Skip to main content

Geological Sources of Methane

  • Chapter
Atmospheric Methane

Abstract

Methane is one of many gases produced by geological processes. Others include: CO2, H2, H2S, N2, SO2, H2O (as steam or water vapour), and the petroleum gases (ethane, propane, butane and pentane). This chapter considers geological sources of methane, and natural pathways which enable it to enter the atmosphere. For the purposes of this chapter ‘geological’ sources are taken to include sediments of all ages: ancient and modern, including those being actively deposited at the present day. Reference is also made to releases associated with geological resource extraction, however the most significant of these (coal and petroleum) are discussed in specific chapters elsewhere in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrajano, T. A., N. C. Sturchi, J. K. Bohlke, G. L. Lyon, R. J. Poreda, C. M. Stevens. 1988. Methane-hydrogen gas seeps, Zambales Ophiolites, Philippines: deep or shallow origin? In: Origins of Methane in the Earth (M. Schoell, ed.), Chem. Geol., 72: 211–222.

    Google Scholar 

  • Acosta, J. 1984. Occurrence of acoustic masking in sediments in two areas of continental shelf of Spain: Ria de Muros (NW) and Gulf of Cadiz (SW). Marine Geol. 58: 427–434.

    Article  Google Scholar 

  • Addy, S. K., J. L. Worzel. 1979. Gas seeps and sub-surface structure off Panama City, Florida. Am. Assoc. Petrol. Geol. (Bull.), 63: 668–675.

    Google Scholar 

  • Andronova, N. G., I. L. Karol. 1993. The contribution of USSR sources of global methane emission. Chemosphere, 26: (1–4): 111–126.

    Article  Google Scholar 

  • Aravena, R., L. I. Wassenaar, J. F. Baricek. 1989. Investigating carbon sources for methane and dissolved organic carbon in a regional confined aquifer using ‘4C, radiocarbon. Proc. 14th Internat. Radiocarbon Conf., 31: 170–171.

    Google Scholar 

  • Baraza, J., G. Ercilla, 1996. Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain). Marine Geology 13: 253–261.

    Article  Google Scholar 

  • Beck, L. L., S. D. Piccot, D. A. Kirchgessner. Industrial sources. In Atmospheric Methane: Sources, Sinks, and Role in Global Change,Ch. 17, NATO ASI Series, edited by M.A.K. Khalil, 1993, Springer-Verlag, pp. 399–431.

    Google Scholar 

  • Bordkov, Yu K., V. I. Yefimov, J. B. Timkia. 1988. Result of a gas-biochemical survey of snow cover for direct exploration for hydrocarbon deposits in the Venisey-Khatanga Downwarp (S.S.R). Petrol. Geol., 22: 203–205.

    Google Scholar 

  • Bustin, R. M., W. H. Matthews, 1985. In situ gasification of coal, a natural example: additional data on the Aldridge Creek coal fire, south-eastern British Columbia. Can. J. Earth Sci., 22: 1858–1864.

    Article  Google Scholar 

  • Butenko, J., J. D. Milliman, Y.-C Ye. 1985. Geomorphology, shallow structure, and geological hazards in the East China Sea. Cont. Shelf Res., 4: 121–141.

    Article  Google Scholar 

  • Carson, B., G. Westbrook, R. Musgrave. 1993. Cascadia Margin science operator report leg 146, JOIDES Journal, June 1993. Ocean Drilling Program, Texas A and M University: 1116.

    Google Scholar 

  • Cicerone, R. J., R. S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.

    Article  Google Scholar 

  • Clarke, R. H., R. W. Cleverly. 1991. Petroleum seepage and post-accumulation migration. In England, W. A., A. J. Fleet, Petroleum Migration. Geol. Soc. Sp. Publ. No. 59 ( Geological Society of London, Bath ), 265–271.

    Google Scholar 

  • Clayton, J. L., J. S. Leventhal, D. R. Rice, J. C. Pashin, D. Mosher, P. Czepiel. 1993 Atmospheric methane flux from coals–preliminary investigations of coal mines and geologic structure in the Black Warrior Basin, Alabama. In Howell, D. G. (Ed.) The Future of Energy Gases. United States Geological Survey Prof. Paper 1570: 471–492.

    Google Scholar 

  • Coleman, D. D., C. Liu, K. M. Riley. 1988. Microbial methane in the shallow paleozoic sediments and glacial deposits of Illinois, USA. Chem. Geol., 71: 23–40.

    Article  Google Scholar 

  • Cranston, R. E. 1994. Marine sediments as a source of atmospheric methane. Bull. Geol. Soc. Denmark, 41: 101–109.

    Google Scholar 

  • Cranston, R. E., G. D. Ginsburg, V. A. Soloviev, T. D. Lorenson. 1994. Gas venting and hydrate deposits in the Okhotsk Sea. Bull. Geol. Soc. Denmark, 41: 80–85.

    Google Scholar 

  • Dando, P. R., J. A. Hughes, Y. Leahy, S. J. Niven, L. J. Taylor, C. Smith. 1995. Gas venting from submarine hydrothermal areas around the island of Milos, Hellenic volcanic arc. Continental Shelf Research, 15: 913–929.

    Article  Google Scholar 

  • de Angelis, M. A., M. D. Lilley, E. J. Olson, J. A. Baross. 1993. Methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of the Juan de Fuca Ridge. Deep Sea Res. 40: 1169–1186.

    Article  Google Scholar 

  • Des Marais, D. J., M. L. Stallard, N. L. Nehring, A. H. Truesdell. 1988. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico. Chem. Geol. 71:159-167.

    Google Scholar 

  • Dillon, W. P., C. K. Paull. 1983. Marine gas hydrates–II: geophysical evidence. In: Natural Gas Hydrates: Properties, Occurrence and Recovery ( J. L. Cox, ed.), Butterworth, Boston, p 73–90.

    Google Scholar 

  • Earney, F. C. F. 1980. Petroleum, and Hard Minerals from the Sea. V. H. Winston and Sons, New York, 291 p.

    Google Scholar 

  • Ehhalt, D. H., Schmidt, U. 1978. Sources and sinks of atmospheric methane. Pure Appl. Geophys., 116: 452–464.

    Article  Google Scholar 

  • Fischer, P. J., A. J. Stevenson. 1973. Natural hydrocarbon seeps along the northern shelf of the Santa Barbara Channel, California. Paper 1728, Offshore Technol. Cont., Houston, Texas.

    Google Scholar 

  • Floodgate, G. D., A. G. Judd. 1992. The origins of shallow gas. Continental Shelf Res., /2:1, 145–1, 156.

    Google Scholar 

  • Gansser, A. 1960. Ãœber Schlammvulkane and Saldome (Mud volcanoes and salt domes). Naturf Gesell Zürich Vierteljahrssch, 105:1–46.

    Google Scholar 

  • Geyh, M. A., B. Softner. 1989. Groundwater analysis of environmental carbon and other isotopes from the Jakarta Basin Aquifer, Indonesia. Radiocarbon, 31: 919–925.

    Google Scholar 

  • Ginsburg, G. D., V. A. Soloviev. 1994. Submarine Gas Hydrates VNIIOkeangeologia, St. Petersburg, 199 p. (in Russian)

    Google Scholar 

  • Ginsburg, G. D., V. A. Soloviev. 1995. Submarine gas hydrate estimation: theoretical and empirical approaches. Offshore Technology Conference, Paper OTC 7693, Houston, Texas, USA, May 1995.

    Google Scholar 

  • Glasby, G. P. 1971. Direct observations of columnar scattering associated with geothermal gas bubbling in the Bay of Plenty, New Zealand. N. Z. J. Mar. Freshwater Res., 5: 483–496.

    Article  Google Scholar 

  • Glotov, V., V. V. Ivanov, N. A. Shilo. 1985. Migration of hydrocarbons through permafrost rock. Trans. (Doklady) U.S.S.R. Acad. Sci., Earth Sci. Sect., 285:192–194.

    Google Scholar 

  • Gold, T., S. Soter. 1980. The deep earth gas hypothesis. Sci. An., 242:154–161.

    Google Scholar 

  • Gold, T., S. Soter. 1982. Abiogenic methane and the origin of petroleum. Energy Exploration and Exploitation, 1:89–104.

    Google Scholar 

  • Guliev, I. S., A. A. Feizullayev. 1996. Geochemistry of hydrocarbon seepages in Azerbaijan. IN Schumacher, D., M. A. Abrams (Eds.) Hydrocarbon migration and its near-surface expression. AAPG Mem 66: 63–70.

    Google Scholar 

  • Hedberg, H. D. 1980. Methane generation and petroleum migration. In: Problems of Petroleum Migration. Am. Assoc. Petrol. Geol., Studies in Geology No. 10 ( W.H. Roberts, III, R. J. Cordell, eds ), pp 179–206.

    Google Scholar 

  • Hekinian, R. 1984. Undersea volcanoes. Sci. Am., 251: 46–55.

    Article  Google Scholar 

  • Higgins, G. E., J. B. Saunders. 1974. Mud volcanoes - their nature and origin. Verhandl Naturforschung Gellschafi, Basel, 84:101–154.

    Google Scholar 

  • Hill, J. M., J. P. Halka, R. Conkwright, K. Koczot, S. Coleman., 1992. Distribution and effects of shallow gas on bulk estuarine sediment properties. Cont Shelf Res. 12: 1219–1229.

    Article  Google Scholar 

  • Hochstein, M. P., 1970 Seismic measurements in Suva harbour (Fiji). New Zealand J. of Geol. and Geophys., /3: 269–281.

    Google Scholar 

  • Horibe, Y., K. Kim, H. Craig. 1986. Hydrothermal methane plumes in the Mariana back-arc spreading centre. Nature, 324:131–133.

    Article  Google Scholar 

  • Hovland, M., A. G. Judd. 1988. Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotman, London, 293 p.

    Google Scholar 

  • Hovland, M., A. G. Judd, R. A. Burke. 1993. The global flux of methane from shallow submarine sediments. Chemosphere, 26: 559–578.

    Article  Google Scholar 

  • Hunt, J. M. 1979. Petroleum Geochemistry and Geology, W. H. Freeman, San Francisco. Hyman, D. M. 1987. A review of mechanisms of gas outbursts in coal. U.S. Dept. Of the Interior, Bureau of Mines Info. Circ. 9155 1 1 p.

    Google Scholar 

  • Jakubov, A. A., A. A. Ali-Zade, M. M. Zeinalov. 1971. Mud volcanoes of the Azerbaijan SSR. Akademija Navk Azerbaijan SSSR, 257p. (in Russian with English summary)

    Google Scholar 

  • Jean-Baptiste, P., S. Belviso, G. Alaux„ B. C. Nguyen, N. Mihalopoulos. 1990. 3He and methane in the Gulf or Arden. Geochim. et Cosmochim. Acta, 54:111–116.

    Google Scholar 

  • Jorgensen, N. O., T. Laier, B. Burchardt, T. Cederberg. 1990. Shallow hydrocarbon gas in the northern Jutland-Kattegat region, Denmark. Bull. Geol. Soc. Denmark 38: 69–76.

    Google Scholar 

  • Judd, A. G., M. Hovland. 1992. The evidence of shallow gas in marine sediments. Cont Shelf Res. 12: 1081–1096.

    Article  Google Scholar 

  • Judd, A. G., D. Long, M. Sankey. 1994. Pockmark formation and activity, U. K. block 15/25, North Sea. Bull. Geol. Soc. Denmark, 41: 34–49.

    Google Scholar 

  • Judd, A. G., G. Davies, J. Wilson, R. Holmes, G. Baron, I. Bryden. 1997. Contributions to atmospheric methane by natural seepages on the UK continental shelf. Marine Geol., 137: 165–189.

    Article  Google Scholar 

  • Kadko, D., J. Baross, J. Alt. 1995. The magnitude and global implications of hydrothermal flux. In S. E. Humphries, R. A. Zierenberg, L. S. Mullineaux, R. E. Thomsen. Seajloor Hydrothermal Systems: physical, chemical, biological and geological interactions. Geophysical Monograph 91, American Geophysical Union.

    Google Scholar 

  • Kimmelmann, A. A., Aldo de Cunha, S. Reboucas, M. M. Freitas Santiago, 1989. 14-C analysis of groundwater from the Botucatu Aquifer system in Brazil. Radiocarbon, 31:926933.

    Google Scholar 

  • Kvenvolden, K. A. 1988. Methane hydrate: a major reserve of carbon in the shallow geosphere. Chem. Geol., 71:41–51.

    Article  Google Scholar 

  • Kvenvolden, K. A. 1993. Gas hydrates as a potential energy resource–a review of their methane content. IN Howell, D. G. (Ed.) The Future of Energy Gases. United States Geological Survey Prof. Paper 1570, pp 555–561.

    Google Scholar 

  • Kvenvolden, K. A., J. W. Harbaugh. 1983. Reassessment of the rates at which oil from natural sources enters the marine environment. Marine Env. Res., 10: 223–243.

    Article  Google Scholar 

  • Lacroix, A. V. 1993. Unaccounted for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory: A review and synthesis. Chemosphere, 26: 507–558.

    Article  Google Scholar 

  • Landes, K. K. 1973. Mother nature as oil polluter. Am. Assoc. Petrol. Geol. (Bull), 53:2, 4312, 479.

    Google Scholar 

  • Lawrence, J. R., M. Taviani. 1988. Extreme hydrogen, oxygen and carbon isotope anomalies in the pore water and carbonates of the sediments and basalts from the Norwegian Sea: methane and hydrogen from the mantle. Geochim, et Cosmochim, Acta, 52:2, 077–2, 083

    Google Scholar 

  • Leavitt, S. W. 1982. Annual volcanic carbon dioxide emission: an estimate from eruption chronologies. Environ. Geol., 4:15–21.

    Article  Google Scholar 

  • Liley M. D., J. A. Baross, L. I. Gordon. 1982. Dissolved hydrogen and methane in Saanich Inlet, British Columbia. Deep Sea Res., 28:1, 471–1, 484.

    Google Scholar 

  • Link, W. K. 1952. Significance of oil and gas seeps in world oil exploration. Am. Assoc. Petrol. Geol. (Bull), 36:1, 505–1, 540.

    Google Scholar 

  • Lowe, D. C., C. A. M. Brenninkmeiher, M. R. Manning, R. Sparks, G. Wallace. 1988. Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature, 332: 522–525.

    Article  Google Scholar 

  • MacDonald, G. J. 1983. The many origins of natural gas. J. Petrol. Geol., 5: 341–362.

    Article  Google Scholar 

  • Malahoff, A. 1985. Hydrothermal vents and polymetallic sulfides of the Galapagos and Gorda/Juan de Fuca Ridge systems and of submarine volcanoes. In: Hydrothermal Vents of the Eastern pacific: An Overview (M. L. Jones, ed.), Bull. Biol. Soc., Washington, 6: 1941.

    Google Scholar 

  • Martens, C. S., J. V. Klump. 1980. Biogeochemical cycling in an organic rich coastal marine basin. 1. Methane sediment water exchange processes. Geochem. Et. Cosmochim. Acta 44: 471–490.

    Article  Google Scholar 

  • McCartney, B. S., B. McK. Barry. 1965. Echo sounding on probable gas bubbles from the bottom of Saanich Inlet, British Columbia. Deep Sea Res. 12: 285–294.

    Google Scholar 

  • Nelson, C. H., D. R. Thor, M. W. Sandstrom, K. A. Kvenvolden. 1979. Modern biogenic gas-generated craters (sea-floor `pockmarks’) on the Bering Sea shelf, Alaska. Geol. Soc. Am. Bull, 90: 1144–1152.

    Article  Google Scholar 

  • Parnell, J. 1988. Migration of biogenic hydrocarbons into granites–a review of hydrocarbons in British plutons. Mar and Petrol. Geol., 5: 385–395.

    Article  Google Scholar 

  • Parnell, J., I. Swainbank. 1990. Pb–Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales (United Kingdom). Geology, 18:1, 028–1, 030.

    Article  Google Scholar 

  • Paull, C. K., W. Ussler III, W. S. Borowski, F. N. Spiess, 1995. Methane-rich plumes on the Carolina continental rise: Association with gas hydrates. Geology, 23: 89–92.

    Article  Google Scholar 

  • Philip, R. P. 1987. Surface prospecting methods for hydrocarbon accumulations. In: Advances in Petroleum Geochemistry, Vol. II ( J. Brooks and D. Welte, eds.), Academic Press, London, p 209–253.

    Google Scholar 

  • Prior, D. B., J. M. Coleman, 1982. Active slides and flows in underconsolidated marine sediments on the soles of the Mississippi delta. IN Saxov, S., J. K. Nieuwenhuis (Eds.) Marine Slides and Other Mass Movements, Plenum Press, New York, 21–49.

    Google Scholar 

  • Reitsema, R. H. 1979. Gases of mud volcanoes in the Copper River Basin, Alaska. Geochim, et Cosmochim. Acta, 43: 183–187.

    Article  Google Scholar 

  • Rice, D. R., G. C. Claypool. 1981. Generation accumulation and resource potential of biogenic gas. Am. Assoc. Petrol. Geol. (Bull.), 65: 5–25.

    Google Scholar 

  • Ridd, M. F. 1970. Mud volcanoes in New Zealand. Am. Assoc. Petrol. Geol. (Bull.) 54: 60 1616.

    Google Scholar 

  • Sassen, R., I. R. MacDonald, 1994. Evidence of structure H hydrate, Gulf of Mexico continental slope. Organic Geochemistry, 22: 1029–1032.

    Article  Google Scholar 

  • Schoell, M. 1988. Multiple origins of methane in the earth. Chem. Geol., 71:1–10.

    Article  Google Scholar 

  • Selley, R. C. 1992. Petroleum seepages and impregnations in Great Britain. Marine and Petrol. Geol. 9: 226–244.

    Article  Google Scholar 

  • Sherwood, B., P. Fritz, S. K. Frape, J. A. Macko, S. M. Weise, J. A. Welhan. 1988. Methane occurrences in the Canadian Shield. Chem. Geol., 71: 223–23.

    Article  Google Scholar 

  • Simoneit, B. R. T., P. T. Crisp, B. G. Rohrback, B. M. Didyk. 1979. Chilean paraffin dirt–II. Natural gas seepage at an active site and its geochemical consequences. In: Physics and Chemistry of the Earth, Vol. 12: Advances in Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), (Proc. 9th Internat. Meeting on Organic Geochem., Newcastle, Sept. 1979 ) p 171–176.

    Google Scholar 

  • Söderberg, P., T. Flodén. 1992. Gas seepages, gas eruptions and degassing structures in the seafloor along the Strömma tectonic lineament in the crystalline Stockholm Archipelago, east Sweden. Cont Shelf Res. 12: 1157–1172.

    Article  Google Scholar 

  • Sokolov, V. A., Z. A. Buniat-Zade, A. A. Geodekian, F. G. Dadashev. 1969. The origin of gases of mud volcanoes and the regularities of the powerful eruptions. In: Advances in Organic Chemistry 1969 ( P. Schenk and I. Havemar, eds.), Pergamon Press, Oxford, p 473–484.

    Google Scholar 

  • Sokolov, V. T., V. Tichomolova, O. A. Cheremisinov. 1972. The composition and distribution of gaseous hydrocarbons and dependence on depths, as a consequence of their generation and migration. In: Advances in Geochemistry -1971(H.R. Gaertner and H. Wehner, eds.), Pergamon Press, Oxford, p 479–486.

    Google Scholar 

  • Stadnik, Ye. V., I. Ya. Sklyarenko, I. S. Guliyev, A. A. Feyzullayev. 1986. Methane distribution in the atmosphere above tectonically different regions. Trans. (Doklady) U.S.S.R. Acad. Sci., Earth Sci. Sect., 289: 190–192.

    Google Scholar 

  • Taylor, D. I. 1992. Nearshore shallow gas around the U. K. coast. Cont Shelf Res. 12: 1135 1144.

    Google Scholar 

  • Trotsyuk, V. Y., V. I. Avilov. 1988. Disseminated flux of hydrocarbon gases from the sea bottom and a method of measuring it. Trans. (Doklady) U.S.S.R. Acad. Sci., Earth Sci. Sect., 291: 218–220.

    Google Scholar 

  • Upstill-Goddard, R. C., A. P. Reed, N. J. P.Owens. 1996. Simultaneous high-precision measurements of methane and nitrous oxide in water and seawater by single phase equilibration gas chromatography. Deep-Sea Research, 43: 1669–1682.

    Article  Google Scholar 

  • Vidal, F. V., J. A. Welhan, V. N. V. Vidal. 1982. Stable isotopes of helium, nitrogen and carbon in a coastal submarine hydrothermal system. J. Volcano Geother. Res., 12:101–110.

    Article  Google Scholar 

  • von Rad, U., H. Rösch, U. Berner, M. Geyh, V. Marchig, H. Schulz. 1996. Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Marine Geology 136: pp 55–77.

    Article  Google Scholar 

  • Vyshemirskiy, V. S., R. S. Khakimzyanova, V. F. Shugurov. 1989. A gas survey of snow cover in the Kuznetsk Basin. Trans. (Doklady) U.S.S.R. Acad. Sci., Earth Sci. Sect., 309:172–174.

    Google Scholar 

  • Watkins, J. S., J. L. Worzel. 1978. Serendipity gas seep area, South Texas offshore. Am. Assoc. Petrol. Geol. (Bull.), 62:1,067–1.074.

    Google Scholar 

  • Welhan, J. A. 1988. Origins of methane in hydrothermal systems. Chem. Geol., 71:183–198.

    Article  Google Scholar 

  • Welhan, J. A., H. Craig. 1983. Methane hydrogen and helium in hydrothermal fluids at 21 °N on the East Pacific Rise. In: Hydrothermal Processes at Seafloor Spreading Centres (Rana et al.,eds.), Plenum Press, New York, p 391–409.

    Google Scholar 

  • Wernecke, G., G. Flöser, S. Korn, C. Weitkamp, W. Michaelis. 1994. First measurements of the methane concentration in the North Sea with a new in-situ device.. Bull. Geol. Soc. Denmark, 4/: 5–11.

    Google Scholar 

  • Whalen, M., M. Tanaka, B. Henry, B. Deck, J. Zeglen, J. S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science, 245: 286–290.

    Article  Google Scholar 

  • Whiticar, M. J. (this volume) Can stable isotopes be used to constrain atmospheric methane budgets?

    Google Scholar 

  • Wilson, R. D., P. H. Monaghan, A. Osanik, L. C. Price, M. A. Rogers. 1974. Natural marine oil seepage. Science, 184: 857–865.

    Article  Google Scholar 

  • Zor’kin, L. M., F. G. Dadashev, A. A. Dadashev, Krylova. 1985. Peculiarities of the isotopic concentration of methane from petrogas-condensate and gas condensate deposits of Azerbaijan. Dan SSR, 280:1, 225–1, 228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Judd, A.G. (2000). Geological Sources of Methane. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics