Skip to main content

Certain Variational Principles with No Constraints for Fluid-Solid Strong Interaction

  • Conference paper
Finite Elements in Water Resources

Abstract

The classical variational principles of fluid-solid interaction impose certain constraint as well as stringent interface conditions. The conditions which are often undesirable in obtaining approximate direct solutions are relaxed through Friedrichs’s transformation. Hence, the unconstrained variational principles are formulated which yield, as the Euler equations, all the fundamental equations of a viscous incompressible fluid and an anisotropic elastic solid immersed within the fluid of finite extent, and their interface continuity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Connor, J.J. and Brebbia, C.A. (1977) Finite Element Techniques for Fluid Flow. London: Newness-Butterwh. Courant, R. and Hilbert, D. (1953) Methods of Mathematical Physics. New York: Interscience Publishers Craggs, P. (1971) The Transient Response of a Coupled Plate-Acoustic System Using Plate and Acoustic Finite Elements. J. Sound Vibration, 15, 509–528.

    Google Scholar 

  • Dökmeci, 11.C. (1973) A Generalized Variational Theorem in Elastodynamics, with Application to Shell Theory. Meccanica, 8, 4: 252–260.

    Article  MATH  Google Scholar 

  • Dökmeci, N.C. (1977) Hydroelastodynamics. Lecture notes at Istanbul Technical University.

    Google Scholar 

  • Dökmeci, P.C. (1979) Dynamic Variational Principles for Discontinuous Elastic Fields. J. Ship Research, 23, 2: 115–122.

    Google Scholar 

  • Dökmeci, P.C. (1980) Recent Advances: Vibrations of Piezoelectric Crystals. Int. J. Engng. Science, 10, 3: 431–448.

    Article  Google Scholar 

  • Dökmeci, M.C. and Sarigül, N. (1982) Certain Variational Principles for Viscous Incompressible Fluids. To appear.

    Google Scholar 

  • Dökmeci, P.C. and Sarigül, N. (1982b) A Variational Principle for Fluid-Solid Interaction. To appear. Finlayson, B.A. (1972) Existence of Variational Principles for the Navier-Stokes Equation. Physics of Fluids, 15, 963–967.

    Google Scholar 

  • Gears, T.L. and Oelytschko, T., Edt. (1977) Computational Methods for Fluid-Structure Interaction Problems. New York: ASf; 1E.

    Google Scholar 

  • Gladwell, G.M.L. (1966) A Variational Formulation of Damped Acousto-structural Vibration Problems. J. Sound Vibration, 4, 172–186.

    Article  MATH  Google Scholar 

  • Gladwell, G.M.L. and mason, V. (1971) Variational Finite Element Calculation of the Acoustic Response of a Rectangular Panel. J. Sound Vibration, 14, 115–35.

    Article  MATH  Google Scholar 

  • Gladwell, G.P.L. and Zimmermann, G. (1966) On Energy and Complementary Energy Formulations of Acoustic and Structural Vibration Problems. J. Sound Vibration, 3, 233–241.

    Article  MATH  Google Scholar 

  • Green, A.E. and Zerna, W. (1954) Theoretical Elasticity. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Gurtin, P.E. (1963) Variational Principles in the Linear Theory of Viscoelasticity. Arch. Rational Mech. Anal., 13, 179–191.

    Google Scholar 

  • Curtin, M.E. (1972) The Linear Theory of Elasticity. Handbuch der Physik, VIa/2, 1–295. Berlin: S. VerIag. 2–110

    Google Scholar 

  • Hamdi, M.A., Ousset, Y. and Verchery, G. (1978) Displacement Method for the Analysis of Vibrations of Coupled Fluid-Structure Systems. Int. J. Num. Meth. Engng., 13, 139–150.

    Google Scholar 

  • Lanczos, C. (1952) The Variational Principles of Mechanics. Toronto: University of Toronto Press. Landau, L.D. and Lifshitz, E.M. ( 1959 ) Fluid Mechanics. London: Pergamon Press.

    Google Scholar 

  • Mason, W.P. (1966) Crystal Physics of Interaction Processes. New York: Academic Press.

    Google Scholar 

  • Millikan, C.B. (1929) On the Steady Motion of Viscous Incompressible Fluids; with Particular Reference to a Variation Principle. Phil Mag. 7, 4: 641–662.

    MATH  Google Scholar 

  • Morand, H. and Ohayon, R. (1978) Substructure Variational Analysis of the Vibrations of Coupled Fluid-Structure Systems. Finite Element Results. Int. J. Num. Meth. Engng., 14, 741–755.

    Google Scholar 

  • Nickell, R.E. (1975) Applications of the Finite Element Method in Solid Mechanics, Fluid Mechanics, and Heat Transfer. Developments in Mechanics, 8, 599626. Norman, Oklahoma: University of Oklahoma Press. Oden, J.T. and Reddy, J.N. (1976) Variational Methods in Theoretical Mechanics. Berlin: Springer-Verl. Sarigül, N. and Dökmeci, M.C. (1980) Variational Principles for Fluid-Solid Interactions, with Application to Ship Beams. J. Acoust. Soc. Amer., 68,5116 Simkins, T.E. (1981) Finite Elements for Initial Value Problems in Dynamics. AIAA J., 19, 10: 1357–62.

    Google Scholar 

  • Synge, J.L. and Schild, A. (1949) Tensor Calculus. Toronto: University of Toronto Press.

    Google Scholar 

  • Tiersten, H.F. (1968) Natural Boundary and Initial Conditions from a Modification of Hamilton’s Principle. J. Bath. Phys., 9, 9: 1445–1451.

    MATH  Google Scholar 

  • Tong, P. (1971) The Finite Element Method for Fluid Flow. Advances in Matrix Methods of Structural Analysis and Design, 787–808. Huntsville, Alabama: University of Alabama Press.

    Google Scholar 

  • Truesdell, C. and Toupin, R.A. (1960) The Classical Field Theories. Handbuch der Physik, III/1, 226–793. Berlin: Springer-Verlag.

    Google Scholar 

  • Wu, J.J. (1977) Solutions to Initial Value Problems by Use of Finit@ Elements-Unconstrained Variational Formulations. J. Sound Vibration, 53, 341–356.

    Article  MATH  Google Scholar 

  • Zarda, P.R., Chien, S. and Skalak, R. (1977) Interaction of Viscous Incompressible Fluid with an Elastic Body. Computational Methods for Fluid-Structure Interaction Problems, 65–82. New York: ASME. Zienkiewicz, O.C. and Newton, R.E. (1969) Coupled

    Google Scholar 

  • Vibrations of a Structure Submerged in a Compressible Fluid. Finite Element Techniques, 359–379. Stuttgart: Inst. Statik Dynamik.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarigül, N., Dökmeci, M.C. (1982). Certain Variational Principles with No Constraints for Fluid-Solid Strong Interaction. In: Holz, K.P., Meissner, U., Zielke, W., Brebbia, C.A., Pinder, G., Gray, W. (eds) Finite Elements in Water Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02348-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02348-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02350-1

  • Online ISBN: 978-3-662-02348-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics