Skip to main content

Calcification in Cyanobacteria

  • Chapter
Microbial Sediments

Abstract

Calcification in cyanobacteria depends on water chemistry as well as on physiological and morphological factors such as photosynthetic bicarbonate uptake and the existence of a suitable sheath. Physicochemical precipitation under high levels of supersaturation leads to the dense encrustation of the filaments, forming a solid micrite tube, while photosynthetic bicarbonate uptake in less supersaturated waters can lead to micrite precipitation within the sheath. Both forms of calcification are restricted to species which prefer oligotrophic, phosphate-poor environments. In this way, various environmental factors such as the saturation state of the water with respect to calcium carbonate minerals and the concentration of dissolved CO2 and phosphate may be reflected in the occurrence of fossil calcifying cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82: 4110–4114

    Article  Google Scholar 

  2. Andrews JA, Riding R, Dennis PF (1997) The stable isotope record of environmental and climatic signals in modern microbial carbonates from Europe. Palaeogeogr Palaeoclimatol Palaeoecol 129: 171–189

    Article  Google Scholar 

  3. Bender J, Rodriguez-Eaton S, Ekanemesang UM, Phillips P (1994) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl Environ Microbiol 60: 2311–2315

    Google Scholar 

  4. Berger S, Kaever MJ (1992) Dasycadales - an illustrated monograph of a fascinating algal order. Thieme, Stuttgart

    Google Scholar 

  5. Bertocchi C, Navarini L, Cesàro A, Anastasio M (1990) Polysaccharides from cyanobacteria. Carbohydr Polymers 12x27–153

    Google Scholar 

  6. Borowitzka MA (1989) Carbonate calcification in algae - initiation and control. In: Mann S, Webb J, Williams RJP (eds) Biomineralization. VCH Verlag, Weinheim, pp 63–94

    Google Scholar 

  7. Braithwaite CJR, Casanova J, Frevert T, Whitton BA (1989) Recent stromatolites in landlocked pools on Aldabra, Western Indian Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 69: 145–165

    Google Scholar 

  8. Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179: 480–483

    Article  Google Scholar 

  9. Cannell RJP, Owsisnks AM, Walker JM (1988) Results of a large-scale screening programme to detect antibacterial activity from fresh-water algae. Br Phycol J 2341–44

    Google Scholar 

  10. Castenholz RW (1992) Species usage, concept, and evolution in the cyanobacteria (blue-green algae). J Phycol 28:737–745

    Google Scholar 

  11. Chafetz HS, Buczynski C (1992) Bacterially induced lithification of microbial mats. Palaios 7: 277–293

    Article  Google Scholar 

  12. Cox G, James JM, Leggett KEA, Osborne RAL (1989) Cyanobacterially deposited speleothems: subaerial stromatolites. Geomicrobiol J 7: 245–252

    Article  Google Scholar 

  13. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28: 73–153

    Google Scholar 

  14. Défarge C, Trichet J, Couté A (1994) On the appearance of cyanobacterial calcification in modern stromatolites. Sed Geol 94:11–19

    Google Scholar 

  15. Delgado O, Lapointe BE (1994) Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs 13x51–159

    Google Scholar 

  16. Forsberg C (1965) Nutritional studies of Chara in axenic cultures. Physiol Plant 18: 275–290

    Article  Google Scholar 

  17. Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27: 395–409

    Article  Google Scholar 

  18. Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988): Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170: 3584–3592

    Google Scholar 

  19. Giovannoni SJ, Rappé MS, Gordon D, Urbach E, Suzuki M, Field KG (1996) Ribosomal RNA and the evolution of bacterial diversity. In: Roberts McL, Sharp P, Anderson G, Collins M (eds) Evolution of microbial life. 54th Symposium of the Society for General micobiology, Univ. of Warwick, March 1996, pp 63–85

    Google Scholar 

  20. Gleason PJ, Spackman WJr (1974) Calcareous periphyton and water chemistry in the Everglades. In: Gleason PJ (ed) Environments in South Florida, present and past. Miami Geological Society, pp 146–181

    Google Scholar 

  21. Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 434–472

    Google Scholar 

  22. Golubic S (1983) Stromatolites, fossil and recent: a case history. In: Westbroek P, de Jong EW (eds) Biomineralization and biological metal accumulation. Reidel, Dordrecht, pp 313–326

    Chapter  Google Scholar 

  23. Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek near Lancaster, Pennsylvania. Verh Int Ver Limnol 19: 2315–2323

    Google Scholar 

  24. Golubic S, Campbell SE (1981) Biogenically formed aragonite concretions in marine Rivularia. In: Monty C (ed) Phanerozoic stromatolites: case histories. Springer, Berlin Heidelberg New York, pp 209–229

    Chapter  Google Scholar 

  25. Horodyski RJ, VonderHaar SP (1975) Recent calcareous stromatolites from Laguna Mormona ( Baja California ), Mexico. J Sed Petrol 45: 894–906

    Google Scholar 

  26. Jones B, Kahle CF (1986) Dendritic crystals formed by calcification of algal filaments in a vadose environment. J Sed Petrol

    Google Scholar 

  27. -222

    Google Scholar 

  28. Kann E (1985) Benthische Cyanophyten-Gemeinschaften in Bächen and Seen. Arch Hydrobiol (Suppl) 71: 307–310

    Google Scholar 

  29. Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae in laboratory culture. Br Phycol J 24: 191–194

    Article  Google Scholar 

  30. Kempe S, Kazmierczak J (199oa) Chemistry and stromatolites of the sea-linked Satonda Crater lake, Indonesia: a recent model for the Precambrian sea? Chem Geol 81:299-310

    Google Scholar 

  31. Kempe S, Kazmierczak J (199ob) Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In: Ittekot V, Kempe S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry. Springer, Berlin Heidelberg New York, pp 255–278

    Google Scholar 

  32. Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349605–608

    Google Scholar 

  33. Knoll AH, Fairchild IJ, Swett K (1993) Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian transition. Palaios 8: 512–525

    Google Scholar 

  34. Kobluk DR, Risk MJ (1977) Calcification of exposed filaments of endolithic algae, micritic envelope formation and sediment production. J Sed Petrol 47: 517–528

    Google Scholar 

  35. Krause W (1981) Characeen als Bioindikatoren far den Gewässerzustand. Limnologica 13399–418

    Google Scholar 

  36. Krause GH (1988) Photoinhibition of photosynthesis: An evaluation of damaging and protective mechanisms. Physiol Plant 74566–574

    Google Scholar 

  37. Krumbein, WE, Giele C (1979) Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. Sedimentology 26: 593–604

    Article  Google Scholar 

  38. Lucas WJ (1983) Photosynthetic assimilation of exogenous HCO3by aquatic plants. Annu Rev Plant Physiol 34: 71–104

    Article  Google Scholar 

  39. McConnaughey TA (1994) Calcification, photosynthesis, and global carbon cycles. In: Doumenge F, Allemand D, Toulemont A (eds) Past and present biomineralization processes, Bull Inst Oceanogr 13: 37–60

    Google Scholar 

  40. Merz MUE (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26: 81–102

    Article  Google Scholar 

  41. Merz MUE, Zankl H (1993a) The influence of culture conditions on growth and sheath development of calcifying cyanobacteria. Facies 29: 75–80

    Article  Google Scholar 

  42. Merz MUE, Zankl H (1993b) The influence of the sheath on carbonate precipitation by cyanobacteria. Boll Soc Paleont Ital (Spec Vol) 1:325–331

    Google Scholar 

  43. Merz MUE, Schlue W-R, Zankl H (1995) pH-measurements in the sheath of calcifying filamentous cyanobacteria. Bull Inst Oceanogr 14: 281–289

    Google Scholar 

  44. Merz-Preiß MUE, Riding R (1995) Supersaturation in Recent freshwater tufa streams: calibration of marine environmentally controlled CaCO3 precipitation in the past? loth Bathurst Meeting of Carbonate Sedimentologists, Royal Holloway, London, 2–5 July, Abstracts, pp 38, 44

    Google Scholar 

  45. Mikheyskaya LV, Ovodova RG, Ovodov YuS (1977) Isolation and characterization of lipopolysaccharides from cell walls of blue-green algae of the genus Phormidium. J Bacteriol 130: 1–3

    Google Scholar 

  46. Mitterer RM (1989) Composition and association of organic matter with calcium carbonate and the origin of calcification. In: Crick RE (ed), Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 309–323

    Google Scholar 

  47. Moore LS, Burne RV (1994) The modern thrombolites of Lake Clifton, Western Australia. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 3–29

    Chapter  Google Scholar 

  48. Obenlüneschloss J (1991) Biologie und Ökologie von drei rezenten Süßwasser-Rivularien (Cyanobakterien). Ubertragbarkeit artspezifischer Verkalkungsstrukturen auf fossile Formen. Göttinger Arb Geol Paläont 50: 86

    Google Scholar 

  49. Paasche E (1964) A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Plant Physiol (Suppl) IIIa-82

    Google Scholar 

  50. Paasche E, Brubak S (1994) Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia 33324–33o

    Google Scholar 

  51. Pentecost A (1978) Blue-green algae and freshwater carbonate deposits. Proc R Soc Lond B 200: 43–61

    Article  Google Scholar 

  52. Pentecost A (1985) Investigation of variation in heterocyst numbers, sheath development and false-branching in natural populations of Scytonemaceae (Cyanobacteria). Arch Hydrobiol 102:343–353

    Google Scholar 

  53. Pentecost A, Riding R (1986) Calcification in cyanobacteria. In: Leadbeater SC, Riding R (eds) Biomineralization in lower plants and animals. The Systematic Association, Special Vol 30, Clarendon Press, Oxford, pp 73–90

    Google Scholar 

  54. Pentecost A, Spiro B (1990) Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae. Geomicrobiol J 8: 17–26

    Article  Google Scholar 

  55. Pia J (1933) Die rezenten Kalkgesteine. Z Kristall Mineral Petrogr Abt B, Mineralog Petrogr Mitt, Ergänzungsband, Leipzig

    Google Scholar 

  56. Pritzer M, Weckesser J, Jürgens UJ (1989) Sheath and outer membrane components from the cyanobacterium Fischerella sp. PCC 7414. Arch Microbiol 153: 7–11

    Article  Google Scholar 

  57. Raven JA, Smith FA, Walter NA (1986) Biomineralization in the Charophyceae sensu lato. In: Leadbeater SC, Riding R (eds) Biomineralization in lower plants and animals. The Systematic Association, Special Vol 3o, Clarendon Press, Oxford, pp 125–139

    Google Scholar 

  58. Rasmussen KA Macintyre IG, Prufert L (1993) Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize. Geology 21x99–202

    Google Scholar 

  59. Riding R 1977: Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology 20: 33–46

    Google Scholar 

  60. Riding R (1991) Calcified cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York pp 55–87

    Chapter  Google Scholar 

  61. Riding R (1992) Temporal variation in cacification in marine cyanobacteria. J Geol Soc Lond 149979–989

    Google Scholar 

  62. Riding R (1994) Evolution of algal and cyanobacterial calcification. In: Bengtson S (ed) Early evolution on Earth Nobel Symposium No 84, Columbia UP, New York, pp 426–438

    Google Scholar 

  63. Robbins LL, Blackwelder PL (1992) Biochemical and ultrastructural evidence for the origin of whitings: a biologically induced calcium carbonate precipitation mechanism. Geology 20 464–468

    Article  Google Scholar 

  64. Rowland SM, Gangloff RA (1988) Structure and paleoecology of Lower Cambrian reefs. Palaios 3, Reefs Issue 111135

    Google Scholar 

  65. Scherer S, Chen TW, Böger P (1988) A new UV -A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol 88: 1055–1057

    Article  Google Scholar 

  66. Schlösser UG (1982) Sammlung von Algenkulturen. Ber Dtsche Bot Ges 95x81–276

    Google Scholar 

  67. Schopf JW (1992) Paleobiology of the Archean. In: Schopf JW, Klein C (eds) The Proterozoic biosphere, a multidisciplinary study. Cambridge University Press, Cambridge, pp 25–39

    Google Scholar 

  68. Schopf JW (1996) Are the oldest known fossils cyanobacteria In: Roberts D McL (ed) Evolution of microbial life. 54th Symposium of the Society of General Microbiology. Cambridge Univ Press, Cambridge, pp 23–61

    Google Scholar 

  69. Schrader M, Drews G, Golecki JR, Weckesser J (1982) Isolation and characterization of the sheath from the cyanobacterium Chlorogloeopsis PCC 6912. J Gen Microbiol 128: 267–272

    Google Scholar 

  70. Sikes CS, Roer RD, Wilbur KM (1980) Photosynthesis and coccolith formation: inorganic carbon sources and the net inorganic reaction of deposition. Limnol Oceanogr 25: 248–261

    Article  Google Scholar 

  71. Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell, Oxford. Bot Monogr 19:47–85

    Google Scholar 

  72. Somers GF, Brown M (1978) The affinity of blue-green algae for calcium ions. Estuaries 1: 17–28

    Article  Google Scholar 

  73. Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31: 225–274

    Article  Google Scholar 

  74. Sudo H, Burgess JG, Takemasa H, Nakamura N, Matsunaga T (1995) Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytica. Curr Microbiol 30x9–222

    Google Scholar 

  75. Szulc J, Smyk B (1994) Bacterially controlled calcification of freshwater Schizothrix-stromatolites: an example from the Pienny Mts, Poland. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 31–51

    Chapter  Google Scholar 

  76. Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18: 995–998

    Article  Google Scholar 

  77. Van Liere L, Walsby AE (1982) Interactions of cyanobacteria with light. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell, Oxford. Bot Monogr 19:9–45

    Google Scholar 

  78. Vymazal J, Craft CB, Richardson CJ (1994) Periphyton response to nitrogen and phosphorus additions in Florida Everglades. Algol Stud 7375–97

    Google Scholar 

  79. Vymazal J, Richardson CJ (1995) Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. J Phycol 31: 43–354

    Google Scholar 

  80. Werner D (1982) Biologische Versuchsobjekte. Fischer, Stuttgart Wheeler AP, Sikes S (1984) Regulation of carbonate calcification by organic matrix. Am Zool 24933–944

    Google Scholar 

  81. Wharton RA Jr (1994) Stromatolitic mats in antarctic lakes. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 53–70

    Google Scholar 

  82. Weckesser J, Hofmann K, Jürgens UJ, Whitton BA, Raffelsberger B (1988) Isolation and chemical analysis of the sheaths of the filamentous cyanobacteria Calothrix parietina and C scopulorum. J Gen Microbiol 134629–634

    Google Scholar 

  83. Westbroek P, Buddemeier B, Coleman M, Kok DJ, Fautin D, Stal L (1994) Strategies for the study of climate forcing by calcification. In: Doumenge F, Allemand D, Toulemont A (eds) Past and present biomineralization processes. Bull Inst Oceanogr 13: 37–60

    Google Scholar 

  84. Winland HD, Matthews PK (1974) Origin and significance of grape-stones, Bahama Islands. J Sed Petrol 44921–927

    Google Scholar 

  85. Winsborough BM, Seeler J-S, Golubic S, Folk RL, Maguire B Jr(1994) Recent fresh-water lacustrine stromatolitic mats and oncoids from Northeastern Mexico. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 71 - l00

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merz-Preiß, M. (2000). Calcification in Cyanobacteria. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics