, Sept./Oct. 1981.

    Google Scholar 

  38. A.A. Siapkara, “Human operator system representation via cross-sensitivity minimization,” JFI, vol. 312, nos. 3/4, pp. 307–326, 1981.

    MATH  Google Scholar 

  39. L.H. Sibul, “Sensitivity analysis of linear control systems with random plant parameters,” IEEE-TAC, vol. AC-15, pp. 459–462, Aug. 1970.

    Google Scholar 

  40. P. Stavroulakis and P.E. Sarachik, “Low sensitivity feedback gains for deterministic and stochastic control systems,” IJC, vol. 19, no. 1, pp. 15–31, 1974.

    MathSciNet  MATH  Google Scholar 

  41. N. Sundararajan and J.B. Cruz, Jr., “Policy modification for macro-economic systems resulting in reduced sensitivity to parameter perturbations,” IJSS, vol. 5, no. 12, pp. 1193–1205, 1974.

    MATH  Google Scholar 

  42. S.G. Tzafestas, “Sensitivity in the decoupling of non-linear control systems,” IJC, vol. 18, no. 6, pp. 1249–1266, 1973.

    MathSciNet  MATH  Google Scholar 

  43. M. Vukobratovic, “Note on the sensitivity of non-linear dynamic systems,” IEEE-TAC, vol. AC-13, pp. 453–454, Aug. 1968.

    Google Scholar 

  44. M. Vukobratovic and D. Juricic, “Sensitivity of nonlinear systems,” ARC, no. 9, pp. 13811388, Sept. 1970.

    Google Scholar 

  45. J. Yang and HJ. Kushner, “A Monte Carlo method for sensitivity analysis and parametric optimization of nonlinear stochastic systems,” SIAM-JCO, vol. 29, no. 5, pp. 1216–1249, 1991.

    MathSciNet  MATH  Google Scholar 

  46. G.E. Young and D.M. Auslander, “A design methodology for nonlinear systems containing parameter uncertainty,” ASME-JDSMC, vol. 106, pp. 15–20, March 1984.

    MATH  Google Scholar 

  47. K.-K. D. Young, “Near insensitivity of linear feedback systems,” JFI, vol. 314, no. 2, pp. 129–142, Aug. 1982.

    Google Scholar 

  48. A.V. Yudayev, A.M. Lisitsyn, and N.P. Baranov, “Optimization of controllers with respect to minimum sensitivity to disturbances,” ECy, vol. 13, no. 1, pp. 141–145, 1975.

    Google Scholar 

[M] Sensitivity Considerations in Nonlinear Systems

  1. J.L. Aravena and W.A. Porter, “Finite memory partial inverses,” IEEE-TCAS, vol. CAS-28, pp. 287–294, April 1981.

    Google Scholar 

  2. J.L. Aravena and W.A. Porter, “System partial inverses for sensitivity, adaptivity and estimation,” JFI, vol. 312, nos. 3 /4, pp. 141–165, Sept/Oct 1981.

    Google Scholar 

  3. J.B. Cruz, D.P. Looze, and W.R. Perkins, “Sensitivity analysis of nonlinear feedback systems,” JFI, vol. 312, nos. 3 /4, pp. 199–215, Sept/Oct. 1981.

    MathSciNet  Google Scholar 

  4. S.A. Doganovskii, “Compensation of perturbations in nonlinear systems,” ARC, vol. 23, no. 6, pp. 676–690, Dec. 1962.

    Google Scholar 

  5. O.N. Fomenko, “Accuracy of nonlinear control systems with random parameters,” ECy, vol. 5, no. 1, pp. 131–138, Jan./Feb., 1967.

    Google Scholar 

  6. W. Hejmo, “Sensitivity to switching-function variations in a time-optimal positional system,” IJC, vol. 39, no. 1, pp. 19–30, 1984.

    MathSciNet  MATH  Google Scholar 

  7. E. Kreindler, “On the closed-loop sensitivity reduction of non-linear systems,” IJC, vol. 6, no. 2, pp. 171–178, 1967.

    MATH  Google Scholar 

  8. E. Kreindler, “On sensitivity of closed-loop nonlinear optimal control systems,” SIAM J. Contr. vol. 7, no. 3, pp. 512–520, Aug. 1969.

    MathSciNet  MATH  Google Scholar 

  9. E. Kreindler, “Sensitivity of time-varying linear optimal control systems,” JOTA, vol. 3, no. 2, pp. 98–106, 1969.

    MathSciNet  MATH  Google Scholar 

  10. V.A. Mayorov, Y.G. Borisenko, O.B. Kerber, V.V. Pavlov, and O.S. Yakovlev, “The problem of synthesizing a nonlinear control law,” SJAIS, vol. 21, no. 2, pp. 41–49, 1988.

    MathSciNet  Google Scholar 

  11. K. Pedersen and L. Nardizzi, “Synthesis of optimally sensitive control for systems with time-varying parameters,” IJC, vol 15, no. 1, pp. 1–20, 1972.

    MATH  Google Scholar 

  12. W.A. Porter, “Minimizing system sensitivity through feedback,” JFI, vol. 286, pp. 225–240, 1968.

    MATH  Google Scholar 

  13. W.A. Porter, “On sensitivity in multivariable non-stationary systems,” IJC, vol. 7, pp. 481–491, 1968.

    Google Scholar 

  14. W.A. Porter, “The Interrelationship between observers and system sensitivity,” IEEE-TAC, vol. AC-22, no. 2, pp. 144–146, Feb. 1977.

    Google Scholar 

  15. W.A. Porter, “Partial inverses for parameter sensitivity reduction,” ITC, vol. 29, no. 6, pp. 949–961, 1979.

    Google Scholar 

  16. S.S. Rao, T.-S. Pan, and V.B. Venkayya, “Robustness improvement of actively controlled structures through structural modifications,” AIAA J., vol. 28. no. 2, pp. 353–361, Feb. 1990.

    Google Scholar 

  17. N. Sundararajan and J.B. Cruz, Jr., “Sensitivity reduction in time-varying linear and nonlinear systems,” IJC, vol. 15, no. 5, pp. 937–943, 1972.

    MATH  Google Scholar 

  18. V.D. Tourassis and C.P. Neuman, “Robust nonlinear feedback control for robotic manipulators,” Proc. IEE, vol. 132, Pt. D, no. 4, pp. 134–143, July 1985.

    Google Scholar 

[N] Sensitivity Considerations in Discrete-Time (Digital) Systems Sensitivity Reduction of Systems with Time Lag, and Multi-Dimensional Digital Systems

  1. S. Barnett, “Insensitivity of optimal linear discrete-time regulators,” IJC, vol. 21, no. 5, pp. 843–848, 1975.

    MATH  Google Scholar 

  2. A.W. Bennett and A.P. Sage, “Discrete system sensitivity and variable increment sampling,” in Proc. Joint Auto. Contr. Conf., pp. 603–612, 1967.

    Google Scholar 

  3. G.A. Bekey and R. Tomovic, “Sensitivity of discrete systems to variation of sampling interval,” IEEE-TAC, vol. AC-11, no. 2, pp. 284–287, April 1966.

    Google Scholar 

  4. K.C. Cheok, N.K. Loh, and M.A. Zohdy, “Cost sensitivity analysis for discrete-time optimal feedback controllers with time-multiplied performance indexes,” IEEE-TAC, vol. AC-31, no. 3, pp. 262–263, March 1986.

    Google Scholar 

  5. S.-M. Chiang and Y.-P. Shih, “Low sensitivity feedback control of non-linear discrete systems,” IJC, vol 14, no. 4, pp. 659–668, 1971.

    MATH  Google Scholar 

  6. S.-M. Chiang and Y.-P. Shih, “Low-sensitivity design of optimal linear control systems with transportation lag,” Proc. IEE, vol. 120, no. 7, pp. 810–813, July 1973.

    Google Scholar 

  7. F.H. Clarke and P.R. Wolenski, “The sensitivity of optimal control problems to time delay,” SIAM-JCO, vol. 29, no. 5, pp. 1176–1215, 1991.

    MathSciNet  MATH  Google Scholar 

  8. M.A. Connor, “Minimization of performance sensitivity for time-lag systems,” IEEE-TAC, vol. AC-16, no. 5, pp. 496–497, Oct. 1971.

    Google Scholar 

  9. J.B. Cruz, Jr., “Sensitivity considerations for time-varying sampled-data feedback systems,” IRE-TAC, vol. AC-6, no. 2, pp. 228–236, 1961.

    Google Scholar 

  10. J.B. Cruz, Jr., and M.E. Sawan, “Low-sensitivity optimal feedback control for linear discrete-time systems,” IEEE-TAC, vol. AC-24, no. 1, pp. 119–122, Feb. 1979.

    Google Scholar 

  11. M.A. Dahleh and J.B. Pearson, Jr., “11-Optimal feedback controllers for MIMO discrete-time systems,” IEEE-TAC, vol. AC-32, no. 4, pp. 314–322, April 1987.

    Google Scholar 

  12. C. Foias, A. Tannenbaum, and G. Zames, “Weighted sensitivity minimization for delay systems,” IEEE-TAC, vol. AC-31, no. 8, pp. 763–766, Aug. 1986.

    MathSciNet  Google Scholar 

  13. J.S. Freudenberg and D.P. Looze, “A sensitivity tradeoff for plants with time delay,” IEEE-TAC, vol. AC-32, no. 2, pp. 99–104, Feb. 1987.

    MathSciNet  Google Scholar 

  14. S. Fukata and M. Takata, “On sampling period sensitivities of the optimal stationary sampled-data linear regulator,” IJC, vol. 29, no. 1, pp. 145–158, 1979.

    MathSciNet  MATH  Google Scholar 

  15. I. Gumowski, “Sensitivity of certain dynamic systems with respect to a small delay,” Automatica, vol. 10, pp. 659–674, 1974.

    MathSciNet  MATH  Google Scholar 

  16. S. Hara and H.-K. Sung, “Sensitivity improvement by a stable controller in SISO digital control systems,” SCL, vol. 12, pp. 123–128, 1989.

    MathSciNet  MATH  Google Scholar 

  17. K. Inoue, H. Akashi, K. Ogino, and Y. Sawaragi, “Sensitivity approaches to optimization of linear systems with time delay,” Automatica, vol. 7, pp. 671–679, 1971.

    MathSciNet  Google Scholar 

  18. T. Ishihara, “Sensitivity properties of a class of discrete-time LQG controllers with computation delays,” SCL, vol. 11, pp. 299–307, 1988.

    MathSciNet  MATH  Google Scholar 

  19. E.I. Jury and Y. Z. Tsypkin, “On the theory of discrete systems,” Automatica, vol. 7, pp. 89107, 1971.

    MathSciNet  Google Scholar 

  20. M. Koda, “Sensitivity analysis of time-delay systems,” IJSS, vol. 12, no. 11, pp. 1389–1397, 1981.

    MathSciNet  MATH  Google Scholar 

  21. A.J. Koivo, “Performance sensitivity of sampling systems–A unified approach,” JFI, vol. 287, no. 3, pp. 209–221, March 1969.

    MATH  Google Scholar 

  22. L.P. Kukhtenkov and A.I. Ruban, “The sensitivity of discontinuous systems described by differential-difference equations with lagging argument,” ECy, vol. 17, no. 6, pp. 136–141, 1979.

    MathSciNet  MATH  Google Scholar 

  23. D.P. Lindorff, “Sensitivity in sampled-data systems,” IEEE-TAC, vol. AC-8, pp. 120–125, 1963.

    Google Scholar 

  24. A. Locatelli and S. Rinaldi, “Controllability versus sensitivity in linear discrete systems,” IEEE-TAC, vol AC-15, pp. 254–255, April 1970.

    Google Scholar 

  25. S.M. Melzer and B.C. Kuo, “Sampling period sensitivity of the optimal sampled data linear regulator,” Automatica, vol. 7, pp. 367–370, 1971.

    MathSciNet  MATH  Google Scholar 

  26. C.P. Neuman and D.I. Schonbach, “Discrete weighted residual methods: A sensitive nonlinear boundary-value problem,” JOTA, vol. 22, no. 2, pp. 239–249, June 1977.

    MathSciNet  MATH  Google Scholar 

  27. L. Pandolfi and A.W. Olbrot, “On the minimization of sensitivity to additive disturbances for linear-distributed parameter MIMO feedback systems,” IJC, vol. 43, no. 2, pp. 389–399, 1986.

    MathSciNet  MATH  Google Scholar 

  28. EN. Rozenvasser, “General sensitivity equations of discontinuous systems,” ARC, no. 3, pp. 400–404, March 1967.

    Google Scholar 

  29. EN. Rozenvasser and R.M. Yusupov, “Sensitivity equations of pulse control systems,” ARC, no. 4, pp. 526–536, April 1969.

    Google Scholar 

  30. E.P. Ryan, “On the sensitivity of a time-optimal switching function,” IEEE-TAC, vol. AC-25, no. 2, pp. 275–277, April 1980.

    Google Scholar 

  31. M. Saeki, “Methods of solving a polynomial equation for an H°° optimal control problem for a single-input single-output discrete-time system,” IEEE-TAC, vol. AC-34, no. 2, pp. 166–168, Feb. 1989.

    Google Scholar 

  32. A.H. Shevelyev, “Analysis of sampled-data systems with variable parameters,” SAC, vol. 13, no. 3, pp. 14–22, 1968.

    Google Scholar 

  33. P. Stavroulakis, “Low sensitivity feedback law implementation for 2-D digital systems,” JFI, vol. 312, nos. 3 /4, pp. 217–229, Sept./Oct. 1981.

    Google Scholar 

  34. P. Stavroulakis and P.N. Paraskevopoulos, “Low-sensitivity observer-compensator design for two-dimensional digital systems,” Proc. IEE, vol. 129, Pt. D, no. 5, pp. 193–200, Sept. 1982.

    Google Scholar 

  35. P. Stavroulakis and S.G. Tzafestas, “State reconstruction in low-sensitivity design of 3dimensional systems,” Proc. lEE, vol. 130, Pt. D, no. 6, pp. 333–340, Nov. 1983.

    Google Scholar 

  36. K.L. Suryanarayanan and A.C. Soudack, “Method for the generation of sensitivity functions for nonlinear sampled-data systems,” Elect. Lett., vol. 6, no. 19, pp. 611–613, Sept. 1970.

    Google Scholar 

  37. K.E. Tait, “Sensitivity considerations and comparisons of sampling interval criteria for discrete-continuous feedback control systems,” IJC, vol. 6, no. 2, pp. 101–145, 1967.

    MathSciNet  MATH  Google Scholar 

  38. V.I. Teverovskii, “On one particular case of a sampled-data system with variable parameters which change by jumps,” ARC, vol. 21, no. 1, pp. 42–46, Aug. 1960.

    MathSciNet  Google Scholar 

  39. R. Tomovic and G.A. Bekey, “Adaptive sampling based on amplitude sensitivity,” IEEE-TAC, vol. AC-11, no. 2, pp. 282–284, April 1966.

    Google Scholar 

  40. R.K. Varshney and W.R. Perkins, “Sensitivity of linear time invariant sampled data systems to sampling period,” Automatica, vol. 10, pp. 317–319, 1974.

    MathSciNet  MATH  Google Scholar 

  41. W.-Y. Yan and J.B. Moore, “On L2-sensitivity minimization of linear state-space systems,” IEEE-TCAS, Part I, vol. CAS-39, no. 8, pp. 641–648, 1992.

    Google Scholar 

[O] Sensitivity Considerations in Distributed [Parameter] Systems

  1. S. Abu El Ata-Doss, “Cost function sensitivity to small parameter variations for a class of distributed control systems,” JMAA, vol. 72, pp. 106–113, 1979.

    MATH  Google Scholar 

  2. S. Abu El Ata-Doss, “New technique of sensitivity reduction for distributed control systems,” AMO, vol. 5, pp. 217–229, 1979.

    MATH  Google Scholar 

  3. A. Bamberger, G. Chavent, and P. Lailly, “About the stability of the inverse problem in 1-D wave equations - Application to the interpretation of seismic profiles,” AMO, vol. 5, pp. 147, 1979.

    MathSciNet  Google Scholar 

  4. C.-K. Chu and Y.-P. Shih, “Low sensitivity optimal control of a class of linear distributed systems,” IJC, vol. 16, no. 2, pp. 325–336, 1972.

    MATH  Google Scholar 

  5. J.M. Davis and W.R. Perkins, “Comparison sensitivity of distributed parameter systems,” IEEE-TAC, vol. AC-17, no. 1, pp. 100–105, Feb. 1972.

    Google Scholar 

  6. NF. Degtyareva, “Use of sensitivity functions for optimal control synthesis in systems with distributed parameters,” SA, vol. 19, no. 4, pp. 24–28, 1976.

    Google Scholar 

  7. C. Foias, A. Tannenbaum, and G. Zames, “Sensitivity minimization for arbitrary SISO distributed plants,” SCL, vol. 8, pp. 189–195, 1987.

    MathSciNet  MATH  Google Scholar 

  8. M. Kelemen, Y. Kannai, and I. Horowitz, “Arbitrarily low sensitivity (ALS) in linear distributed systems using pointwise linear feedback,” IEEE-TAC, vol. AC-35, no. 9, pp. 10711075, Sept. 1990.

    Google Scholar 

  9. T. Kobayashi, “Controllability and stabilizability of sensitivity combined systems for distributed parameter systems,” IJC, vol. 35, no. 2, pp. 309–321, 1982.

    MATH  Google Scholar 

  10. V. Komkov, “Sensitivity techniques for systems with distributed parameters,” JMAA, vol. 128, pp. 443455, 1987.

    Google Scholar 

  11. M.C.Y. Kuo and M.N.B. Ayiku, “Synthesis of low-sensitivity optimal control in distributed parameter systems,” Proc. IEE, vol. 125, no. 6, pp. 550–554, June 1978.

    MathSciNet  Google Scholar 

  12. I. Lasiecka and J. Sokolowski, “Sensitivity analysis of optimal control problems for wave equations,” SIAM-JCO, vol. 29, no. 5, pp. 1128–1149, 1991.

    MathSciNet  MATH  Google Scholar 

  13. K. Malanowski and J. Sokolowski, “Sensitivity of solutions to convex, control constrained optimal control problems for distributed parameter systems,” JMAA, vol. 120, pp. 240–263, 1986.

    MathSciNet  MATH  Google Scholar 

  14. A. Orbach and R. Fischl, “Performance index sensitivity of optimal control of first order in time-and space-distributed parameter systems,” IEEE-TAC, vol. AC-25, no. 2, pp. 314–317, April 1980.

    MathSciNet  Google Scholar 

  15. K.C. Pedersen and L.R. Nardizzi, “Optimally sensitive control for distributed parameter systems,” IJC, vol. 16, no. 4, pp. 723–735, 1972.

    MATH  Google Scholar 

  16. H.J. Perlis, “Open-loop performance index sensitivity in a class of distributed optimal water management systems,” in Proc. Joint Auto. Contr., pp. 118–123, 1973.

    Google Scholar 

  17. S. Pohjolainen, “Robust controller for systems with exponentially stable strongly continuous semigroups,” JMAA, vol. 111, pp. 622–636, 1985.

    MathSciNet  MATH  Google Scholar 

  18. W.A. Porter, “Sensitivity problems in distributive systems,” IJC, vol. 5, no. 5, pp. 393–412, 1967.

    Google Scholar 

  19. W.A. Porter, “Parameter sensitivity in distributive feedback systems,” IJC, vol. 5, no. 5, pp. 413–423, 1967.

    Google Scholar 

  20. A.I. Ruban, “Identification of distributed dynamic objects on the basis of a sensitivity algorithm,” ECy, vol. 9, no. 6, pp. 1137–1142, Nov./Dec. 1971.

    Google Scholar 

  21. J. Sokolowski, “Sensitivity analysis of control constrained optimal control problems for distributed parameter systems,” SIAM-JCO, vol. 25, no. 6, pp. 1542–1556, 1987.

    MathSciNet  MATH  Google Scholar 

  22. J. Sokolowski, “Shape sensitivity analysis of boundary optimal control problems for parabolic systems,” SIAM-JCO, vol. 26, no. 4, pp. 763–787, 1988.

    MathSciNet  MATH  Google Scholar 

  23. J. Sokolowski and J.P. Zolesio, “Shape design sensitivity analysis of plates and plane elastic solids under unilateral constraints,” JOTA, vol. 54, no. 2, pp. 361–382, 1987.

    MathSciNet  MATH  Google Scholar 

  24. S.G. Tzafestas, “Eigenvalue and eigenfunction sensitivity of distributed-parameter systems (DPS),” IEEE-TAC, vol, AC-20, no. 1, pp. 172–174, 1975.

    Google Scholar 

  25. S.G. Tzafestas, “Sensitivity functions of distributed parameter eigenvalue control systems,” Elect. Leu., vol. 12, no. 1, pp. 4–6, Jan. 1976.

    MathSciNet  Google Scholar 

  26. S.G. Tzafestas, “Eigenvalue control in distributed-parameter systems with parameter variations,” Proc. IEEE, vol. 64, no. 9, pp. 1444–1446, Sept. 1976.

    Google Scholar 

  27. S.G. Tzafestas and P.N. Paraskevopoulos, “Sensitive decoupling control of linear distributed-parameter systems,” IEEE-TAC, vol. AC-20, no. 1, pp. 151–153, Feb. 1975.

    MathSciNet  Google Scholar 

[P] Sensitivity Issues in Selected Multidisciplinary Optimization Methods, and Numerical Methods

  1. D. Aze and M. Volle, “A stability result in quasi-convex programming,” JOTA, vol. 67, no. 1, pp. 175–184, 1990.

    MathSciNet  MATH  Google Scholar 

  2. J.-F. M. Barthelemy and J. Sobieszczanski-Sobieski, “Optimum sensitivity derivatives of objective functions in nonlinear programming,” AIAA J., vol. 21, no. 6, pp. 913–915, June 1983.

    MathSciNet  MATH  Google Scholar 

  3. R.G. Batson, “Extensions of Radstrom’s lemma with application to stability theory of mathematical programming,” JMAA, vol. 117, pp. 441–448, 1986.

    MathSciNet  MATH  Google Scholar 

  4. C.S. Berger, “Numerical method for the design of insensitive control systems,” Proc. IEE, voL 120, no. 10, pp. 1283–1292, Oct. 1973.

    Google Scholar 

  5. C.S. Berger, “Numerical comparison of two methods of designing insensitive controllers,” Elect. Lett., vol. 11, no. 20, pp. 489–490, Oct. 1975.

    Google Scholar 

  6. M.J. Best and N. Chakravarti, “Stability of linearly constrained convex quadratic programs,” JOTA, vol. 64, no. 1, pp. 43–53, 1990.

    MathSciNet  MATH  Google Scholar 

  7. J.H. Bigelow and N.Z. Shapiro, “Optimization problems with large parameters,” SIAM-JAM, vol. 24, no. 2, pp. 152, 163, March 1973.

    Google Scholar 

  8. R.N. Buie and J. Abraham, “Post-optimality sensitivity analysis in abstract spaces with applications to continuous-time programming problems,” JOTA, vol. 45, no. 3, pp. 347–373, 1985.

    MATH  Google Scholar 

  9. J.D. Buys and R. Gonin, “The use of augmented Lagrangian functions for sensitivity analysis in nonlinear programming,” MP, vol. 12, no. 2, p. 281–284, 1977.

    MathSciNet  MATH  Google Scholar 

  10. R. Byers, “A Hamiltonian QR algorithm,” SIAM-JSSC, vol. 7, no. 1, pp. 212–229, 1986.

    MathSciNet  MATH  Google Scholar 

  11. R. Byers, “A bisection method for measuring the distance of a stable matrix to the unstable matrices,” SIAM-JSSC, vol. 9, no. 5, pp. 875–881, 1988.

    MathSciNet  MATH  Google Scholar 

  12. D. Chenais, “Optimal design of midsurface of shells: Differentiability proof and sensitivity computation,” AMO, vol. 16, pp. 93–133, 1987.

    MathSciNet  MATH  Google Scholar 

  13. F.H. Clarke and P.D. Loewen, “The value function in optimal control: sensitivity, controllability, and time-optimality,” SIAM-JCO, vol. 24, no. 2, pp. 243–263, 1986.

    MathSciNet  MATH  Google Scholar 

  14. W. Cook, A.M.H. Gerards, A. Schrijver, and E. Tardos, “Sensitivity theorems in integer linear programming,” MP, vol. 34, pp. 251–264, 1986.

    MathSciNet  MATH  Google Scholar 

  15. S. Dafermos and A. Nagurney, “Sensitivity analysis for the asymmetric network equilibrium problem,” MP, vol. 28, pp. 174–184, 1984.

    MathSciNet  MATH  Google Scholar 

  16. A. Dax, “The smallest point of a polytope,” JOTA, vol. 64, no. 2, pp. 429–432, 1990.

    MathSciNet  MATH  Google Scholar 

  17. A. Deif, Sensitivity Analysis in Linear Systems. New York: Springer - Verlag, 1986.

    MATH  Google Scholar 

  18. R.S. Dembo, “Sensitivity analysis in geometric programming,” JOTA, vol. 37, no. 1, pp. 1–21, 1982.

    MATH  Google Scholar 

  19. J.W. Demmel, “A counterexample for two conjectures about stability,” IEEE-TAC voL AC-32, pp. 340–342, April 1987. [cf., [74].]

    Google Scholar 

  20. A.H. Evers, “Sensitivity analysis in dynamic optimization,” JOTA, vol. 32, no. 1, pp. 17–37, 1980.

    MATH  Google Scholar 

  21. S.D. Fassois, K.F. Eman, and S.M. Wu, “Sensitivity analysis of the discrete-to-continuous dynamic system transformation,” ASME-JDSMC, vol. 112, pp. 1–9, March 1990.

    MATH  Google Scholar 

  22. A.V. Fiacco, “Sensitivity analysis for nonlinear programming using penalty methods,” MP, vol. 10, no. 3, pp. 287–311, 1976. Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. New York: Academic Press, 1983. Reviewed by C.E. Lemke, SIAM R., vol. 27, no. 1, pp. 114115, 1985.

    Google Scholar 

  23. A.V. Fiacco, Ed., Sensitivity, Stability, and Parametric Analysis. ( A publication of the Mathematical Programming Society.) Amsterdam: North-Holland, 1984.

    MATH  Google Scholar 

  24. P.M. Gahinet, A.J. Laub, C.S. Kenney, and GA. Hewer, “Sensitivity of the stable discrete-time Lyapunov equation,” IEEE-TAC, vol. AC-35, no. 11, pp. 1209–1217, Nov. 1990.

    MathSciNet  Google Scholar 

  25. F.W. Gembicki and Y.Y. Haimes, “Approach to performance and sensitivity multiobjective optimization: The goal attainment method,” IEEE-TAC, vol. AC-20, no. 6, pp. 769–771, 1975.

    Google Scholar 

  26. H. Gerencser, “Stability theorems for 2x2 hypermatrices,” JOTA, vol. 35, no. 1, pp. 1–7, 1981.

    MathSciNet  MATH  Google Scholar 

  27. J.M. Goethals, “Le controle des erreurs dans les transmissions numeriques,” Automatisme, vol. XIX, no. 1, pp. 17–23, 1974.

    Google Scholar 

  28. P.H. Hammond and M.J. Duckenfield, “Automatic optimization by continuous perturbation of parameters,” Automatica, vol. 1, pp. 147–175, 1963.

    Google Scholar 

  29. G. Hewer and C. Kenney, “The sensitivity of the stable Lyapunov equation,” SIAM-JCO, vol. 26, no. 2, pp. 321–344, 1988.

    MathSciNet  MATH  Google Scholar 

  30. W.J. Hopp, “Sensitivity analysis in discrete dynamic programming,” JOTA, vol. 56, no. 2, pp. 257–269, 1988.

    MathSciNet  MATH  Google Scholar 

  31. R.H.F. Jackson and G.P. McCormick, “Second-order sensitivity analysis in factorable programming: Theory and applications,” MP, vol. 41, pp. 1–27, 1988.

    MathSciNet  MATH  Google Scholar 

  32. R. Janin, “On sensitivity in an optimal control problem,” JMAA, vol. 60, no. 3, pp. 631–657, Oct. 1977.

    MathSciNet  MATH  Google Scholar 

  33. V.M. Karas, “Stability of approximate solutions of the graph partitioning problem,” SJAIS, vol. 20, no. 3, pp. 55–59, 1987.

    MathSciNet  MATH  Google Scholar 

  34. V.A. Kas’yanov and Y.P. Udartsev, “Increasing the stability of estimates by the least squares methods,” SJAIS, vol. 20, no. 3, pp. 44–48, 1987.

    MathSciNet  MATH  Google Scholar 

  35. C. Kenney and G. Hewer, “The sensitivity of the algebraic and differential Riccati equations,” SIAM-JCO, vol. 28, no. 1, pp. 50–69, Jan. 1990.

    MathSciNet  MATH  Google Scholar 

  36. S.W. Kim, P.G. Park, and W.H. Kwon, “Lower bounds for the trace of the solution of the discrete algebraic Riccati equation,” IEEE-TAC, vol. AC-38, no. 2, pp. 312–314, 1993.

    Google Scholar 

  37. V.G. Kolobov, “A method for increasing the stability of the numerical solution of differential equation systems,” SJAIS, vol. 22, no. 3, pp. 74–81, 1989.

    MathSciNet  MATH  Google Scholar 

  38. N. Komaroff, “Upper bounds for the solution of the discrete Riccati equation,” IEEE-TAC, vol. AC-37, no. 9, pp. 1370–1373, 1992.

    Google Scholar 

  39. N. Komaroff and B. Shahian, “Lower summation bounds for the discrete Riccati and Lyapunov equations,” IEEE-TAC, vol. AC-37, no. 7, pp. 1078–1080, 1992.

    MathSciNet  Google Scholar 

  40. M.M. Konstantinov and G.B. Pelova, “Sensitivity of the solutions to differential Riccati equations,” IEEE-TAC, vol. AC-36, no. 2, pp. 213–215, 1991.

    MathSciNet  Google Scholar 

  41. V.S. Kouikoglou and Y.A. Phillis, “Trace bounds on the covariance of continuous-time systems with multiplicative noise,” IEEE-TAC, vol. AC-38, no. 1, pp. 138–142, 1993.

    MathSciNet  Google Scholar 

  42. V.Y. Krivonozhko and A.I. Propoy, “The method of successive improvement of control in dynamic linear programming problems. I,” ECy, vol. 16, no. 3, pp. 1–12, 1978.

    MathSciNet  Google Scholar 

  43. J. Kyparisis, “Sensitivity analysis in posynomial geometric programming,” JOTA, vol. 57, no. 1, pp. 85–121, 1988.

    MathSciNet  MATH  Google Scholar 

  44. K. Malanowski, “Differential stability of solutions to convex, control constrained optimal control problems,” AMO, vol. 12, pp. 1–14, 1984.

    MathSciNet  MATH  Google Scholar 

  45. K. Malanowski, “Stability and sensitivity of solutions to optimal control problems for systems with control appearing linearly,” AMO, vol. 16, pp. 73–91, 1987.

    MathSciNet  MATH  Google Scholar 

  46. K. Malanowski, “Differential sensitivity of solutions of convex constrained optimal control prob- lems for discrete systems,” JOTA, vol. 53, no. 3, pp. 429–449, 1987.

    MathSciNet  MATH  Google Scholar 

  47. K. Malanowski, “Sensitivity analysis of optimization problems in Hilbert space with application to optimal control,” AMO, vol. 21, pp. 1–20, 1990.

    MathSciNet  MATH  Google Scholar 

  48. V.V. Mal’tsev, “Sufficient conditions for e-sensitivity in mathematical programming problems,” SAC, vol. 12, no. 5, pp. 35–39, 1979.

    MathSciNet  MATH  Google Scholar 

  49. J.M. Martin and G.A. Hewer, “Smallest destablizing perturbations for linear systems,” ITC, vol. 45, no. 5, pp. 1495–1504, 1987. Comments by C.B. Soh, ibid., vol. 49, no. 5, pp. 18131814, 1989.

    Google Scholar 

  50. T. Masuda, “Hierarchical sensitivity analysis of priority used in analytic hierarchy process,” IJSS, vol. 21, no. 2, pp. 415–427, 1990.

    MathSciNet  MATH  Google Scholar 

  51. V.S. Mel’nik, “Nonconvex optimization problems for quasilinear distributed-parameter systems,” SJAIS, vol. 21, no. 2, pp. 80–83, 1988.

    MathSciNet  MATH  Google Scholar 

  52. M. Mrabti and A. Hmamed, “Bounds for the solution of the Lyapunov matrix equation–A unified approach,” SCL, vol. 18, pp. 73–81, 1992.

    MathSciNet  MATH  Google Scholar 

  53. P.H. Naccache, “Stability in multicriteria optimization,” JMAA, vol. 68, pp. 441–453, 1979.

    MathSciNet  MATH  Google Scholar 

  54. A. Neumaier, “Rigorous sensitivity analysis for parameter-dependent systems of equations,” JMAA, vol. 144, pp. 16–25, 1989.

    MathSciNet  MATH  Google Scholar 

  55. K.C. Park and J.C. Chiou, “Stabilization of computational procedures for constrained dynamical systems,” JGCD, vol. 11, no. 4, pp. 365–370, 1988.

    MathSciNet  MATH  Google Scholar 

  56. D.W. Peterson, “On sensitivity in optimal control problems,” JOTA, vol. 13, no. 1, pp. 56–73, 1974.

    MATH  Google Scholar 

  57. B.D. Prudovskiy, “Stability of solutions in certain nonlinear optimization problems,” ECy, vol. 17, no. 1, pp. 151–153, 1979.

    Google Scholar 

  58. V. Rupnik, “Stability conditions on continuous dynamic linear programming,” JMAA, vol. 119, pp. 171–181, 1986.

    MathSciNet  MATH  Google Scholar 

  59. J.K. Sengupta, “Sensitivity analysis for a linearized method of geometric programming,” IJSS, vol. 8, no. 2, pp. 153–161, 1977.

    Google Scholar 

  60. A. Shapiro, “Second order sensitivity analysis and asymptotic theory of parameterized nonlinear programs,” MP, vol. 33, pp. 280–299, 1985.

    MATH  Google Scholar 

  61. A. Shapiro, “Sensitivity analysis of nonlinear programs and differentiability properties of metric projections,” SIAM-JCO, vol. 26, pp. 628–645, 1988.

    MATH  Google Scholar 

  62. A. Shapiro, “Perturbation theory of nonlinear programs when the set of optimal solutions is not a singleton,” AMO, vol. 18, pp. 215–229, 1988.

    MATH  Google Scholar 

  63. A. Shapiro, “On concepts of directional differentiability,” JOTA, vol. 66, no. 3, pp. 477–487, 1990.

    MATH  Google Scholar 

  64. S. Shiraishi, “First-order and second-order c-directional derivatives of a marginal function in convex programming with linear inequality constraints,” JOTA, vol. 66, no. 3, pp. 489–502, 1990.

    MathSciNet  MATH  Google Scholar 

  65. J. Sokolowski, “Sensitivity analysis of contact problems with prescribed friction,” AMO, vol. 18, pp. 99–117, 1988.

    MathSciNet  MATH  Google Scholar 

  66. A.M. Steinberg, “Application of relaxed solutions to minimum sensitivity optimal control,” JOTA, vol. 10, no. 4, pp. 178–186, 1972.

    MATH  Google Scholar 

  67. T. Tanino, “Stability and sensitivity analysis in convex vector optimization,” SIAM-JCO, vol. 26, no. 3, pp. 521–536, 1988.

    MathSciNet  MATH  Google Scholar 

  68. T. Tanino, “Sensitivity analysis in multiobjective optimization,” JOTA, vol. 56, no. 3, pp. 479–499, 1988.

    MathSciNet  MATH  Google Scholar 

  69. R.L. Tobin, “Sensitivity analysis for variational inequalities,” JOTA, vol. 48, no. 1, pp. 191204, 1986.

    Google Scholar 

  70. M.D. Troutt, “A stability concept for matrix game optimal strategies and its application to linear programming sensitivity analysis,” MP, vol. 36, pp. 353–361, 1986.

    MathSciNet  MATH  Google Scholar 

  71. K.C.Q. Tsai, D.M. Auslander, “A statistical methodology of designing controllers for minimum sensitivity of parameter variations,” ASME-JDSMC, voL 110, pp. 126–133, June 1988.

    MATH  Google Scholar 

  72. C. Van Loan, “How near is a stable matrix to an unstable matrix,” in Linear Algebra and Its Role in Systems Theory, in Proc. AMS-IMS-SIAM Conf. held July 29 to Aug. 4, 1984 (R.A. Brualdi, et al. Eds.), Contemporary Mathematics, American Mathematical Society vol. 47, pp. 465–478, 1985. [cf., [20].]

    Google Scholar 

  73. J. Varah, “On the separation of two matrices,” SIAM-JNA, vol. 16, pp. 216–222, 1979.

    MathSciNet  MATH  Google Scholar 

  74. R.B. Vinter, “Optimality and sensitivity of discrete time processes,” CCy, vol. 17, nos. 2/3, pp. 191–211, 1988.

    MathSciNet  MATH  Google Scholar 

  75. W. Von Dinkelbach, Sensitivitatsanalysen und parametrische Programmierung. Berlin: Springer–Verlag, 1969. Reviewed by S.I. Gass, SIAM R., vol. 12, no. 1, pp. 165–166, 1970.

    MathSciNet  Google Scholar 

  76. A.N. Voronin, “A multicriteria variational problem for deterministic and statistically specified actions,” SJAIS, vol. 21, no. 5, pp. 37–42, 1988.

    MathSciNet  MATH  Google Scholar 

  77. A.N. Voronin and V.V. Pavlov, “Solution of multicriterial variational problems under indeterminacy conditions,” SJAIS, vol. 21, no. 2, pp. 23–31, 1988.

    MathSciNet  MATH  Google Scholar 

  78. K. Watanabe and H. Shimizu, “Parameter optimizing software system using Pade’s computation method of transient response,” EEJ, vol. 95, no. 2, pp. 119–125, March/April 1975.

    Google Scholar 

  79. P. Whittle, “Entropy-minimising and risk-sensitive control rules,” SCL, vol. 13, pp. 1–7, 1989.

    MathSciNet  MATH  Google Scholar 

  80. P. Whittle, “A risk-sensitive maximum principle,” SCL, vol. 15, pp. 183–192, 1990.

    MathSciNet  MATH  Google Scholar 

  81. P. Whittle, “A risk-sensitive maximum principle: The case of imperfect state observation,” IEEE-TAC, vol. AC-36, no. 7, pp. 793–801, 1991.

    Google Scholar 

  82. P. Whittle and J. Kuhn, “A Hamiltonian formulation of risk-sensitive linear/quadratic/Gaussian control,” IJC, vol. 43, no. 1, pp. 1–12, 1986.

    MathSciNet  MATH  Google Scholar 

  83. L.A. Wolsey, “Integer programming duality: Price functions and sensitivity analysis,” MP, vol. 20, pp. 173–195, 1981.

    MathSciNet  MATH  Google Scholar 

  84. J.-H. Xu and R.E. Skelton, “An improved covariance assignment theory for discrete systems,” IEEE-TAC, vol. AC-37, no. 10, pp. 1588–1591, 1992.

    Google Scholar 

  85. J. Zowe and S. Kurcyusz, “Regularity and stability for the mathematical programming problem in Banach spaces,” AMO, vol. 5, pp. 49–62, 1979.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eslami, M. (1994). Sensitivity Reduction and Robustness. In: Theory of Sensitivity in Dynamic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01632-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01632-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01634-3

  • Online ISBN: 978-3-662-01632-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics