Skip to main content

Analysis of Thermohaline Feedbacks

  • Conference paper
Decadal Climate Variability

Part of the book series: NATO ASI Series ((ASII,volume 44))

Abstract

Feedbacks between atmospheric meridional transports and the thermohaline circulation (THC) are analysed, using a four-box ocean-atmosphere model in one hemisphere. The ocean model is Stommel’s; the atmospheric model is similar to the one developed earlier by Marotzke and Stone and gives the surface heat and freshwater fluxes as residuals of the atmospheric energy and moisture budgets, assumed in balance. Radiation at the top of the atmosphere depends linearly on surface temperature; atmospheric meridional heat and moisture transports are proportional to an arbitrary positive power of the meridional temperature gradient, which is taken to be identical to the oceanic temperature gradient. The coefficients in the power laws for atmospheric meridional transports are chosen such that all coupled models have one steady state in common. Upon linearization, a Newtonian cooling law is derived for anomalous differential surface heat flux. The timescale on which the ocean temperature gradient is restored decreases with increasing power, n, in the atmospheric heat transport parameterization. The limits, n = 0, ∞, correspond approximately to the uncoupled cases of fixed surface heat flux and fixed surface temperature, respectively. A power, m, of zero in the atmospheric moisture transport is equivalent to fixed surface freshwater flux. Stronger dependence of moisture transport on temperature gradient (increasing m) destabilises the THC. When moisture transport depends weakly on temperature gradients (m ≤ 1), the THC is more stable to perturbations as n decreases (weaker restoring). For m ≥ 2, however, the THC is more unstable with smaller n, because the destabilising effect of anomalous moisture transport outweighs the stabilising effect of anomalous thermal forcing of the THC. If zonal mixing in the atmosphere is incomplete, the zonal mean temperature deviates from the ocean temperature. Meridional atmospheric transports are less sensitive to variations in the ocean temperature gradient if the ocean area is small, and Newtonian cooling is weaker. Simultaneously, a smaller ocean can compensate a given atmospheric energy budget imbalance only through a greater change in surface heat flux, which translates into stronger Newtonian cooling. When flux adjustments are applied to obtain the correct model climate despite incorrect atmospheric transports, the effect is that of choosing incorrect n or m, so transient behavior and model sensitivity are wrong although the mean state is correct. It is speculated that climate drifts seen even in flux-adjusted coupled models are amplifications of residual drifts in an incomplete, uncoupled spinup. The linearised model is non-normal, which leads to amplifications of small perturbation through interference of non-orthogonal eigenfunctions. Considerable excursions in temperature and salinity gradients can occur, which are density compensated and hence are not effectively counteracted by changes in the circulation unless the atmospheric transports respond to the changes in ocean temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyle, E. A., 1990, Quaternary deepwater paleoceanography. Science, 249, 863–870.

    Article  Google Scholar 

  • Baumgartner, A., and E. Reichel, 1975, Die Weltwasserbilanz. Oldenbourg Verlag, Müchen, 179pp.

    Google Scholar 

  • Bretherton, F.P., 1982, Ocean climate modeling. Progr. Oceanogr., 11, 93–129.

    Article  Google Scholar 

  • Broecker, W.S., T-P. Peng, J. Jouzel, and G. Russell, 1990, The magnitude of global fresh-water transports of importance to ocean circulation. Clim. Dyn., 4, 73–79.

    Article  Google Scholar 

  • Cubasch, U., K. Hasselmann, H. Hoch, E. Maier-Reimer, U. Mikolajewicz, B.D. Santer, and R. Sausen, 1992, Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model Climate Dynamics, 8, 55–69.

    Article  Google Scholar 

  • Gill, A.E., 1982, Atmosphere-Ocean Dynamics. Academic Press, London, 662 pp.

    Google Scholar 

  • Hall, M.M., and H.L. Bryden, 1982, Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29, 339–359.

    Article  Google Scholar 

  • Haney, R.L. 1971, Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241–248.

    Article  Google Scholar 

  • Huang, R.X., J.R. Luyten, and H.M. Stommel, 1992, Multiple equilibrium states in combined thermal and saline circulation. J. Phys. Oceanogr., 22, 231–246.

    Article  Google Scholar 

  • Hughes, T.C.M., and A.J. Weaver, 1994, Multiple equilibria of an asymmetric two-basin model. J. Phys. Oceanogr., 24, 619–637.

    Article  Google Scholar 

  • Lenderink, G., and R.J. Haarsma, 1994, Variability and multiple equilibria of the thermohaline circulation, associated with deep water formation. J. Phys. Oceanogr., 24, 1480–1493.

    Article  Google Scholar 

  • Lohmann, G., R. Gerdes, and D. Chen, 1996A, Sensitivity of the thermohaline circulation in coupled oceanic GCM atmospheric EBM experiments. Clim. Dyn., in press.

    Google Scholar 

  • Lohmann, G., R. Gerdes, and D. Chen, 1996B, Stability of the thermohaline circulation in an analytical investigation. Submitted for publication.

    Google Scholar 

  • Marotzke, J., and P.H. Stone, 1995., Atmospheric transports, the thermohaline circulation, and flux adjustments in a simple coupled model. J. Phys. Oceanogr., 25, 1350–1364.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1988, Two stable equilibria of a coupled ocean-atmosphere model. J. Climate, 1, 841–866.

    Article  Google Scholar 

  • Manabe, S., and R.J. Stouffer, 1994, Multiple century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7, 5–23.

    Article  Google Scholar 

  • Marotzke, J., 1990, Instabilities and multiple equilibria of the thermohaline circulation. Ph.D. thesis. Ber. Inst. Meeresk. Kiel, 194, 126 pp.

    Google Scholar 

  • Marotzke, J., 1994, Ocean models in climate problems. Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, P. Malanotte-Rizzoli and A.R. Robinson, eds., Kluwer, 79–109.

    Google Scholar 

  • Marotzke, J., and J. Willebrand, 1991, Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21, 1372–1385.

    Article  Google Scholar 

  • Mikolajewicz, U., and E. Maier-Reimer, 1994, Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J. Geophys. Res., 99, 22633–22644.

    Article  Google Scholar 

  • Munk, W., 1981, Internal waves. Evolution of Physical Oceanography, Scientific Surveys in Honor of Henry Stommel. B. A. Warren and C. Wunsch (eds.), The MIT press, Cambridge, MA, 264–291.

    Google Scholar 

  • Murphy, J.M., 1995, Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part I: Control climate and flux adjustment. J. Climate, 8, 36–56.

    Article  Google Scholar 

  • Nakamura, M., P.H. Stone, and J. Marotzke, 1994, Destabilization of the thermohaline circulation by atmospheric eddy transports. J. Climate, 7, 1870–1882.

    Article  Google Scholar 

  • Neelin, J.D., and H. A. Dijkstra, 1995, Ocean-atmosphere interaction and the tropical climatology. Part I: The dangers of flux correction. J. Climate, 8, 1325–1342.

    Article  Google Scholar 

  • Olbers, D.J., M. Wenzel, and J. Willebrand, 1985, The inference of North Atlantic circulation patterns from climatological hydrographic data. Rev. Geophys., 23, 313–356.

    Article  Google Scholar 

  • Pierce, D.W., K-Y. Kim, and T.P. Barnett, 1996, Variability of the thermohaline circulation in an ocean general circulation model coupled to an atmospheric energy balance model. J. Phys. Oceanogr., in press.

    Google Scholar 

  • Power, S.B., and R. Kleeman, 1994, Surface heat flux parameterization and the response of ocean general circulation models to high latitude freshening. Tellus, 46A, 86–95.

    Article  Google Scholar 

  • Rahmstorf, S., 1995A, Climate drift in an ocean model coupled to a simple, perfectly matched atmosphere. Climate Dyn., 11, 447–458.

    Article  Google Scholar 

  • Rahmstorf, S., 1995B, Multiple convection patterns and thermohaline flow in an idealised OGCM. J. Climate, 8, 3028–3039.

    Article  Google Scholar 

  • Rahmstorf, S., and J. Willebrand, 1995, The role of temperature feedback in stabilising the thermohaline circulation. J. Phys. Oceanogr., 25, 787–805.

    Article  Google Scholar 

  • Rahmstorf, S., J. Marotzke, and J. Willebrand, 1996, Stability of the thermohaline circulation. The Warm Water Sphere of the North Atlantic Ocean, W. Krauss, ed., in press.

    Google Scholar 

  • Roemmich, D.H., and C. Wunsch, 1985, Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res., 32, 619–664.

    Article  Google Scholar 

  • Saravanan, R. and J.C. Mcwilliams, 1995, Multiple equilibria, natural variability, and climate transitions in an idealised ocean-atmosphere model. J. Climate, 8, 2296–2323.

    Article  Google Scholar 

  • Santer, B.D., W. Bruggemann, U. Cubasch, K. Hasselmann, H. Hock, E. Maier-Reimer, AND U. Mikolajewicz, 1994, Signal-to-noise analysis of time-dependent greenhouse warming experiments. Part I: Pattern analysis. Climate Dyn., 9, 267–285.

    Article  Google Scholar 

  • Sarnthein, M., K. Winn, S.J.A. Jung, J.C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen, 1994, Changes in East Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209–267.

    Article  Google Scholar 

  • Sausen, R., K. Barthel, AND K. Hasselmann, 1987, A flux correction method for removing the climate drift of coupled atmosphere-ocean models. Max-Planck-Institut für Meteorologie Report No. 1, Hamburg, 39pp.

    Google Scholar 

  • Sausen, R., K. Barthel, AND K. Hasselmann, 1988, Coupled ocean-atmosphere models with flux correction. Climate Dyn., 2, 145–163.

    Article  Google Scholar 

  • Schneider, E.K., 1996, Flux correction and the simulation of changing climate. Submitted for publication.

    Google Scholar 

  • Stommel, H., 1961, Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.

    Article  Google Scholar 

  • Stone, P.H., and D.A. Miller, 1980, Empirical relations between seasonal changes in meridional temperature gradients and meridional fluxes of heat. J. Atmos. Sci., 37, 1708–1721.

    Article  Google Scholar 

  • Trefethen, L.N., A.E. Trefethen, S.C. Reddy, and T.A. Driscoll, 1993, Hydrodynamic stability without eigenvalues. Science, 261, 578–584.

    Article  Google Scholar 

  • Walin, G., 1985, The thermohaline circulation and the control of ice ages. Palaeogeogr., Palaeoclimatol., Palaeoecol., 50, 323–332.

    Google Scholar 

  • Wang, W-C., and P.H. Stgne, 1980, Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model. J. Atmos. Sci., 37, 545–552.

    Article  Google Scholar 

  • Welander, P., 1986, Thermohaline effects in the ocean circulation and related simple models. Large-Scale Transport Processes in Oceans and Atmosphere, J. Willebrand and D.L.T. Anderson, eds., NATO ASI series, D. Reidel, 163–200.

    Google Scholar 

  • Willebrand, J., 1993, Forcing the ocean with heat and freshwater fluxes. Energy and Water Cycles in the Climate System, E. Raschke, ed., Springer Verlag, 215–233.

    Book  Google Scholar 

  • Zhang, S., R.J. Greatbatch, AND C.A. Lin, 1993, A re-examination of the polar halo-cline catastrophe and implications for coupled ocean-atmosphere modelling. J. Phys. Oceanogr., 23, 287–299.

    Article  Google Scholar 

  • Zorita, E., and C. Frankignoul, 1996, Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled ocean-atmosphere general circulation model. Submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marotzke, J. (1996). Analysis of Thermohaline Feedbacks. In: Anderson, D.L.T., Willebrand, J. (eds) Decadal Climate Variability. NATO ASI Series, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03291-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03291-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08258-0

  • Online ISBN: 978-3-662-03291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics