Skip to main content

Two-Point Homogeneous Turbulence

  • Chapter
Turbulent Flows
  • 1025 Accesses

Abstract

The equations for mean moments as required for modeling have been investigated in Chapter 2 with eddy-viscosity type closures. Only the mean-flow equations were solved, together with transport equations for one or two scalar quantities (like K and ε) describing characteristic time and length scales of turbulence which are processed throughout the flow without requiring detailed forms adequate to a particular zone of the flow. The allowed unknowns were the mean pressure and the mean velocity, and the scalar quantities. Unfortunately, such models, although bringing significant results from an engineering point of view, suffer from serious drawbacks, most of them being due either to the eddy-viscosity hypothesis or to the second equation for a turbulent quantity, that of e for instance. We must therefore consider classes of models which solve these unsatisfactory aspects, even though they are limited to particular situations. This is what is done in Chapter 3 where we assume the homogeneity of the mean flow, i.e. its translational invariance. In chapter 4 where the eddy-viscosity assumption of Chapter 2 will be removed, the information gathered in Chapter 3 will be used for the construction of Reynolds-stress-equation (also called second-moment) models (RSM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. & Stegun, I.A. (1972) Handbook of Mathematical Functions. Dover Publications.

    MATH  Google Scholar 

  • André, J.C. & Lesieur, M. (1977) Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech., Vol.81, pp.187–207.

    MATH  Google Scholar 

  • Antonia, R.A., Anselmet, F. & Chambers, A.J. (1986a) Assessment of local isotropy using measurements in a plane jet, J. Fluid Mech., Vol.163, pp.365–391.

    Google Scholar 

  • Antonia, R.A., Chambers, A.J., Britz, D.H. & Browne, L.W.B. (1986b) Organized structures in a plane turbulent jet: topology and contributions to momentum and heat transport. J. Fluid Mech., Vol.172, pp.211–229.

    MATH  Google Scholar 

  • Antonia, R.A., Kim, J. & Browne, L.W.B. (1991) Some characteristics of small scale turbulence in a turbulent duct flow. J. Fluid Mech., Vol. 233, pp.369–388.

    MATH  Google Scholar 

  • Antonia, R.A., Ragajopalan, S., Subramanian, C.S. & Chambers, A.J. (1982) Reynolds-number dependence of the structure of a turbulent boundary layer. J. Fluid Mech., Vol.121, pp. 123–140.

    Google Scholar 

  • Antonia, R.A., Teitel, M., Kim, J. & Browne, L.W.B. (1992) Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech., Vol.236, pp.579–605.

    Google Scholar 

  • Ashurst, W.T., Kerstein, A.R., Kerr, R.M. & Gibson, C.H. (1987) Alignment of vorticity and scalar gradients with strain rate in simulated Navier-STokes turbulence. Phys. Fluids, Vol. 30, pp.3243–3253.

    Google Scholar 

  • Badri Narayanan, M.A. & Ramjee, V. (1969) On the criteria for reverse transition in a two-dimensional boundary layer flow. J. Fluid Mech., Vol.35, Pt.2, pp.225–241.

    Google Scholar 

  • Balachandar, S. & Sirovich, L. (1991) Probability distribution functions in turbulent convection. Phys. Fluids, Vol. A3, No.5, pp.919–927.

    Google Scholar 

  • Bardina, J. Ferziger, J.H. & Rogallo, R.S. (1985) Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech., Vol.154, pp.321–336.

    Google Scholar 

  • Barenblatt, GJ.,& Gavrilov, A.A. (1974) On the theory of self-similar degeneracy of homogeneous isotropic turbulence. Sov. Phys. JETP, B, Vol. 38, pp.399–402.

    Google Scholar 

  • Batchelor, G.K. (1946) The theory of axisymmetric turbulence. Proc. Roy. Soc. London, Vol. A186, pp.480–502.

    MathSciNet  Google Scholar 

  • Batchelor, G.K. (1948) Energy decay and self-preserving correlation functions in isotropic turbulence. Q. Appl. Maths, Vol.6, pp.97–116.

    MathSciNet  MATH  Google Scholar 

  • Batchelor, G.K. (1953) The Theory of Homogeneous turbulence. Cambridge University Press.

    MATH  Google Scholar 

  • Bayly, B.J. (1986) Three-dimensional instability of elliptic flow. Phys. Rev. Letters, Vol.57, pp.2160–2163.

    MathSciNet  Google Scholar 

  • Bertoglio, J.P. (1982) Homogeneous turbulent field in a rotating frame. AIAA Journ., Vol.20, pp.1175–1181.

    MATH  Google Scholar 

  • Betchov, R. (1956) An inequality concerning the production of voracity in isotropic turbulence. J. Fluid Mech., Vol.1, pp.497–504.

    MathSciNet  MATH  Google Scholar 

  • Betchov, R. (1957) On the fine structure of turbulent flows, J. Fluid Mech., Vol.3, pp.205–216.

    Google Scholar 

  • Betchov, R. & Larsen, P.S. (1981) A non-gaussian model of turbulence (soccer-ball integrals). Phys. Fluids, Vol.24, pp.1602–1604.

    MATH  Google Scholar 

  • Blackwelder, R. & Kovasznay, L.S.G. (1972) Large scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech., Vol.53, Part 1, pp.61–83.

    Google Scholar 

  • Boston, N.E.J. & Burling, R.W. (1972) An investigation of high-wavenumber temperature and velocity spectra in air. J. Fluid Mech., Vol. 55, pp.473–492.

    Google Scholar 

  • Brachet, M.E. (1991) Direct simulation of three-dimensional turbulence in the Taylor-Green vortex. Fluid Dyn. Res., Vol.8, pp. 1–8.

    Google Scholar 

  • Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H. & Frisch, U. (1983) Small-scale structure of the Taylor-Green vortex. J. Fluid Mech., Vol.130, pp.411–452.

    MATH  Google Scholar 

  • Brachet, M., Meneguzzi, M., Vincent, A., Politano, H. & Sulem, PJL. (1992) Numerical evidence of smooth self-similar dynamics for three-dimensional ideal flows. Phys. Fluids, A, Vol.4, pp.2845–2854.

    MATH  Google Scholar 

  • Brasseur, J.G. (1991) Comments on the Kolmogorov’s hypothesis of isotropy in the small scales. AIAA Paper 91–0230.

    Google Scholar 

  • Brasseur, J.G. & Corrsin, S. (1987) Spectral, evolution of the Navier-Stokes equations for low order couplings of Fourier modes. In Comte-Bellot, G. & Mathieu, J. (Eds.) Advances in Turbulence. Proc. 1st. European Turbulence Conf. Springer Verlag, Berlin, pp.152–162.

    Google Scholar 

  • Brasseur, J.G. & Wei, C.H. (1994) Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interactions. Phys. Fluids, Vol.A6, No.2, pp. 842–870.

    Google Scholar 

  • Briscolini, M. & Santangelo, P. (1994) The non-gaussian statistics of the velocity field in low-resolution large-eddy simulations of homogeneous turbulence. J. Fluid Mech., Vol.270, pp.199–217.

    MATH  Google Scholar 

  • Browne, L.W.B., Antonia, R.A. & Shah, D.A. (1987) Turbulent energy dissipation in a wake, J. Fluid Mech., Vol.179, pp.307–326.

    Google Scholar 

  • Cadiou, A. & Piquet, J. (1995) Modélisation du tenseur des corrélations pression-déformation par une équation de transport. C. Rend. Acad Sci. Paris, Vol.21, Ser.IIb, pp.323–330.

    Google Scholar 

  • Cambon, C, Benoit, J.P., Shao, L. & Jacquin, L. (1994) Stability analysis and large-eddy simulations of rotating turbulence with organized eddies. J. Fluid Mech., Vol. 278, pp. 175–200.

    MathSciNet  MATH  Google Scholar 

  • Cambon, C. & Jacquin, L. (1989) Spectral Approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech., Vol.202, pp.295–317.

    MathSciNet  MATH  Google Scholar 

  • Cambon, C., Jacquin, L. & Lubrano, J.L. (1992) Toward a new Reynolds stress model for rotating turbulent flows. Phys. Fluids, Vol.A4, pp.812–824.

    Google Scholar 

  • Cambon, C., Jeandel, D. & Mathieu, J. Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech., Vol.104, pp.53–63 (1981).

    Google Scholar 

  • Cambon, C., Mansour, N.N. & Godeferd, F.S. (1997) Energy transfer in rotating turbulence. J. Fluid Mech., Vol.337, pp.303–332.

    MathSciNet  MATH  Google Scholar 

  • Cambon, C. & Tessedre, C. & Jeandel, D. (1985) Etude d’effets couplés de déformation et de rotation sur une turbulence homogène. J. Méca. Théor. Appl., Vol.4, pp.629–657.

    MATH  Google Scholar 

  • Castaing, B., Gagne, Y. & Hopfinger, EJ. (1990) Velocity probability density functions of high Reynolds number turbulence. Physica D, Vol.46, pp.177–200.

    MATH  Google Scholar 

  • Caughey, S.J. & Palmer, S.G. (1979) Some aspects of turbulence structure through the depth of the convective boundary layer. Q. J. Roy. Met. Soc., Vol.105, pp.811–827.

    Google Scholar 

  • Caughey, S J., Wyngaard, J.C. & Kaimal, J.C. (1979) Turbulence in the evolving stable layer. J. Atmos. Sci., Vol.6, pp.1041–1052.

    Google Scholar 

  • Champagne, F.H. (1978) The fine scale structure of the turbulent velocity field, J. Fluid Mech., Vol.86, pp.67–108.

    Google Scholar 

  • Champagne, F.H., Friehe, C.A., LaRue, J.C. & Wyngaard, J.C. (1977) Flux measurements, flux estimation techniques and fine-scale turbulence measurements in the unstable surface layer over the land. J.Atmos. Sci., Vol.34, pp.515–530.

    Google Scholar 

  • Champagne, F.H., Harris, V.G. & Corrsin, S. (1970) Experiments in nearly homogeneous shear flows, Journ. Fluid Mech., Vol.41, Part 1, pp.81–139.

    Google Scholar 

  • Chandrasekhar, S. (1950) The theory of axisymmetric turbulence. Proc. Roy. Soc. London, Vol.A242, pp.555–577.

    MathSciNet  Google Scholar 

  • Chapman, D.R. (1979) Computational aerodynamics development and outlook. AIAA Journ., Vol.74, pp.1293–1313.

    Google Scholar 

  • Chasnov, J.R. (1993) Computation of the Loitsianski integral in decaying isotropic turbulence. Phys. Fluids, Vol.A5, No.11, pp.2579–2581.

    Google Scholar 

  • Chen, S. & Kraichnan, R.H. (1989) Sweeping decorrelation in isotropic turbulence theory. Phys. Fluids, Vol.A1, No.12, pp.2019–2024.

    MathSciNet  Google Scholar 

  • Chhabra, A.B., Meneveau, C, Jensen, R.V. & Sreenivasan, K.R. (1989) Direct determination of the f(a) singularity spectrum and its application to fully developed turbulence. Phys. Rev., Vol.A40, pp.5284–5924.

    Google Scholar 

  • Comte-Bellot, G. & Corrsin, S. (1966) The use of a contraction to improve the isotropy of grid-generated turbulence, J. Fluid Mech., Vol.25, Part 4, pp.657–682.

    Google Scholar 

  • Comte-Bellot, G. & Corrsin, S. (1971) Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated ‘isotropic’ turbulence, J. Fluid Mech., Vol.48, Pt.2, pp.273–337.

    Google Scholar 

  • Craik, A.D.D. (1989) The stability of unbounded three-dimensional flows subject to body forces: some exact solutions. J. Fluid Mech., Vol.198, pp.275–292.

    MathSciNet  MATH  Google Scholar 

  • Craya, A. (1958) Contribution à l’analyse de la turbulence associée à des vitesses moyennes. Publ. Sci. Techn. Ministère de l’Air, No.353, Paris.

    Google Scholar 

  • Domaradski, J.A. & Rogallo, R.S. (1991) Local energy transfer and nonlocal interactions in homogeneous isotropic turbulence. Phys. Fluids, Vol.A2, pp.413–426.

    Google Scholar 

  • Douady, S., Couder, Y. & Brächet, M.E. (1991) Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Letters, Vol.67, No.8, pp.983–986.

    Google Scholar 

  • Drazin, P.G. & Reid, W.H. (1981) Hydrodynamic Stability. Cambridge Univ. Press.

    MATH  Google Scholar 

  • Frisch, U. (1996) Turbulence, the legacy of Kolmogorov. Cambridge Univ. Press.

    Google Scholar 

  • Fung, J.C.H., Hunt, J.C.R., Perkins, R.J., Wray, A.A. & Stretch, D. (1991) Defining the zonal structure pdf turbulence using the pressure and invariants of the defomation tensor. In Johansson, A.V. & Alfredsson, P.H. (Eds.) Advances in Turbulence. Vol.3, pp.395–404. Springer Verlag, Heidelberg.

    Google Scholar 

  • George, W.K. (1992) The decay of homogeneous isotropic turbulence. Phys. Fluids, Vol.A4, No.7, pp.1492–1509.

    Google Scholar 

  • Gibson, M.M. (1963) Spectra of turbulence in a round jet, J. Fluid Mech., Vol.15, Part 2, pp. 161–173.

    MATH  Google Scholar 

  • Gibson, C.H. (1991) Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy. Proc. Roy. Soc. London, Vol.A434, pp. 149–164.

    Google Scholar 

  • Gibson, C.H., Friehe, C.A. & Mc Connell, O. (1977) Structure of sheared turbulent fields. Phys. Fluids Suppl., Vol.20, pp.S156–S167.

    Google Scholar 

  • Grant, H.L., Stewart, R.W. & Moilliet, A. (1962) Turbulence spectra from a tidal channel, J. Fluid Mech., Vol.12, pp.241–268.

    MATH  Google Scholar 

  • Heisenberg, W. (1948) On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. London, Ser A, Vol.195, pp.402–406.

    MathSciNet  MATH  Google Scholar 

  • Henbest, S.M., Li, J.D. & Perry, A.E (1992) Turbulence spectra in the near-wall region. Proc. 11th. Australian Fluid Mech. Conf. Univ. Tasmania, Australia.

    Google Scholar 

  • Herring, J.R. & Kraichnan, R.H. (1979) A numerical comparison of velocity-based and strain-based Lagrangian-history turbulence approximations. J. Fluid Mech., Vol.91, pp.581–597.

    MATH  Google Scholar 

  • Herring, J., Schertzer, D., Lesieur, M., Newman, G., Chollet, J. & Larcheveque, M. (1982) A comparative assessment of spectral closures as applied to passive scalars. J. Fluid Mech., Vol.124, pp.411–437.

    MATH  Google Scholar 

  • Hinze, J.O. (1975) Turbulence, McGraw-Hill.

    Google Scholar 

  • Ho, C.M. & Huerre, P.(1984) Perturbed free shear layers. Ann. Rev. Fluid Mech., Vol.16, pp.365–424.

    Google Scholar 

  • Huang, M.J. & Leonard, A. (1994) Power-law decay of homogeneous turbulnece at low Reynolds numbers. Phys. Fluids, Vol.6, No.11, pp.3765–3775.

    MATH  Google Scholar 

  • Jimenez, J., Wray, A.A., Saffman, P.G. & Rogallo, R.S. (1993) The structure of intense vorticity in isotropic turbulence. J. Fluid Mech., Vol. 255, pp.65–90.

    MathSciNet  MATH  Google Scholar 

  • Jovanovic, J., Ye, Q.Y. & Durst, F. (1995) Statistical interpretation of the turbulent dissipation rate in wall-bounded flows. J. Fluid Mech., Vol.293, pp.321–347.

    MATH  Google Scholar 

  • Karman, Von Th. & Howarth, L. (1938) On the statistical theory of isotropic turbulence. Proc. Roy. Soc. London, Vol.1164, pp.192–215.

    Google Scholar 

  • Karyakin, M.Y., Kuznetsov, V.R. & Praskovsky, A.A. (1991) Experimental verification of the hypothesis of fine-scale isotropy of turbulence. Fluid Dynamics, Vol.26, No.5, pp.658–669.

    MathSciNet  Google Scholar 

  • Kassinos, S.C. & Reynolds, W.C. (1994) A structure-based model for the rapid distorsion of homogeneous turbulence. Stanford Report TF-61.

    Google Scholar 

  • Kerr, R.F. (1985a) Kolmogorov and scalar spectral régimes in numerical turbulence. NASA TM 85699.

    Google Scholar 

  • Kerr, R.M. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech., Vol.153, pp.31–58 (1985b).

    MATH  Google Scholar 

  • Kerr, R.M. (1987) Histograms of helicity and strain in numerical turbulence. Phys. Rev. Letters, Vol. 59, pp.783.

    Google Scholar 

  • Kerr, R.M. (1990) Velocity, scalar and transfer spectra in numerical turbulence. J. Fluid Mech., Vol.211, pp.309–332.

    MATH  Google Scholar 

  • Kevlahan, N.K.-R. & Hunt, J.C.R. (1997) Nonlinear interactions in turbulence with strong irrotational straining. J. Fluid Mech., Vol.337, pp.333–364.

    MathSciNet  MATH  Google Scholar 

  • Kida, S. & Hunt, J.C.R. (1989) Interaction between different scales of turbulence over short times. J. Fluid Mech., Vol.201, pp.411–445.

    MathSciNet  MATH  Google Scholar 

  • Kida, S. & Murakami, Y. (1987) Kolmogoroff similarity in freely decaying turbulence. Phys. Fluids A, Vol.30, No.7, pp.2030–2039.

    MATH  Google Scholar 

  • Kida, S., Murakami, Y., Ohkitani, K. & Yamada, M. (1990) Energy and flatness spectra in a forced turbulence. J. Phys. Soc. Japan, Vol.59, pp.4323–4330.

    Google Scholar 

  • Kida, S. & Ohkitani, K. (1992) Fine structure of energy transfer in turbulence. Phys. Fluids, Vol.A4, No.8, pp. 1602–1604

    Google Scholar 

  • Kida, S. & Tanaka, M. (1992) Reynolds stress and vortical structure in a uniformly sheared turbulence. J. Phys. Soc. Japan, Vol.61, pp.4400.

    Google Scholar 

  • Kida, S. & Tanaka, M. (1994) Dynamics of vortical structures in a homogeneous shear flow. J. Fluid Mech., Vol.274, pp.43–68.

    MathSciNet  MATH  Google Scholar 

  • Kim, J. & Antonia, R.A. (1993) Isotropy of small scales of turbulence at low Reynolds numbers. J. Fluid Mech., Vol. 251, pp.219–238.

    MATH  Google Scholar 

  • Kistler, A.L. & Vrebalovich, T. (1966) Grid turbulence at large Reynolds numbers. J. Fluid Mech., Vol.26, PU, pp.37–48.

    Google Scholar 

  • Klebanoff, P.S. (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rept.1247.

    Google Scholar 

  • Kolmogorov, A.N. (1941) The local structure of turbulence in an incompressible fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR, Vol.30, pp.301–304.

    Google Scholar 

  • Kolmogoroff, A.N. (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., Vol.13, pp.81–85.

    Google Scholar 

  • Kolovandin, B.A. & Vatutin, I.A. (1972) Statistical transfer theory in non-homogeneous turbulence. Int. J. Heat Mass Transfer, Vol.15, pp.2371–2383.

    Google Scholar 

  • Kovasznay, L.S.G. (1948) Spectrum of locally isotropic turbulence. J. Aeron. Sci., Vol.15, No.2, pp.745–753.

    MathSciNet  Google Scholar 

  • Kraichnan, R. H. (1959) The süueture of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., Vol. 5, pp.497–543.

    MathSciNet  MATH  Google Scholar 

  • Kraichnan, R.H. (1966) Isotropic turbulence and inenial range structure in the abridged LHDI approximation. Phys. Fluids, Vol.9, pp. 1728–1752.

    MATH  Google Scholar 

  • Kraichnan, R.H. (1976) Eddy viscosity in two and three dimensions. J. Atmos. Sci., Vol.33, pp. 1521–1536.

    Google Scholar 

  • Kuznetsov, V.R., Praskovsky, A.A. & Sabelnikov, V.A. (1992) Fine-scale turbulence structure of intermittent shear flows. J. Fluid Mech., Vol.243, pp.595–622.

    Google Scholar 

  • Lagnado, R.R., Phan Tien, N. & Leal, L.G. (1984) The stability of two-dimensional linear flows. Phys. Fluids, Vol.27, No.3, pp.1094–1101.

    MATH  Google Scholar 

  • Landman, M.J. & Saffman, P.G. (1987) The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids, Vol.30, pp.2339–2342.

    Google Scholar 

  • Laufer, J. (1954) The structure of turbulence in fully developed pipe flow. NACA Report 1174.

    Google Scholar 

  • Leblanc, S. & Cambon, C. (1997) On the three-dimensional instabilities of plane flows subject to Coriolis forces. Phys. Fluids, Vol.9, No.5, pp. 1307–1316.

    MathSciNet  MATH  Google Scholar 

  • Leblanc, S. & Godeferd, F.S. (1997) Coherence of vortices in a rotating fluid. Proc. 1 lth Symp. Turbulent Shear Flows, P3–53–58.

    Google Scholar 

  • Lee, M.J. (1989) Distorsion of homogeneous turbulence by axisymmctric strain and dilatation, Phys. Fluids A, Vol.1, pp.1541–1557.

    MATH  Google Scholar 

  • Lee, M.J. (1990) A contribution toward rational modeling of the pressure-strain-rate correlation. Phys. Fluids, Vol.A2, pp.630–633.

    Google Scholar 

  • Lee, M.J. & Reynolds, W.C. (1985) Numerical experiments on the structure of homogeneous turbulence. Dep. Mech. Engng. Rep. TF24, Stanford University, Stanford.

    Google Scholar 

  • Lee, M.J., Kim, J. & Moin, P. (1990) Structure of turbulence at high shear rate. J. Fluid Mech., Vol.216, pp.561–583.

    Google Scholar 

  • Leith, C.E. (1967) Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids, Vol.10, No.7, pp.1409–1416.

    Google Scholar 

  • Lesicur, M. & Rogallo, R.S. (1989) Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids, Vol.A1, No.4, pp.718–722.

    Google Scholar 

  • Lesieur, M. & Schertzer, D. (1978) Amortissement autosimilaire d’une turbulence à grands nombres de Reynolds, Journ. Méca., Vol.17, No.4, pp.609–646.

    MathSciNet  MATH  Google Scholar 

  • Lesieur, M., Yanase, S. & Mélais, O. (1991) Stabilizing and destabilizing effects of a solid-body rotation on quasi-two-dimensional shear layers. Phys. Fluids, Vol.A3, pp.403–407.

    Google Scholar 

  • Lesieur, M. (1987) Turbulence in Fluids. Martinus Nijhoff, Dordrecht, The Netherlands.

    Google Scholar 

  • Leslie, D.C. (1973) Developments in the Theory of Turbulence. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Lumley, J.L. Similarity and turbulence energy spectrum, Phys. Fluids, Vol.10, pp.853–858 (1967).

    MathSciNet  Google Scholar 

  • Lvov, V. & Falkovich, G. (1992) Counterbalanced interaction locality of developed hydrodynamic turbulence. Phys. Rev., Vol.A46, pp.4762–4772.

    Google Scholar 

  • Manley, O.P. (1992) The dissipation range spectrum. Phys. Fluids, Vol.A4, No.6, pp. 1320–1321.

    Google Scholar 

  • Mansour, N.N., Kim, J. & Moin, P. (1988) Reynolds stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. Vol.192, pp.15–44.

    Google Scholar 

  • Mansour, N.N., Shin, T.H. & Reynolds, W.C. (1991) The effects of rotation on initially anisotropic homogeneous turbulence. Phys. Fluids, Vol.A3, pp.2421–2425.

    Google Scholar 

  • Mansour, N.N. & Wray, A.A. (1994) Decay of isotropic turbulence at low Reynolds number. Phys. Fluids, Vol.A6, pp.808–814.

    Google Scholar 

  • Matthaeus, W.H. & Smith, C. (1981) Structure of correlation tensors in homogeneosu anisotropic turbulence . Phys. Rev. A, Vol.24, No.4, pp.2135–2143.

    Google Scholar 

  • McComb, W.D. (1990) The physics of Fluid Turbulence. Oxford Univ. Press.

    Google Scholar 

  • McComb, W.D., Shanmugasundaramu, V. & Hutchinson, P. (1989) Velocity-derivative skewness and two-time velocity correlations of isotropic turbulence as predicted by the LET theory. J. Fluid Mech., Vol. 208, pp.91–114.

    Google Scholar 

  • Mestayer, P. (1982) Local isotropy and anisotropy in a high Reynolds-number turbulent boundary layer. J. Fluid Mech., Vol. 125, pp.475–503.

    Google Scholar 

  • Métais, O., Flores, C., Yanase, S., Riley, J.J. & Lesieur, M. (1995) Rotating free-shear flows. Part 2: Numerical simulations. J. Fluid Mech., Vol.239, pp.47–80.

    Google Scholar 

  • Monin, A.S. & Yaglom, A.M. (1975) Statistical Fluid Mechanics, Vols.l & 2. MIT Press.

    Google Scholar 

  • Obukhov, A.M. (1941) Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk. SSSR, Vol.32, pp.22–33.

    Google Scholar 

  • Orszag, S.V. (1970) Analytical theories of turbulence. J. Fluid Mech., Vol.41, Pt.2, pp.363–386.

    MATH  Google Scholar 

  • Orszag, S.V. (1973) In Balian, R. & Peube, J.L., Eds., Fluid Dynamics 1973. Les Houches Summer School of Theoretical Physics, pp.235–374. Gordon & Breach, New York.

    Google Scholar 

  • Orszag, S.A. & Patterson, Jr., G.S. (1972) Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Letters, Vol.28, pp.76–79.

    Google Scholar 

  • Panda, R., Sonnad, V., Clementi, E., Orszag, S.A. & Yakhot, V. (1989) Turbulence in a randomly stirred fluid. Phys. Fluids, Vol.A1, p.1045.

    MathSciNet  Google Scholar 

  • Pao, Y.H. (1965) Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids, Vol.8, No.6, pp.1063–1075.

    Google Scholar 

  • Paquin, J.E. & Pond, S. (1971) The determination of the Kolmogorov constants for velocity, temperature and humidity fluctuations from second- and third-order structure functions. J. Fluid Mech., Vol.50, pp.257–269.

    Google Scholar 

  • PierreHumbert, R.T. (1986) Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Letters, Vol.57, pp.2157–2159.

    Google Scholar 

  • Pond, S., Phelps, G.T., Paquin, J.E., McBean, G.& Stewart, R.W. (1971) Measurements of the turbulent fluxes of momentum, moisture and sensible heat over the ocean. J. Atmos. Sci., Vol.28, pp.901–917 .

    Google Scholar 

  • Pond, S., Smith, S.D., Hamblin, P.F. & Burling, R.W.J. (1966) Spectra of velocity and temperature fluctuations in the atmospheric boundary layer over the sea. J. Atmos. Sci., Vol.23, pp.376–386.

    Google Scholar 

  • Pond, S., Stewart, R.W. & Burling, R.W. (1963) Turbulence spectra in the wind over waves, J. Atm. Sci., Vol.20, pp.319–324

    Google Scholar 

  • Pumir, A., Shraiman, B.I. & Siggia, E.D. (1991) Exponential tails and random advection. Phys. Rev. Letters, Vol.66 , pp.2984–2987.

    Google Scholar 

  • Qian, J. (1983) Variational approach to the closure problem of turbulence theory. Phys. Fluids, Vol.26, pp.2098-.

    MathSciNet  MATH  Google Scholar 

  • Qian, J. (1984) Universal equilibrium range of turbulence. Phys. Fluids, Vol.27, No.9, pp.2229–2933.

    MATH  Google Scholar 

  • Rogallo, R.S. (1981) Direct numerical simulation of homogeneous shear flow. NASA TM 81315.

    Google Scholar 

  • Rogers, M.M. (1991) The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous turbulence flow. Phys. Fluids, Vol.A1, pp. 144–154.

    Google Scholar 

  • Ruetsch, G.R. & Maxey, M.R. (1991) Small scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids, Vol.A3, pp. 1587–1597.

    Google Scholar 

  • Saddoughi, S.G. (1997) Local isotropy in complex turbulent boundary layers at high Reynolds number. J. Fluid Mech., Vol.348, pp.201–245.

    MathSciNet  Google Scholar 

  • Saddoughi, S.G. & Veeravalli, S.V (1994). Local isotropy in turbulent boundary layers at high Reynolds numbers. J. Fluid Mech., Vol. 268, pp.333–372.

    Google Scholar 

  • Saffman, P.G. (1967) Note on the decay of homogeneous turbulence. Phys. Fluids, Vol.10, pp.1349.

    Google Scholar 

  • Salhi, A., Cambon, C. & Spezialc, C.G. (1997) Linear stability analysis of plane quadratic flows in a rotating frame with applications to modeling. Phys. Fluids, Vol.9, No.8, pp.2300–2309.

    MathSciNet  MATH  Google Scholar 

  • Sanada, T. (1992) Comments on the dissipation-range spectrum in turbulence flows. Phys. Fluids, Vol.A4, No.5, pp.1086–1087.

    Google Scholar 

  • Sanada, T. & Shanmugasundaram, V. (1992) Random sweeping effect in isotropic numerical turbulence. Phys. Fluids, Vol.A4, No.6, pp.1245–1250.

    Google Scholar 

  • Schedvin, J., Stegen, G.R. & Gibson, C.H. (1974) Universal similarity at high grid Reynolds numbers. J. Fluid Mech., Vol.65, Pt.3, pp.561–579.

    Google Scholar 

  • Sedov, L.I. (1959) Similarity and Dimensional Methods, London.

    Google Scholar 

  • She, Z.S., Chen, S., Doolen, G., Kraichnan, R.H. & Orszag, S.A. (1993) Reynolds number dependence of isotropic Navier-Stokes turbulence. Phys. Rev. Letters, Vol.70, pp.3251–3254.

    Google Scholar 

  • She, Z.S., Jackson, E. & Orszag, S.A. (1990) Vortex structures and dynamics in turbulence. Comp.Meth. Appl. Mech. Eng., Vol.80, pp.173.

    MathSciNet  Google Scholar 

  • Shieh, C.W., Tennekes, H. & Lumley, J.L. (1971) Airborne Hot-wire measurements of the small-scale structure of atmospheric turbulence. Phys. Fluids, Vol.14, pp.201–215.

    Google Scholar 

  • Shtilman, L., Spector, M. & Tsinober, A. (1993) On some kinematic versus dynamic properties of homogeneous turbulence. 7. Fluid Mech., Vol.247, pp.65–77.

    MATH  Google Scholar 

  • Siggia, E.D. (1981) Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech., Vol.107, pp.375–406.

    MATH  Google Scholar 

  • Siggia, E.D. & Patterson, G.S. (1978) Intermittency effects in a numerical solution of stationary thre-dimensional turbulence. J. Fluid Mech., Vol.86, pp.567–592.

    MATH  Google Scholar 

  • Smith, L.M. & Reynolds, W.C. (1991) The dissipation-range spectrum and the velocity-derivative skewness in turbulent flows. Phys. Fluids, Vol.A3, pp.992–994 .

    Google Scholar 

  • Sreenivasan, K.R., Antonia R.A. & Britz, D. (1979) Local isotropy and large scale structures in a heated turbulent jet. J. Fluid Mech., Vol.94, pp.745–775.

    Google Scholar 

  • Sulem, P.L., Lesieur, M. & Frisch, U. (1975) Le ‘test-field model’ interprété comme méthode de fermeture des équations de la turbulence. Ann. Geophys., Vol.31, pp.487–495.

    Google Scholar 

  • Tanaka, M., Yanase, S., Kida, S. & Kawamura, G. (1997) Uniformly sheared turbulent flow under the effect of solid-body rotation. Proc. 11th. Symp. Turbulent Shear Flows, Grenoble, pp.1–71–12.

    Google Scholar 

  • Tennekes, A.A. (1968) Simple model for the small scale structure of turbulence. Phys. Fluids, Vol.11, pp.669–671.

    Google Scholar 

  • Tennekes, H. (1975) Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech., Vol. 67, pp.561–567.

    MATH  Google Scholar 

  • Townsend, A.A. (1980) The response of sheared turbulence to additional distorsion. J. Fluid Mech., Vol.81, Part 1, pp.171–191.

    Google Scholar 

  • Uberoi, M.S. (1957) Equipartition of energy and local isotropy in turbulent flows. J. Appl. Phys., Vol.28, pp.1165–1170.

    MATH  Google Scholar 

  • Van Atta, C.W. & Antonia, R.A. (1980) Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids, Vol.23, pp.252–257.

    Google Scholar 

  • Van Slooten, P.R. & Pope, S.B. (1997) PDF modeling for inhomogeneous turbulence with exact representation of rapid distorsions. Phys. Fluids, Vol.9, No.4, pp. 1085–1105.

    MathSciNet  MATH  Google Scholar 

  • Vincent, A. & Meneguzzi, M. (1991) The spatial structure and statistical properties of homogeneous isotropic turbulence. J. Fluid Mech., Vol.225, pp. 1–25.

    MATH  Google Scholar 

  • Vincent, A. & Meneguzzi, M. (1994) The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech., Vol.258, pp.245–254.

    MATH  Google Scholar 

  • Waleffe, F. (1990) On the three-dimensional instability of strained vortices. Phys. Fluids, Vol.A2, pp.76–80.

    MathSciNet  Google Scholar 

  • Waleffe, F. (1992) The nature of triad interactions in homogeneous turbulence. Phys. Fluids, Vol.A4, pp.350–363.

    MathSciNet  Google Scholar 

  • Waleffe, F. (1993) Inenial transfer in the helical decomposition. Phys. Fluids, Vol.A5, pp.677–685.

    Google Scholar 

  • Williams, R.M. & Paulson, C.A. (1977) Microscale temperature and velocity spectra in the atmospheric boundary layer. J. Fluid Mech., Vol.83, pp.547–567.

    Google Scholar 

  • Wyngaard, J.C. & Clifford, S.F. (1977) Taylor’s hypothesis and high frequency turbulence spectra. J. Atmos. Sci., Vol.34, pp.922–929.

    Google Scholar 

  • Wyngaard, J.C. & Coté, O.R. (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Attn. Sci., Vol.28, pp. 190–201.

    Google Scholar 

  • Wyngaard, J.C. & Coté, O.R. (1972) Co-spectral similarity in the atmospheric surface layer. Q. J. Roy. Met. Soc., Vol.98, pp.590–603.

    Google Scholar 

  • Wyngaard, J.C. & Tennekes, H. (1970) Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys. Fluids, Vol.13, pp. 1962–1969.

    Google Scholar 

  • Yakhot, V. & Orszag, S.A. (1986) Renormalization group analysis of turbulence. I, basic theory, J. Scientific Comp., Vol.1, pp.3–51.

    MathSciNet  MATH  Google Scholar 

  • Yamamoto, K. & Hosokawa, I. (1988) A decaying isotropic turbulence pursued by the spectral method. J. Phys. Soc. Japan, Vol.57, No.5, pp.1532–1535.

    Google Scholar 

  • Yeung, P.K. & Pope, S.B. (1989) Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech., Vol. 207, pp.531–586.

    MathSciNet  Google Scholar 

  • Yeung, P.K. & Brasseur, J.G. (1991) The response of isotropic turbulence to isotropic and anisotropic forcings at large scales. Phys. Fluids, Vol.A3, pp.884–897.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piquet, J. (1999). Two-Point Homogeneous Turbulence. In: Turbulent Flows. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03559-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03559-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08475-1

  • Online ISBN: 978-3-662-03559-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics