Skip to main content

Scale-Space for N-Dimensional Discrete Signals

  • Conference paper
Shape in Picture

Part of the book series: NATO ASI Series ((NATO ASI F,volume 126))

Abstract

This article shows how a (linear) scale-space representation can be defined for discrete signals of arbitrary dimension. The treatment is based upon the assumptions that (i) the scale-space representation should be defined by convolving the original signal with a one-parameter family of symmetric smoothing kernels possessing a semi-group property, and (ii) local extrema must not be enhanced when the scale parameter is increased continuously.

It is shown that given these requirements the scale-space representation must satisfy the differential equation \({\partial _t}L = {A_{ScSp}}L\) for some linear and shift invariant operator \({A_{ScSp}}\) satisfying locality, positivity, zero sum, and symmetry conditions. Examples in one, two, and three dimensions illustrate that this corresponds to natural semi-discretizations of the continuous (second-order) diffusion equation using different discrete approximations of the Laplacean operator. In a special case the multidimensional representation is given by convolution with the one-dimensional discrete analogue of the Gaussian kernel along each dimension.

The support from the Swedish National Board for Industrial and Technical Development, NUTEK, is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A. (1964). Handbook of Mathematical Functions, Applied Mathematics Series 55, National Bureau of Standards.

    Google Scholar 

  2. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O. (1986). Uniqueness of the Gaussian kernel for scale-space filtering, IEEE Trans. Patt. Anal. Mach. Intell. 8 (1), pp. 26–33.

    Article  MATH  Google Scholar 

  3. Burt, P.J., Adelson, E.H. (1983). The Laplacian pyramid as a compact image code, IEEE Trans. Comm. 9 (4), pp. 532–540.

    Article  Google Scholar 

  4. Crowley, J.L., Stern, R.M. (1984). Fast computation of the difference of low pass transform, IEEE Trans. Patt. Anal. Mach. Intell. 6, pp. 212–222.

    Article  MATH  Google Scholar 

  5. Dahlquist, G., Björk, A., Anderson, N. (1974). Numerical Methods, Prentice-Hall.

    Google Scholar 

  6. Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A. (1992). Scale-space: its natural operators and differential invariants, Image and Vision Computing 10 (6), pp. 376–388.

    Article  Google Scholar 

  7. Hille, E., Phillips, R.S. (1957). Functional Analysis and Semi-Groups, Am. Math. Soc. Coll. Publ., Vol. X XXI.

    Google Scholar 

  8. Karlin, S. (1968). Total Positivity, Vol. I, Stanford Univ. Press.

    MATH  Google Scholar 

  9. Koenderink, J.J. (1984). The structure of images, Biol. Cybern. 50, pp. 363–370.

    Article  MathSciNet  MATH  Google Scholar 

  10. Koenderink, J.J., van Doom, A.J. (1990). Receptive field families, Biol. Cybern. 63, pp. 291–297.

    Article  MATH  Google Scholar 

  11. Lifshitz, L.M., Pizer, S.M. (1987). A multiresolution hierarchical approach to image segmentation based on intensity extrema, Technical report, Depts. Comp. Sci. and Radiology, Univ. North Carolina, Chapel Hill, N.C., USA

    Google Scholar 

  12. Lindeberg, T.P. (1990). Scale-space for discrete signals, IEEE Trans. Patt. Anal. Mach. Intell. 12 (3), pp. 234–254.

    Article  Google Scholar 

  13. Lindeberg, T.P. (1991). Discrete Scale-Space Theory and the Scale-Space Primal Sketch, Ph.D. Thesis, ISRN KTH/NA/P-91/8-SE, Dept. Num. Anal. Comp. Sci., Royal Inst. Tech., S-100 44 Stockholm, Sweden. A revised and extended version to appear in The Kluwer International Series in Engineering and Computer Science.

    Google Scholar 

  14. Lindeberg, T.P. (1992). Scale-space behaviour of local extrema and blobs, J. Math. Imaging Vision 1, pp. 65–99.

    Article  MathSciNet  Google Scholar 

  15. Lindeberg, T.P. (1993). Discrete derivative approximations with scale-space properties, J. Math. Imaging and Vision, to appear.

    Google Scholar 

  16. Lindeberg T.P. (1993). Scale-space behaviour and invariance properties of differential singularities, this volume, pp. 591–600.

    Google Scholar 

  17. Mallat, S.G. (1989). A theory of multiresolution signal processing: The wavelet representation, IEEE Trans. Patt. Anal. Mach. Intell. 11 (6), pp. 674–693.

    Article  MATH  Google Scholar 

  18. Nordström, N. (1990). Biased anisotropic diffusion - A unified regularization and diffusion approach to edge detection. In: Faugeras, O. (ed.), Proc 1st Eur. Conf. Comp. Vision, Antibes, France, Apr. 23–37, pp. 18–27, Springer-Verlag.

    Google Scholar 

  19. Perona, P., Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Patt. Anal. Mach. Intell. 12 (7), pp. 629–639.

    Article  Google Scholar 

  20. Widder, D.V. (1975). The Heat Equation, Academic Press, New York.

    MATH  Google Scholar 

  21. Witkin, A.P. (1983). Scale-space filtering, Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany, Aug. 8–12, pp. 1019–1022.

    Google Scholar 

  22. Yuille, A., Poggio, T. (1986). Scaling theorems for zero-crossings, IEEE Trans. Patt. Anal. Mach. Intell. 9 (1), pp. 15–25.

    Article  Google Scholar 

  23. Yuille, A.L. (1988). The creation of structure in dynamic shape, Proc 2nd Int. Conf. Comp. Vision, Tampa, Florida, Dec. 5–8, pp. 685–689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindeberg, T. (1994). Scale-Space for N-Dimensional Discrete Signals. In: O, YL., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds) Shape in Picture. NATO ASI Series, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03039-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03039-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08188-0

  • Online ISBN: 978-3-662-03039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics